C Language Development System

Atani Sl

Laser C

Laser Shell and Editor

C Compiler

Linker

Disassembler
Archiver/Linker

Symbol Namer

Make Utility

Resource Construction Program
Compile and Link

Egrep

Disk Utilities

UNIX Compatible Routines
GEM AES

VDI

BIOS, GEMDOS, XBIOS Routines
Line-A Graphics Routines
Utility Routines

File Formats

System Globals

DOS Error Codes

Key Codes

Header Files

Index

Preface

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of Megamax, Inc. Printed in the United States of America.

Megamax, Inc. makes no warranty of any kind in respect to this manual
or the software described in this manual. The user assumes any risk as to the
quality, performance, and accuracy of this product. In no event will Megamax,
Inc. be liable for direct, indirect, incidental, or consequential damages resulting
from any defect in the performance or use of this product.

This manual was formated with IATgX running on an ISI V16S computer
and printed on an Apple Laserwriter. The fonts used are “Almost Computer
Modern” roman and typewriter.

Megamax C and Laser C are trademarks of Megamax, Inc. UNIX is a trade-
mark of AT&T, Inc. Atari ST is a trademark of Atari Corporation. GEMDOS
is a trademark of Digital Research Corp.

Copyright (© 1986, 1987, 1988 by Megamax Inc.

ii

Contents

Preface it
1 Laser C Package 1
1.1 Components. e 1
1.2 UpdatePolicy i e 2
1.3 Defective Media Warranty 2

2 Introduction 3
2.1 Implementation 3
2.2 Hardware Requirements 4
2.3 SystemSetup 4
2.3.1 Single-sided Drive Installation. 4

2.3.2 Double-sided Drive Installation 4

2.3.3 Hard Disk Installation 4

2.4 ConventionS v i v i i e e e e e e e e e e e e e e e 5
241 ScrollBarUsage 6

2.42 SelectorUsage 7

2.4.3 File Name Conventions 8

2.5 Development Steps 0., 8
2.6 SampleSession 9

3 Laser C 13
3.1 Languageuuuuiieie.. e e e e 13
3.1.1 DataTypes i it i it 13

3.1.2 C Preprocessor i 13

3.1.3 External Names 14

3.1.4 Enumeration Types 15

3.1.5 Structure Assignment 15

iil

iv

CONTENTS

3.1.6 Character Constants 15
3.1.7 Scope of Identifiers 16
3.1.8 Forward Pointer References 16
319 Assembler 00 17
3.2 Language Implementation 18
3.2.1 Sizeof DataElements 18
3.22 CodeGeneration v v v v vt 18
3.2.3 Switch Statement Fe % @ 5 m s W F W 4 W E w6 19
3.2.4 Function Call Conventions. 20
3.2.5 Register Variable Support 21
326 Assembler 0 o0 0 21
3.2.7 Storage Allocation/Initialization 26
Laser Shell and Editor 27
41 ShellStartup 0 L. 27
4.2 Shell Configuration 28
421 Tools :i:as v mmsminssessosssas 28
4.2.2 Environment Variables 30
4.2.3 Save Configuration, 32
424 DiskCache 32
43 TextEditor e 33
4.3.1 EditorMenuUsage. 34
432 Choosing AFile 34
433 MouseUsageo v v it v 35
4.3.4 Scrolling the Window 36
4.3.5 Insertion Point Keys 36
436 TextEntry 37
43.7 BlockOperations 37
43.8 EditorOptions 39
439 Finding Text 40
43.10 Text Marks it 42
4.3.11 Rearranging Windows 42
4.3.12 File Information 43
44 Running Programs 43
441 Menu Command Execution 43
442 Command Line Execution 45
45 DiskOperations i 47
4.6 Project Management (Make) 48
47 Debugging e e e e 49
48 MenuSummary e e e e e e e 51

CONTENTS

4.9 Keyboard Summary00, 52

5 C Compiler 55
5.1 Command LineUsage 55
5.2 CompilerErrors 56
53 Memory Usageo, 56

6 Linker 57
6.1 Command LineUsage 58
6.2 LinkerErrors 59
6.3 The Linking Process Lod s w8 me e mn me s e s 60
6.4 Desk Accessory Support 61

7 Disassembler 63
7.1 Command LineUsage 63
7.2 DisassemblerErrors 64

8 Archiver/Librarian 65
8.1 Command LineUsage 65
82 Random Library 66
83 ArchiverErrors o 66

9 Symbol Namer 69
9.1 Command LineUsage 70
9.2 NamerErrors, 70
10 Make Utility 71
10.1 Command LineUsage 72
10.2 A Simple “Makefile” 73
10.3 Makefile Structure 74
10.3.1 Entries. e e 74

10.3.2 Comments. i v i v it e e 75

10.3.3 Macro Definition 75

10.3.4 Implicit Macros 77

10.3.5 Dynamic Dependency 77

10.3.6 SuffixesTable 77

10.3.7 TransformationRules 78

10.4 Examples e e 78

CONTENTS

11 Resource Construction Program 81
11.1 Definition of Resource Files 81
112 RCP Usage0 s st %16 wsnmwansssas 83

11.2.1 Tree Types vt v i i ittt v e v 84
11.2.2 Visual Hierarchy 84
11.2.3 Menuwusage ot ittt 85
11.2.4 Mouse usage o v v vt b it e 85
11.2.5 Resizing e 86
11.2.6 Keyboard Usage 86
11.3 Menu Functions, 86
11.3.1 EditMenu 86
11.3.2 FileMenu e 87
11.3.3 OptionsMenu 87
11.4 Object Dialogs 88
11.5 The Icon Dialog 89
11,6 The BitImage 91
11.7 Using RCP as a Resource Editor 91

12 Compile and Link 93
12.1 Command LineUsage 93
122 CCEITOIs v v v v c s s a s o s 56 68 o8 w6 56 o 5 5 94
12.3 Examples e e e e e e e 94

13 Egrep 95
13.1 Command LineUsage 96
13.2 EgrepErrors oo 97
13.3 Example Searches. 0oL, 97

14 Disk Utilities 99
141 LS . . . e e e e e e e 99
142 CP . . i 55 v s 58 + 96 9% H@ s 5 8 8 ¢ 56 Ho me 0% 85 100
143 MV ci i s s v a6 s o s ma st masbi®assndedibds gp 101
144 RM e e 101
145 RMDIR . & s ox sm ¢ 5 ¢ 5im 5 53 w6 6 mis s mw s s #8858 3 8 » 102
14.6 MKDIR 102
147 CAT . . . v 2 s s s 05 52 s 53 x g a2 » @ e memsmemssses 103
148 DUMP . . o ¢ 6 s a8 s 5 5 # % « #8655 § G 8 8 8 8¢ 55 &35 6 » 103

149 SIZE . . s 5 5 ¢ 5 ¢ 56 s 2 » & 8 6oa s @ & & & % 5 % 8 8 8 4 6 % 83 - 103

CONTENTS
15 UNIX Compatible Routines 105
15.1 Line Separators 105
152 FileI/O e 106
153 I/ORedirection, 106
154 Device I/O 106
15.5 Memory Allocation 107
15.6 Program Parameters 107
15.7 Summary of Routines 108
16 GEM AES 163
16.1 Creating a GEM Application 165
16.2 Applications Manager 171
16.3 Event Manager 179
16.4 Form Manager 197
16.5 File Selector Manager 209
16.6 Graphics Manager 213
16.7 Menu Manager 225
16.8 Object Manager. 237
16.9 Resource Manager0.... 261
16.10Scrap Manager 271
16.11Shell Manager 275
16.12Window Manager e 281
17 VDI 307
17.1 VDI Examples . 310
18 BIOS, GEMDOS, XBIOS Routines 417
18.1 BIOS Interface, 417
18.2 XBIOS Interface 418
18.3 GEMDOS Interface. 418
18.4 GEM Run-time Structure 418
19 Line-A Graphics Kernal 531
19.1 Line-A Graphics Routines 531
19.2 Graphics Modes. ym oz m e e 532
19.2.1 High-resolution Mode 532
19.2.2 Medium-resolution Mode 532
19.2.3 Low-resolutionMode 533
19.3 Line-A Port e 533
19.4 Line-A Data Structures 534

vii

CONTENTS

20 Utility Routines

A

H O Q@ W

File Formats

A.1 Laser Object File Format
A.2 DRI Object File Format
A.3 GEMDOS Application File Format

System Globals
DOS Error Codes
Key Codes
Header Files

.................

.................

.................

557

577
577
579
580

581
587
589

593

Chapter 1

Laser C Package

1.1 Components

The Laser C Development System includes this manual, a warranty card which

should be filled out and returned, and three single-sided diskettes, labeled “SYS-

TEM”, “WORK?”, and “UTILITY”. The SYSTEM diskette contains:
MEGAMAX Folder

CCOM.TTP C compiler

LD.TTP Linker

LASER.CFG Configuration file
LASER.RSC Required by LASER.PRG
MAKE.TTP Make utility

LASER.PRG Laser development shell (includes editor)
The WORK diskette contains:

EXAMPLES Folder of example programs
MEGAMAX Folder
HEADERS Folder of C header files

INIT.O C initialization code
LIBC.A C function library
CC.TTP Compile and link utility

The UTILITY diskette contains:

CHAPTER 1. LASER C PACKAGE

AR.TTP Archiver/Librarian
CAT.TTP File display utility

CP.TTP File copy utility

DIS.TTP Disassembler

EGREP.TTP Multi-file string search utility
LS.TTP File list utility '
MEKDIR.TTP Create folder utility
MV.TTP File move utility

NM.TTP Symbol Table Dumper

RCP.PRG Resource Construction Program
RCP.RSC Required by RCP.PRG
RM.TTP File remove utility
RMDIR.TTP Folder remove directory
DUMP.TTP Hex file display utility
SIZE.TTP File size utility

1.2 Update Policy

Updates to this product, when released, are made available to registered users
by sending the original diskettes along with $20 to Megamax. Updates include
new disks along with a copy of the new documentation. Please fill out and
return the warranty registration card to Megamax. Megamax user services,
such as B.B.S. access, update announcements, and the Megamax newsletter
depend on the purchaser having done this. The update policy is subject to
change without notice.

1.3 Defective Media Warranty

If any physical defects are discovered with the magnetic media within a period
of 60 days after purchase, assuming normal use of the diskette, Megamax, Inc.
will replace the diskette free of charge. The original diskette must be returned
to Megamax, Inc.

Megamax, Inc

Box 851521
Richardson, TX 75085
(214) 987-4931

Chapter 2

Introduction

Laser C is a complete, professional quality C language development system for
Atari ST computers. It includes a compiler, a linker, an integrated shell and
editor, header files, a library of UNIX compatible routines, and a complete
interface to the Atari ST ROM routines. In addition, the package includes an
archiver, a resource construction program, a project manager (Make) utility,
and a catalogue of example source programs.

The Laser Shell has a multi-window mouse-based text editor, a built-in disk
cache, a facility for making system programs RAM resident, and many other
special features which aid program development.

2.1 Implementation

The C compiler was implemented according to the book “The C Programming
Language” (also known as K&R) written by Brian W. Kernighan and Dennis
M. Ritchie. This manual does not attempt to restate the principles of their
book, but rather provides the programmer with information about the Laser C
implementation. Numerous language extensions have been included which are
beyond K&R, such as enumeration types, structure passing and assignment,
and in-line assembly of Motorola 68000 instructions.

To make full use of the in-line assembly feature, it will be necessary to
obtain the Motorola M68000 Programmer’s Reference Manual, published by
Prentice-Hall, Inc.

CHAPTER 2. INTRODUCTION

2.2 Hardware Requirements

Laser C may be used on an Atari ST with a single-sided disk drive. However,
for the most efficient development, it is suggested that an Atari ST with one
megabyte of memory and a double-sided 800K disk drive be used.

IMPORTANT: Make working copies of each of the three original diskettes
and put the originals in a safe place.

2.3 System Setup

2.3.1 Single-sided Drive Installation

If a single-sided drive system is to be used it is suggested that the duplicate
SYSTEM be inserted to start “LASER.PRG”, which will load the compiler
and linker into RAM. Once loaded, the SYSTEM disk can be replaced with the
duplicate WORK disk, which should have sufficient room for development. If
a second drive is available, it may be used to run programs on the UTILITY
disk, or it may be used for extra storage.

2.3.2 Double-sided Drive Installation -

If a double-sided drive system is to be used, copy the contents of the WORK
disk to the duplicate SYSTEM disk and use it disk for development. If a second
drive is available, it may be used to run programs on the UTILITY disk, or it
may be used for extra storage.

2.3.3 Hard Disk Installation

When installing the Laser Development System onto a hard disk it is suggested
that a folder called “MEGAMAX” be created, into which all files in the
‘MEGAMAX” folders on the SYSTEM and WORK disks be placed. The
remaining files on the SYSTEM, WORK, and UTILITY disks can then be
placed on the root of the drive. Creation of this folder is not required; however,
the Laser Shell and the Resource Construction Program will both look for
necessary files in this folder if not found in the folder in which the programs
reside. Since the Laser Shell uses path names and search paths to locate and
run programs, other configurations are possible.

NOTE: The MEGAMAX folder may not be placed inside of another folder,
it must remain at the top level of the disk on which it is created.

24 CONVENTIONS

2.4 Conventions

The following conventions apply to the remainder of this document.

Cursor
Insertion point
Press/type
Click

Double-click

Shift-click
Control-click
Choose

Drag
Shift-Drag
Control-Drag

Select

The mouse cursor.
The blinking text cursor in an editor window.
Keyboard entry is required.

Position the cursor over an item and press the
left mouse button.

Like click except the mouse button is pressed
twice in rapid succession.

Click while holding down the “Shift” key.
Click while holding down the “Control” key.

Make a menu selection by moving the mouse
into the menu bar and clicking on an item.
Indicates that the mouse is moved while the
mouse button is held down.

A mouse drag in which the “Shift” key is held
down (before the drag is begun).

A mouse drag in which the “Control” key is
held down (before the drag is begun).

Often text or other graphical items are se-
lected so that subsequent operations may ap-
ply only to the selected items. Selected items
are hilighted in some manner. Selected text
is often printed in white-on-black. Extended
or multiple selections are typically made by
Shift-clicking.

CHAPTER 2. INTRODUCTION

2.4.1 Scroll Bar Usage

Scroll bars are typically used to position a window or selector box over text
which will not fit entirely within the window or box. The white area of a scroll
bar (the thumb) indicates the relative size of the window to the content of the
window. Thus, an entirely white scroll bar indicates that the entire contents
of the window are visible and that no scrolling is necessary. The thumb may
be dragged to directly position the window anywhere over the file. Clicking
and holding down the left-hand mouse button on an arrow moves the window
over its contents in the indicated direction. Clicking on a grey area moves the
window over its contents by a larger amount, typically one-half of the visible
content of the window.

Scroll arrow

Thumb

Grey (page) area 4

Figure 2.1: Scroll Bar Components

24 CONVENTIONS

2.4.2 Selector Usage

The Laser Shell often displays lists in what are called “selector boxes”. A
selector box is an interactive device which allows the display and selection of
items (names or strings). If the list of items in a selector box is too long to fit in
the box, a scroll bar becomes active with which the list may be scrolled. Some
selector boxes allow multiple selections while others allow only one item to be
selected at a time. Multiple selections, when allowed, are made by clicking on
the first item to be selected and then dragging across other items to be selected,
or by shift-clicking on each item to be selected.

Select a file

d AUTO
i MEGAMAX
""‘22“'3 CANCEL m
CRASH. [CANCEL |
CRASH.PRG
DESKTOP. INF
HELLO.C
HELLD. 0
HELLO.PRG
ISSEND, TTP

Figure 2.2: Open File Selector Dialog

A special variety of selector box is the “file selector box”. A file selector box
displays a sorted list of file names and folder names. Folder names are preceded
by a graphical character and are sorted to the top of the list. Selections and
multiple selections (when allowed) are performed for the standard selector box.
A folder is opened by double-clicking on the folder name, and a folder is closed
by clicking on the graphical character in the upper left-hand corner of the
selector box. Closing the root (the disk drive name) causes a list of available
drives to be displayed. Double-clicking on a drive name changes to the root of
that drive.

,

CHAPTER 2. INTRODUCTION

2.4.3 File Name Conventions

A GEMDOS file extension is the optional one to three characters ending a file
name, separated from the rest of the file name by a period. File name extensions
are typically used to indicate the type of the file. The following file name
extensions are recognized by the Laser Shell and the Resource Construction
Program:

.ACC Desk accessory.

.PRG GEM (graphic) application program.

.TOS Character based application program.

.TTP TOS program which takes program parameters.

.CFG Shell configuration file.

.LNK Shell linker dialog configuration.

.RSC GEM resource file.

.DEF File of resource name definitions (used by “RCP.PRG”).
C language source file.
C header file.
Object code file.
Archive file.

> 0o K a

2.5 Development Steps

In general, the sequence of steps taken to develop a C program, known as the
development cycle, are:

Edit Create the program source with a text editor.

Compile Run the compiler on the program source. If the pro-
gram contains errors, as reported by the compiler, re-
turn to the edit step. If no errors occur, the compiler
will output a linkable object file.

Link Run the linker supplying as input the names of object
files (or archives of object files). If the linker reports
any errors, return to the edit step. Barring any link
errors, an executable program will be output by the
linker.

2.6 SAMPLE SESSION

Run/Debug Running the executable program may reveal errors.
Repeat these steps until the program runs as desired.

The Resource Construction Program may be utilized to create resources for
applications. This step is independent of the above process.

The Laser Shell serves as both a source editor, and a utility from which
the compiler and other development programs may be run. These programs
may alternately be run from the GEM desktop or from a command line shell;
however, the Laser Shell has facilities which greatly decrease development time.

2.6 Sample Session

In the following example, a simple C program is created.

e Follow the installation procedure described above. A RAM disk may be
used with the Laser Shell, but will not improve performance due to the
automatic disk cache within the Shell.

e From the GEM desktop, double-click on the file “LASER.PRG”. After
a few seconds the menu bar will change to the editor’s menu bar. An alert
box should be presented which proclaims “Loading RAM Resident Pro-
grams”. If this alert is not seen, the Shell did not find a configuration file
in which case the Shell should be terminated (by choosing Quit from the
File menu). The configuration file, named “LASER.CFG” should then
be copied to either the same location (drive and folder) as the program
“LASER.PRG”, or to the “MEGAMAX” folder, if present.

10 CHAPTER 2. INTRODUCTION

e When the RAM resident programs are loaded properly, choose New from
the File menu. An empty editor window will appear.

N F#80N Edit Execute Make Options Search MWindows Info

o e o B 2 e B 0

Save as, ..

Elose
Clase gli

Figure 2.3: New File Item

e Enter the following program verbatim by typing it into the window. If
a typing mistake is made, erase with the “Backspace” key. The inser-
tion point may be moved by clicking on the desired character. Press the
“Return” key to create a blank line at the insertion point.

printf("Hello, world\n");
getchar();

X

<l

Figure 2.4: Example Program

2.6 SAMPLE SESSION

11

e Now choose Save or Save as ... from the File menu. When a dialog
appears, press the “ESC” key, type “HELLO.C”, and press “Return”.
The file has now been saved to disk and given a name with the “.C”
extension, which is necessary for the Run command.

N B#8l Edit Execute Make Options Search MWindows Info
i ﬂ Hpen...
1N New
1" pisk ops...
S Save [
Save as...
Close
Close all
Revert

world\n');

Figure 2.5: Save File Item

e Next, choose Run from the Execute menu. The Shell will compile, link,
and run the program in the front window. If the program contains any
errors, correct them and select Run again. When run, the program should
print directly onto the screen and then wait for a “Return”. When the
“Return” is typed, the program will terminate and return to the Shell.

N File Edit NSTIITN Make Options Search Windows Info
= Compile...

printf("Hellg

getchar();

}
|

Figure 2.6: Run Program Item

12 CHAPTER 2. INTRODUCTION

e Finally choose Quit from the File menu. The program “A.PRG” should
appear on the desktop as a stand-alone application.

i P

e ane e par dop oo st e dws 2i i e 108

Save as... world\n®) ;

Close
Close all

s ane aws pae dor oo nar are ses g0 ov ont 1o

Figure 2.7: Quit Laser Shell Item

Chapter 3

Laser C

3.1 Language

3.1.1 Data Types

The C compiler supports all of the standard scalar types of the C language:
char, int, short, long, unsigned, float, and double, as well as pointers
to all types. Also unsigned char, unsigned long and enum are supported.
Bitfields are supported but the fields must only be unsigned.

Void Data Type

The keyword void is used to tell the compiler that a function does not have a
return value. For example

void foo()
{

printf("Hello world\n");
}

The void type can not be used in an expression.

3.1.2 C Preprocessor

The Laser C preprocessor follows the specification given in K&R. There are
some extensions, however.

13

14

CHAPTER 3. LASER C

The restriction of having the '#’ in the first column of a line has been lifted.
There can also be any amount of white space between the ’#’ and the pre-
processor command but the command an the ’# must be on the same line. If
there is no command on the same line following a ’#’ that line is skipped. e.g.

define TRUE 1
#ifdef TRUE

#

#endif

Note that there is white space prior to the define and that there is no
command on one of the lines with a ’#’ on it.

Include File Processing

The #include feature of the standard C preprocessor allows file names to be
given within either double quotes or angle brackets. File names in double quotes
make the compiler search the directories in this order:

1. The directory of the source file that contains the include command.

2. Any files given to the compiler with the -I option (see section 5.1).

File names in angle brackets cause the compiler to start searching at step 2
above.

Include files may be nested to a depth of 6 levels, including the main module
level. An attempt to nest beyond this maximum (if an include file inadvertently
#included itself) results in an error message.

3.1.3 External Names

Identifiers (names of variables and functions) may contain up to 255 characters
each. As per the standard for the C language, both upper and lower case
letters are allowed in identifiers, and are distinct from each other. That is,
the names myvar and MyVar are different. The underscore character (_) is also
legitimate within identifiers, as are digits. Identifiers, though, may not begin
with a digit. It should be noted that various internal functions, such as floating
point routines and support for long integers, have names beginning with an
underscore. The programmer should therefore avoid using identifiers which
begin with an underscore if possible.

3.1 LANGUAGE 15

3.1.4 Enumeration Types

Laser C supports enumeration types using 16-bit representation of the enumer-
ation constant. An example of an enumeration type is:

enum { apples, oranges, bananas } fruits;

main()
{
fruits = oranges;

}

The values assigned by the compiler start at 0 and are incremented for each
identifier. In the example above fruits will have the value 1. Enumeration
constants can also be assigned values when they are declared. The compiler
will use that value to increment from.

enum { green = 5, orange, yellow = 10 } colors;

main()

{
colors = orange;
colors yellow;

}

In the above example orange has the value 6 and yellow has the value 10.

3.1.5 Structure Assignment

Laser C supports structure and union assignment and passing. If x and y are
structures of type stype then the following statements are legal:

X =Y, /* contents of y are copied to x */
foo(x); /* x is passed by value to foo() */ °
struct stype bar(); /* function returning struct */

GEM routines that have structures as parameters must be passed the ad-
dress of the structure (using the “&” operator).

3.1.6 Character Constants

The definition of character constants has been extended in Laser C to allow int
and long size as well as char. The syntax is a single quote followed by 1, 2 or

16

CHAPTER 3. LASER C

4 characters and a closing single quote. The resultant type will be a char, int
or long respectively. An example of a character constant is:

long a = ’ABCD’; /* a will have the value 0x41424344 */

3.1.7 Scope of Identifiers

In general, name scoping within the C compiler is as per standard C. One
exception to this standard is the treatment of identifiers of structure members.
In Laser C, structure member names need not be unique across struct bound-
aries. Therefore it is valid for two different structures to contain members at
different relative off sets with identical names. e.g.

struct {
int number;
char *name; /* name is at offset 2 */

} struct_one;

struct {
char *name; /* name is at offset O */
char *address;

} struct_two;

3.1.8 Forward Pointer References

A problem arises when two structures must refer to each other: the reference in
the first structure causes an undefined type error because the second structure
hasn’t been defined yet. This mutual referencing almost invariable arises with
some kind of linked data structure. The C compiler has been extended to allow
pointer references to structs or unions that have not yet been defined. Note
that this only works with pointers to structs or unions with a tag name (typedefs
will not work). Additional errors will be generated later in the compile if the
struct or union is never defined. e.g.

struct node {

char *symbol_name;

struct type_node *type; /* type_node is not defined */
};

struct type_node {
int type;
};

3.1 LANGUAGE 17

3.1.9 Assembler

The C compiler allows the addition of assembly language code to a C program
directly in-line with the C code. The C language has been extended to include
the construct:

asm {

MC68000 Assembler Instructions

The code within the braces after the keyword asm is assembled and included
in-line with code generated from surrounding C statements. In-line assembly
may appear anywhere in your program; it is not necessary to place it inside a
function.

The in-line assembler obviates the need for a separate assembler. General
control structure, input/output, and complex data structures can be imple-
mented in C, while certain low-level routines can be coded in assembly lan-
guage within the same module. The problem of interfacing C functions to
assembly language functions and vice-versa is eliminated, because calling se-
quences can be written in C for functions coded in assembler. Programs can
first be developed in C to debug algorithms and to quickly generate a working
prototype. Functions which comprise the most time consuming sections of the
program (generally less than 10% of the code) can then be re-coded in assem-
bly language. Because of the efficiency of the C code generator, such a hybrid
approach yields execution speeds favorably comparable with pure assembly lan-
guage code while retaining the ease of modification and maintenance of a pure-
high-level language approach.

However, the use of assembly language decreases readability, exacerbates
debugging headaches, and drastically reduces portability. Discretion must be
used when considering functions for hand translation. There are some situations
where speed is critical, most notably graphics. Such applications frequently
involve system or machine dependencies anyway, so portability is not an issue.
In such cases, the availability of in-line assembly language is a great benefit.

See section 3.2.6 for the syntax of the assembler.

18

CHAPTER 3. LASER C

3.2 Language Implementation

3.2.1 Size of Data Elements

The amount of space allocated for each data type (in terms of 8-bit bytes) is as
follows:

char: 1 | unsigned char: 1
unsigned: 2 | unsigned long: 4
short: 2 | float: 4
int: 2 | double: 8
long: 4 | Pointer type: 4
enum: 2

Floating point types are stored in IEEE standard format (although non-
IEEE standard routines are used to perform floating point calculations. In
particular, the 80-bit temporary is not supported).

Space for variables of type char is allocated on the next available byte
boundary in memory if the variable is within a struct or union or is of storage
class auto, or on the next available word boundary if the variable is extern
or static. Space for all other variables, including those of any other storage
class as well as arrays, structs and unions, is always allocated on the next
available word boundary, regardless of storage class. Bit fields within struct’s
are allocated in unsigned units, starting from the least significant bit. The
maximum size of a string constant is 255 bytes.

3.2.2 Code Generation

The C compiler, including preprocessor, syntax check, and code generation, is
one-pass. In other words, all work which needs to be done by the compiler is
finished after looking at the contents of the source file once. The compilation
process is thus quite fast.

Linkable object code is generated directly by the compiler; there is no as-
sembly post-pass. The compiler performs many processor specific “strength
reduction” optimizations, such as using MC68000 “quick” instructions, replac-
ing multiplies by powers of two with shifts, and avoiding intermediate register
loads when possible. Simple statements such as increments and assignment op-
erations involving constants frequently generate only one machine instruction.
For example, the statement

i++;

3.2 LANGUAGE IMPLEMENTATION

19

will compile into a single instruction to increment the variable i, and the state-
ment

i = 50;
will compile to a single MOVE instruction. The statement
¥p++ = *q++;

where p and q are register variables, will also compile to a single MOVE instruc-
tion.

Certain expressions involving constants will be evaluated at compile time.
Therefore, the statement

i += 5 * ARRAYSIZE;

will generate one ADD instruction, assuming ARRAYSIZE is a constant which was
#defined.

3.2.3 Switch Statement

The C compiler will generate one of three types of code for a given switch
statement, depending on the values of three internal variables. The simplest
type of code it can generate is a linear search of the case values. A faster method
is a binary search of the case values. The fastest method employed is a jump
table. A jump table is always as large as the range (maximum - minimum) of
the case values, regardless of the number of cases, and is best used when the
range is no greater than twice the number of cases (i.e. when half or less of
the space in the table is wasted). To prevent this waste, a search method is
used. The choice of linear or binary search is made on the basis of the number
of cases. A linear search uses in-line code rather than a function call; however,
a binary search can be faster where a large number of cases are used. The
compiler can be given options to force it to generate code in any of the three
ways (see section 5.1). The -S option to the compiler specifies three numbers:
a, b and c. The compiler’s code generator decides which code to generate by
the following method: /

if (num_cases < a and case_density <= b)
generate a jump table
else
if (num_cases < ¢)
generate comparison code
else
generate a binary search

20

CHAPTER 3. LASER C

Where:

case_density = (max_case_val - min_case_val) / num_cases

3.2.4 Function Call Conventions

Parameter expressions encountered in function calls are evaluated and then
passed to the function on the stack. The parameters are pushed in the reverse
of the order given in the parameter list. Reversal of the parameter list is
necessary for functions with variable numbers of parameters. Such functions
may access lists of parameters as follows:

/* Return max of list of ints; n gives list length */

max(n, p);
int n, p;
{

int *pp, max = -32768;
for (pp = &p; n; pp++, n--)
if (max < *pp)
max = *pp;
return max;

}

The above function max() returns the maximum of an arbitrary number of
integers. The number of integers is passed as the first parameter, followed by
the list of values:

m = max(5, i, j, k * 2, 87, f(abc));

Note that the pointer variable pp is incremented in the for loop of the above
function. The pointer will move down through the stack towards higher mem-
ory locations retrieving each parameter in turn. Any functions which use this
method of obtaining parameters are not necessarily portable to other imple-
mentations of C.

Values are returned from functions in processor register DO, or in the case
of double values, in the global variable _fpreg0. It is the responsibility of the
calling environment to remove parameters from the stack after return from a
function call. Each function must ensure that any registers used to hold register
variable values are saved and then restored when the function terminates.

Structs may be passed by value. See section 3.1.5 for details.

3.2 LANGUAGE IMPLEMENTATION

21

3.2.5 Register Variable Support

Each function in a Megamax C program can expect up to eight registers avail-
able for register storage class variables. Four data registers are available for
integral types (char, short, int, long, and unsigned), and four address reg-
isters are available for pointer variables. Judicious use of register variables can
substantially increase execution speed and decrease code size. Data register D7
is allocated first, then D6, D5, and D4. Address register A5 is allocated first,
then A4, A3, and A2.

3.2.6 Assembler
Syntax

The syntax for a line of assembly code is:
<label :> opcode<size> <effective address>

Anything enclosed with <...> is optional. There can be more than one
instruction per line. Opcodes can be in lower or upper case. Register names
must be in uppercase. Comments take two forms. There is the standard C type
comment /* ... */ or the assembly language comment which starts with a ’;’

and continues to the end of the line. e.g.

asm {
clr.1l DO ; this is a comment
+ a line with only a comment
clr.1 D1 /* this is also a comment */

}

The effective address calculation follows the syntax of the Motorola 68000
manual. Addressing modes are not completely orthogonal in the Motorola 68000
instruction set. For complete information on addressing modes and instruction
forms, consult a Motorola databook.)

The size field can be any one of .B,. W, or .L for byte, word and long sizes
respectively. Branch instructions can also have .S for short branches.

There can be zero or more labels on a line. e.g.

asm {
label_1:
label_2: label_3: rts
; label_1, label_2, label_3 are at the same address

22

CHAPTER 3. LASER C

The identifiers CCR, USP and SR are also recognized by the assembler.
They stand for the Condition Code Register, the User Stack Pointer and the
Status Register respectively.

Note that #defines can be used to create simple macros, using the multiple
statement per line feature. Within macros, C style comments must be used
instead of the normal semicolon-to-end-of-line assembly language comments.

Expressions which give displacement values are restricted in that only one
identifier may be involved. A constant expression may be added to or subtracted
from this identifier. In such expressions, the identifier must be placed first in
the expression; in other words, the statement

move DO, x+2(A6)
is legal, but the instruction
move DO, 2+x(A6)

is not.

Defaults

If no size specifier is given for an instruction which can operate on more than
one size, the assembler defaults to word. If a size specifier is not applicable to
a particular instruction, no specifier may be given. All labels default to local
code labels unless declared as extern previously. This means that all functions
called, for example, must be declared or defined previously in C. e.g.

extern void foo();

asm {
foo: ; foo is global
bra end
end: ;: end is local
rts
}

Branches default to word-sized displacements. A short branch can be forced by
using a “. s”, but no warning message will be given if the necessary displacement
is too large for a short branch.

Pseudo Ops

The pseudo ops DC.B, DC.W and DC.L will emit data inline with assembly
language. The syntax for a pseudo op is:

3.2 LANGUAGE IMPLEMENTATION

23

DC.<size> [constant expression OR string constant],

The size field can be either .B, .W or .L. There can be any amount of
expressions or string constants separated by commas. For example:

asm {
DC.B "Hello world\oO"
DC.W 5, 10 * 15
DC.L 0x80000000

}

None of the pseudo ops will align data on a word boundry. This means that
That the user must ensure that all the data given in a pseudo op ends on an
even byte. String constants are not NULL terminated.

Accessing C Variables

External and static variables from the C environment are accessed using the
name of the variable (Absolute Long Addressing Mode). Auto variables are
accessed as a displacement to address register A6 (Address Register Indirect
with Displacement Mode). Register variables may be accessed by name from
within in-line assemble. The first four non-pointer register variables are placed
in data registers; the first four pointer register variables are placed in address
registers (see Available Registers below).

foo(p)
register int *p;
{
register int i;
i=5;
asm {
move.w i, (p) ; generates move.w D7, (A5)
}

}

Any excess register variables must be accessed relative to A6. The assembler
will not report misuse of some variable names.

Functions in the C program can be referred to by name. Arguments are
passed to functions on the stack in reverse of the order they are written in C.
Values are returned from functions in data register DO, or in global _fpregO if
the value is double.

L
i

24

CHAPTER 3. LASER C

Available Registers

Registers D0-D3 and A0 and Al may be used without saving them. Regis-
ters D4-D7, A5-A2 are used for register variables, and are allocated in reverse
numeric order. Each of these registers not used for a register variable within
a function containing in-line assembly language must be saved by the assem-
bly code if modified therein. Register A6 is used to access auto variables and
register A7 is used as the stack pointer.

Creating Global Symbols

This section is not for the casual user of the in-line assembly and discusses the
use of a construct that is very dangerous. It is almost never needed and should
be avoided if at all possible.

The normal functions in C start with a link instruction to make room for
local variables and then end with a corresponding unlink instruction. These
instructions can be avoided by making a label inside assembly to be called
instead of the C function name. An rts instruction must also be placed at
the end of the routine to avoid the unlink instruction. To indicate that this is
an extern or static symbol it must be declared before it is used as a label.
This is done by declaring it as an extern or static function in C. Remember,
by overriding the normal entry point a lot of nice things that C does about
parameter passing and setting up local variables is lost. For example

extern int sqr();

foo (i)
int i;
{
asm {
sqr: ; sqr is a global function
move 4(A7), DO ; load i into DO
muls DO, DO ; leave the result in DO
rts
}
}

Since the 1ink is not performed the variable i can only be referenced using the
stack pointer.

Expansion of #defined macros is performed within sections of assembly
language, so the programmer is free to rename instructions or registers.

3.2 LANGUAGE IMPLEMENTATION 25

Assembly Language Examples

Program to invert the screen 50 times

#include <osbind.h>
#define LENGTH 80%400

#define N 50
main()
{
int j;
char *screen;
screen = (char *)Physbase(); /* XBIOS routine */
for (j = 0; j < N; j++)
asm {

move.l screen(A6), AO
move #(LENGTH/4)-1, DO

loop:
not.1 (A0)+
dbf DO, loop
}
}
/%
Function to do a block move from the first pointer to the
second. The routine moves one char at a time to allow
odd addresses. This also shows macro usage
for assembly language.
*/

#define DEC(x) subq #1, x

block_move(source, dest, count)
register char *source, *dest; /% placed in address registers */
register int count; /* placed in a data register */

{

asm {

26

CHAPTER 3. LASER C

DEC(count) : because dbf counts to -1
; DEC will generate subg #1, count
1p:
move.b (source)+, (dest)+
dbf count, 1p
}

3.2.7 Storage Allocation/Initialization

The compiler places all code into the TEXT segment, all initialized global vari-
ables, initialized static variables (both global and local), and string constants
into the DATA segment (see File Formats, section A.1). Uninitialized global
variables are not allocated by the compiler. Instead, special symbol informa-
tion is placed into the object file containing the name of the variable and its
size (called a common symbol). When the object code is linked, the linker
collects all common names and allocates in the BSS segment enough space to
accommodate the largest of each common symbol found. Uninitialized static
global variables are placed into the BSS segment. Initialization code is required
for auto variables so that the initialization may be carried out each time the
function is executed.

Chapter 4

Laser Shell and Editor

Introduction

The Laser Shell allows integration of all phases of program development, from
editing through debugging. It has a built-in mouse based editor, a dynamic
disk cache which buffers disk access, a facility for running the compiler, linker,
and other Laser programs directly from RAM, a file operations facility (copy,
move, etc.), a project management system (Make), and debugging facilities.

Commands in this chapter are presented according to their functionality,
rather than their order on the menu bar. At the end of this chapter a Menu
Summary briefly presents each menu item in menu-bar order. It is assumed
that the documentation conventions discussed in the introduction are under-
stood (see section 2.4).

4.1 Shell Startup

To start the Laser Shell, double-click on the file “LASER.PRG” from the
GEM desktop. The Laser Shell will only run in high or medium resolution
modes (set by choosing Set Preferences ... from the GEM desktop’s Options
menu). Once started, the Shell tries to open a file called “LASER.CFG”,
which contains configuration information. This configuration information in-
cludes editor settings, environment variables, tool locations and attributes, and
RAM residency attributes (discussed below). If found, the file is read, all editor
settings are restored, and any RAM resident programs are loaded from disk into
RAM residency. The Shell then waits for user interaction.

27

28

CHAPTER 4. LASER SHELL AND EDITOR

4.2 Shell Configuration

Before the Laser Shell can be used, it must be configured. The configuration
file shipped with the Laser C package will suffice for most installations, al-
though other configurations are possible. As mentioned above, the Laser Shell
attempts to load a configuration file called “LASER.CFG”. When attempting
to load this file, the Shell looks in two places, loading the first “LASER.CFG”
found. First in the same folder that “LASER.PRG” is in, and then in the
“MEGAMAX?” folder on the same drive as “LASER.PRG”.

4.2.1 Tools

Tools are programs which are used for development, such as the compiler, the
linker, etc. Tool configuration serves three purposes; showing the Shell the
names and locations (path names) of its tools, telling the Shell which of the
located tools are to be made RAM resident, and specifying how the file I/O of
each tool is handled by the disk cache.

The Shell has the ability to preload certain programs and keep them RAM
resident until they are run. RAM resident programs are executed directly, with
no time wasted loading the program from disk and no memory wasted keeping
a duplicate on a RAM disk. This mechanism is ideal for development system
programs, such as the compiler and linker, which are typically run many times
during the course of program development. Only specially produced programs
may be made RAM resident:

AR.TTP Archiver

CC.TTP Compile and link utility

CCOM.TTP C compiler

DIS.TTP Disassembler

EGREP.TTP Multiple file regular expression search

LD.TTP Linker

MAKE.TTP Make utility

NM.TTP Symbol table dumper

RCP.TTP Resource construction program

LS. TTP All disk utilities mentioned in the chapter Disk Utili-

ties may be made RAM resident.

The Tool Locate ... command displays the dialog with which tools are con-
figured.

4.2 SHELL CONFIGURATION 29

i \MEGAMAX Tool Configuration Tool List
RC LASERC.TTP K

LASERC.TTP [| I : I RL LD,TTP
LD.TTP RH _MAKE.TTP

MAKE. TTP

<

. [[Remove |

Figure 4.1: Tool Configuration Dialog

There are two selector boxes and some buttons on this dialog. The left
selector box is a file selector box and the right selector box (Tool List) is for
located tools.

The procedure for performing tool configuration is:

e Using the left selector box, locate the program for each of the tools which
is to be used. Multiple selections are allowed in both selector boxes. As
a program is located, it should be selected and then added to the “Tool
List” by clicking on the “>> ADD >>” button. A minimum tool list should
contain a compiler, and a linker. For the Shell’s Make menu to function,
the Make utility should also be added. Other programs which are added
will have their names appended to the Execute menu. A name may be
removed from the tool list by choosing it and clicking on the “Remove”
button.

e Foreach of the predefined toolslocated, the C compiler, the linker, and the
Make utility, select the name in the tool list and click on the corresponding
button below the tool list.

e Next, make some or all of the tools RAM resident by selecting the program
name in the tool list and clicking on the “RAM Res” button. If using an
Atari with 512K bytes of RAM, make only the compiler and linker RAM

30

CHAPTER 4. LASER SHELL AND EDITOR

resident. If using a one megabyte computer, make all three tools RAM
resident. Other Laser programs may be made RAM resident if desired
(see the list given above). Only the Flush Resident Progs. command
under the Options menu can remove currently resident programs from
RAM.

e The “Write Thru” button affects the way a program which is run from
the Shell uses the disk cache. A program which has the write through
attribute set will write both to the cache and to the disk, where nor-
mally output is written only to the cache. The cache is written to disk
only when necessary (see section 4.2.4 for more details). To safeguard
against possible loss of data, give tools such as the Resource Construction
Program and the archiver the write-through attribute.

e Press the “OK” button to close the dialog with its present state. Any
RAM resident programs will be loaded at this time.

4.2.2 Environment Variables

Environment variables allow a more general configuration mechanism, and also
allow information to be supplied in the Shell and accessed by programs which
are run from the Shell. An environment variable is a name to which is assigned a
string value. For example, “computer=Atari 520ST” assigns “Atari 520ST” to
the environment variable named “computer”. The C library function getenv()
returns the value portion of a named environment variable to a user program.

The Shell and some other development system programs use the following
environment variables:

CccC The path name (name and location) of the CC (com-
pile and link) utility. This variable is used by Make to
define the $(CC) macro.

CCOM The path name (name and location) of the C compiler.
Used by the Shell to run the compiler. This variable is
set by the Tool Locate command and does not need
to be set manually.

LINKER The path name of the linker. Used by the Shell to run
the linker. Set by the Tool Locate command.
MAKE The path name of the Make utility. Used by the Shell

to run Make. Set by the Tool Locate command.
CINCLUDE The location of the folder which contains the C header

files. Used by the Shell and the CC utility to pass “-I”
options to the compiler.

4.2 SHELL CONFIGURATION 31

CINIT The path name of the C initialization code. Used by
the Shell and the CC utility pass the name of the ini-
tialization code to the linker.

CLIB The path name of the C library. Used by the Shell and
the CC utility pass the name of the C library to the
linker.

LIBPATH A comma separated list of folders. Used by the linker
to find libraries specified as “-L”. These folders are
searched in order for the library.

PATH A comma separated list of folders. These folders are
searched in order by the Shell when executing a pro-
gram command line style (see section 4.4). A “.” may
be included in the path to indicate the current direc-
tory.

Environment variables may be edited by selecting Environment Vars ... from
the Options menu. A dialog with a single large selector box, some buttons,
and a text entry box will appear.

-
Environment Variables

CCOM=A: \HEGAMAX\LASERC,TTP 5] [Remove |
LINKER=A: \MEGAMAX\LD, TTP

HAKE=A: \MEGAMAX\ TTE
CINCLUDE=A:\MEGAMAX\HEADERS
CINIT=A:\MEGAMAX\INITA.O
CLIB=A:\MEGAMAX\CLIB.A
LIBPATH=,,\MEGAMAX\, A: \MEGAMAX\
PATH=.,\MEGAMAX\, A1 \MEGAMAXN

<

MAKE=A: \MEGAMAX\MAKE , TTPL
(Format: Name=Value) -

Figure 4.2: Environment Variable Dialog

To add a new environment variable, type it in. Typing appears in the long
box at the bottom of the dialog. The format is “name=value”. Press the
“Return” key or click on the “ADD” button to copy the typed line into the
selector box. To edit an existing line, select it with the mouse. It will be copied
into the typing line. The “Esc” key will clear the typing line, and the left and

32

CHAPTER 4. LASER SHELL AND EDITOR

right arrow keys move the insertion point within the line. Remember to press
the “Return” key or click on the “ADD” button to save any changes. The
“Remove” button deletes the line selected in the selector box. Click on “OK”
to close the dialog. '

If the Shell cannot find its configuration file, these variables will not be
set. The distribution disk on which “LASER.PRG” is located contains a
configuration file with all the variables set to typical values (see the beginning
of this section).

4.2.3 Save Configuration

The Save Configuration item under the Options menu allows the editor
settings of the top window, the tool list, and the environment variables to be
saved. A file save dialog is issued to allow a choice of file name and file location.
The current configuration should always be saved after any changes are made.
The Read Configuration ... option allows any configuration file to be read.
When chosen, file selector dialog is presented. Only folders and “.CFG” files
are shown. Select the desired configuration file and click on “Open” to resore
configuration settings.

4.2.4 Disk Cache

The Laser Shell has a built-in dynamic disk cache which buffers all disk access.
Disk files are organized as a series of blocks which contain the actual file data.
The disk cache can dramatically decrease file access time by keeping in memory
a copy of last read or written blocks, so that subsequent reads are from memory,
rather than disk. The Shell’s cache is dynamic in that its size will change to
fit available RAM. As programs request memory, the cache will flush enough
blocks to the disk to accommodate the request. Any program which has the
write-through attribute set will write to disk and cache, while programs which
are not write-through will write only to the cache. All read operations are from
the cache, provided the requested blocks are in-cache. The disk image of the file
will only be updated to match the cache when the cache is flushed. Automatic
flushing of cache blocks is done whenever memory is needed, either by the Shell
or a program run from the Shell, or when file I/O overfills the cache with fresh
blocks. The blocks are flushed in order of least-recently-used. Quitting the
Shell will flush the entire cache.

In addition to automatic flushing, selective flushing may be done through
the “Cache Management” dialog, selected from the Options menu.

The dialog contains a selector box showing which files have blocks in the

4.3 TEXT EDITOR

33

Cache Management

At \MEGAMAX\CLIB. A
A:\MEGAMAX\HEADERS\STDIO.H
A:\MEGAMAX\INITA,O
A:\MEGAMAX\LASER , CFG
A:\MEGAMAX\LASER ,RSC
A:\MEGAMAX\LASERC.TTP
A:\MEGAMAX\LD,TTP

A:\HEGAMAX\MAKE . TP
A:\SCREEN®

(D=Dirty) [Delete from RAM | [Flush to Disk |

Bytes In Cache: 119K
Hit Ratio! 324

Figure 4.3: Cache Management Dialog

cache. A letter “D” precedes those files which have changed in the cache but
have not been updated on the disk. The “Bytes In Cache” item shows how much
of the disk is in RAM, and the “Hit Ratio” item shows the percentage cache
reads to disk reads. When one or more items in the selector box are selected,
the two buttons directly below become active. The “Delete from RAM” button
removes the selected file’s blocks from RAM without saving them to disk. The
“Flush to Disk” button causes the selected blocks to be written to disk.

The Flush Resident Progs. command removes all RAM resident pro-
grams and deallocates their memory. This command is useful to force a RAM
resident program to be reloaded from disk, should it change after being made
RAM resident.

4.3 Text Editor .

The Shell’s editor provides a simple yet powerful means of creating program
source or any other text-only files. Editing is performed in up to four individu-
ally sized and positioned windows. The mouse is used to position the insertion
point and select text for removal or duplication. Most editing functions can be
selected from the menu, and many can be initiated by keyboard command as
well. The editor also includes some special features to assist with C program-
ming.

34

CHAPTER 4. LASER SHELL AND EDITOR

4.3.1 Editor Menu Usage

Menu commands are used to invoke all editor functions except text selection,
scrolling, and the Help function (activated by the Help key on the keyboard). If
a menu selection is preceded by a single separate character, then that command
can also be invoked by pressing that character on the keyboard while holding
down the “Control” key. The command operates no differently when selected
from the keyboard. For example, a new file may be created (the New menu
command) by holding down the “Control” key while striking the “N” key.

The current editing situation dictates which editing commands are available.
For example, if no files are currently open, none of the Save commands of the
file menu will be available. Those commands which are available are printed
in normal black-on-white lettering. Those commands which are unavailable
are printed in gray-on-white lettering. Clicking the mouse on an unavailable
command has no effect, other than to cause the selected window to disappear.

The Info menu contains some items which are actually information about
the current file. Although these items are printed in black-on-white lettering,
they can never be selected.

4.3.2 Choosing A File

The File menu contains all operations related to opening existing files, creating
new files, and saving work.

Open ... allows a file residing on disk to be loaded into the editor for inspec-
tion and modification. When chosen, a dialog which contains a file selector
box and some buttons will appear. The file selector box behaves in the
usual manner (see Introduction, Conventions). Clicking on the “Open”
button causes the editor to open the selected file. Double-clicking on a
file name will also open it. The “Cancel” button should be used if the
Open ... command was issued accidentally. The group of buttons like
“*¥ C” are filters. Clicking on a filter causes the currently displayed list to
be filtered and then redisplayed, leaving only those names which match
the filter. The “*.*” filter displays all files while the “*.C” filter dis-
plays only those files which end with “.C”. As a file is opened, a window
displaying the file will appear.

New is used when a new file is to be created. An empty window will appear
on the screen. The initial title of the window will be “Untitled”.

Save causes the contents of the top window to be saved on disk. The name
displayed in the title bar of the window is the name of the file which will

4.3 TEXT EDITOR

35

be saved. If an attempt is made to save a file whose name is “Untitled”,
the Save as ... command will be invoked (see below).

Save as ... is used whenever the contents of a window must be saved to a
file whose name is different from the the name in the window title. A
dialog which looks much like the one used by the Open ... command is
presented. The file selector box behaves similarly, with the exception that
none of the file names listed are selectable. There is also a typing line into
which the new file name may be entered. Pressing the “Esc” key erases
the entire typing line. After the file is saved, the name of the window will
be changed to the new file name.

Close causes a window to disappear. If changes were made to the window’s
contents since last saved, an opportunity is given to save the file. The
Close command can also be activated by clicking on the graphic character
in the upper left-hand corner of a window.

Close all performs the Close command on all open windows, except for the
“STDIO” window.

Revert causes the most recently saved version of the current file to be reloaded.
If the file has not yet been saved, the version of the file originally loaded
will be used.

4.3.3 Mouse Usage

The mouse is used to manipulate windows, to position the insertion point, and
to select text within a window. The position of the mouse on the screen is
indicated by the mouse cursor, which is either an arrow, a vertical bar “text”
cursor, or a busy bee. When the mouse is over the work area of the top window,
the cursor always a “text” cursor.

The left-hand button of the mouse is the only button which has any effect.
There are four basic operations available with the mouse button:

Click If the cursor is within the top window, the insertion point is placed on
the character nearest the location of the mouse. If the cursor is over an
element of a scroll bar, the window is scrolled appropriately. If the cursor
is over another window, then that window is made the top window.

Drag The drag can be used to select a range of text. If the initial click is
within the top window, text will be selected as the mouse is dragged over
it.

36

CHAPTER 4. LASER SHELL AND EDITOR

The drag can also be used to move and resize the window. If the Drag
starts on the gray bar atop the window, it can be dragged to any desired
position. If the drag starts within the small box in the lower right corner
(the “sizebox”), the lower right corner can be dragged to change the size
of the window.

The white areas of the scroll bars can be dragged to reposition ‘the window
over the file. For example, the thumb of the vertical scroll bar can be
dragged to the very bottom to move the window to the very end of the
file.

Double-click If the mouse is initially over an alphabetic or numeric charac-
ter in the current window, all alphabetic and numeric characters of the
“word” surrounding that character are added to the current selection. If
the mouse is initially over an open or close parenthesis (one of “(”, “{”,
“r?, 97, “}”, “1”), all text up to the matching close or open parenthesis
(if it exists) is selected.

Shift-click By shift-clicking, text is selected as if a drag had been done from
the old insertion point to the cursor position. As an example, all text in a
file can be selected by clicking first at the very top line, then dragging the
vertical scroll bar thumb all the way to the bottom, and then shift-clicking
on the last character of the file.

4.3.4 Scrolling the Window

Scroll bars run along the right side and along the bottom of each window. The
vertical scroll bar is used to position the window over lines of text, with the
thumb size representing the size of the window relative to the number of lines
of text in the window. The horizontal scroll bar always positions the window
over columns 1-255, regardless of the actual number of columns of text.

The window may also be scrolled up or down one line at a time, by holding
down the “Control” key while pressing the up or down arrows.

4.3.5 Insertion Point Keys

In addition to using the mouse, the insertion point can be repositioned from
the keyboard. The four arrow keys move the insertion point in the indicated
direction. Shifted left and right arrow keys move the insertion point by words.
Control left and right arrows move the insertion point to the beginning and
end (respectively) of the current line. The “Home” key positions the insertion
point on the first character in the file.

4.3 TEXT EDITOR

4.3.6 Text Entry

An open window may have text inserted by selecting an insertion point with
either the mouse or the arrow keys, and then typing characters on the keyboard.
Typing mistakes may be corrected by pressing the “Backspace” key to erase
the character to the left of the insertion point, or the “Delete” key to erase the
character to the right of the insertion point. “Control-Delete” erases the entire
current line and the “Clr” key (shifted “Home” key) erases from the current
insertion point to the end of the current line.

The “Return” key inserts a line break into the file at the current insertion
point. All text on the current line to the right of the insertion point is redrawn
on the next line of the window. If the insertion point was at the end of the line
when the “Return” key was struck, the new line will be blank. The “Insert” key
inserts a blank line after the current line and the shifted “Insert” key inserts a
blank line before the current line.

The “Tab” key inserts a single character into the file, but prints as a field of
white space (unless the Visible tabs option has been selected). The amount
of space allotted a tab depends on the column in which the tab was inserted,
and always moves to a column number evenly divisible by the current “tabsize”.
The tabsize is four spaces when a window is first opened. The tabsize can be
changed with the Options menu.

If a substantial number of characters must be changed or removed, the
text should be selected with by dragging. Once the text has been selected,
replacement text can be typed over it, or it may be removed by a “Backspace”
or “Delete”.

4.3.7 Block Operations

The Edit menu contains commands for moving text from one place to another
within a window and between windows, reversing mistaken changes, and shifting
text horizontally within the window.

Cut copies the current selection to the scrap (a cut/paste buffer), and then

erases the selection. Note that Cut is different from a “Backspace” or .

“Delete” where the selected text is removed from the window but is not
copied into the scrap.

Copy copies the current selection to the scrap but does not remove the se-
lection. If the shift key is held down when a Cut or Copy command
is issued, the selected text will be appended to the scrap, rather than
replacing the old buffer contents.

37

38 CHAPTER 4. LASER SHELL AND EDITOR

Paste adds the contents of the scrap to the current window at the current
insertion point. The effect is exactly the same as manually typing the
contents of the scrap. Note that if a range of text is selected, the contents
of the scrap replace the selection; the selection is deleted just as if the
text had been typed over it. '

Erase is functionally identical to a “Backspace” or “Delete”, except that it
works only when text is selected. The selection erased is not copied to
the scrap.

Undo reverses the effect of the last operation which changed the file or the
scrap. The Undo command reverses one or more instances of the same
type of operation. For example, typing several characters and choosing
Undo will undo the effect of all characters typed. A new undo sequence
is started each time a new type of operation is performed. Types of
operations which constitute undo groups are:

e Typing including “Backspace”, “Delete”, and “Return”.
e Blank line insertions (both before and after the current line).
e Clear to end-of-line.

Line deletions.

e Left and right shift operations on one selection.

Any Cut, Copy, Paste, Erase, Revert, or Undo.

e Any Find & change.

Note that, while repositioning the insertion point does terminate the last
operation performed, it does not prevent the last changes from being un-
done.

The Undo command may also be issued by pressing the “Undo” key on
the keyboard.

Shift left is used to realign text horizontally. The shift affects all lines within
the confines of the current selection. If the beginning of the selection is
at the very left edge of the file, each entire line is shifted so that the first
non-blank character is positioned one tabstop left. If the beginning of the
selection is somewhere within a line, then only the characters to the right
of that column on each line are shifted left one tabstop. The Shift right
command shifts selected text to the right instead of to the left.

4.3 TEXT EDITOR

4.3.8 Editor Options

Under the Options menu are commands for modifying the editor environment.
These options may be either set (a check mark appears before those options
which are set) or not set, and apply only to the current window. Each window
remembers its own editor settings.

Tabsize ... is used to set the width of the tab character. When selected, the
Tabsize ... command issues a dialog box. The new tabsize can be typed
in the space provided, and the window will be redrawn reflecting the new
size. Note that the tabsize value has no effect upon the actual size of a
file; each tab is always just one character.

Autoindent sets a flag indicating that whenever a line break is added to the
file, space and tab characters from the previous line, up to the first non-
blank character, will be copied to the new line. This feature is very useful
when creating indented C source files.

Autosave sets a flag indicating that the file should be saved automatically at
an assigned frequency and when a program is run. A dialog is presented in
which the interval between saves may be assigned. Clicking on the “off”
button removes the Autosave feature for the current file. Clicking on
the “Make Backup” button allows a backup copy of the file to be saved,
in case, after a few autosaves, it is decided that the original version was
actually correct. Autosave is useful for those whose power supply is
unreliable and to ensure that no source changes are lost in the event that
a program run from the Shell crashes.

Autosave Will cause the shell to
periodically save this file to disk.
(And before executing programs)

Frequency in minutes! (approximate)

[off | 1 PR 5 |10} 60
[Cancel | [Make Backup | “&

Figure 4.4: Autosave Dialog

39

40

CHAPTER 4. LASER SHELL AND EDITOR

Note that after a Save as ... command, the Autosave feature will there-
after save the file to the new file name.

Visible tabs causes the tabsize to be set to one space, and tabs to print
as “diamond-in-a-square” characters. Visible tabs is sometimes useful
when examining files created by some means such that tabs are mixed
heavily with spaces. The tabsize cannot be changed while tabs are visi-
ble.

Ignore case sets a flag indicating that all searches should be done without
regard to the case of alphabetic characters. The Ignore case flag also
affects the way Find & Change works; for more information, see the
section which describes searching.

No Undo disables the Undo command in the Edit menu. Invoking this op-
tion will deallocate the undo buffer, which is as large as the file being
edited, thus leaving more free memory for programs. This option is auto-
matically set if there is not enough free RAM to accommodate the undo
buffer. If the configuration file “LASER.CFG” is not found, all flags
except No Undo are off, and tabs are set to four spaces.

4.3.9 Finding Text

The Search menu contains commands used to find and change strings in a file.

Find ... is the basic entry to the searching mechanism. When issued, the
Find ... command puts a dialog box on the screen (see figure 4.5 below).

In the dialog box, there are two boxes into which strings may be typed.
The top box is for the “target” string, which the editor will attempt to
locate in the file when one of the Find commands is given. The bottom
box is for the “replacement” string, which the editor will substitute for an
occurrence of the target string if one of the Find & Change commands
is given. A typing box is chosen by clicking on the desired box, or by
pressing the up or down arrow keys. The “Esc” key clears the entire line
and the right and left arrow keys can be used to position the insertion
point within a line. The search and replace function can be used to delete
occurrences of the “target” by leaving the “replacement” box empty.

There are five sub-commands available from the “Find” dialog box:

Forward The editor will search for the target string in the file, start-
ing with the character after the current selection or the insertion

4.3 TEXT EDITOR 41

Target string Hellol]

Replacement L. |

Cancel

Figure 4.5: Search Dialog

point and on towards the end of the file. If an occurrence of the
target string is found, the insertion point position becomes the first
character of that occurrence. If no occurrence is found, the current
selection or insertion point is not changed.

Backward The editor will search for the target string beginning with
the first character of the current selection or the character under
the insertion point (unless the target contains only one character,
in which case the search begins one character before the current
selection) and on towards the beginning of the file. If an occurrence
of the target string is found, the insertion point becomes the first
character of that occurrence. If no occurrence is found, the current
selection or insertion point is not changed.

Once The editor will search for the target string in the file, starting with
the character after the current selection or insertion point and on
towards the end of the file. If an occurrence of the target string
is found, it is replaced by the replacement string. See below for a
description of replacement behavior when the Ignore case flag is
set.

All The above procedure is executed repeatedly until no more occur-
rences of the target string are found. The entire sequence of changes
is considered a single undoable event.

All with verify Similar to All, except that each change must be verified

before it is made. Each occurrence of the target string is highlighted.
If the “Y” key is pressed, the change is made. If the “N” key is

42

CHAPTER 4. LASER SHELL AND EDITOR

pressed, the change is not made. The process repeats until no more
occurrences of the target string are found, or until the “Q” key is
pressed in response to a verification. The entire sequence of changes
is considered a single undoable event.

When the Ignore case flag is set, the case (upper or lower) of alphabetic
characters is ignored when searching. Therefore, the target “abc” will
match “ABC” and “aBc” as well as “abc”.

Find next causes the editor to search for the next occurrence of the most
recent target string. The search is performed in the same direction as the
most recent search.

Change next performs a Find & Change once using the most recent target
and replacement strings.

Goto line ... is used to move the current insertion point to any line of the
file. When issued, the Goto line ... command creates a dialog box into
which the desired line number is typed. The insertion point is set to the
first character on the given line.

4.3.10 Text Marks

The current line of the current window can be marked by holding down the
“Shift” key and pressing any function key from “F3” to “F10”. Then, while
editing on any other line in any other window, pressing the same function
key (not shifted) will reposition the insertion point at the beginning of the
marked line. Two special marks, “F1” and “F2” are predefined to reposition
the insertion point one page up or down, respectively, in the current window.

4.3.11 Rearranging Windows

The Windows menu contains commands for arranging currently open win-
dows.

Overlap arranges all open windows so that they overlap one another. The size
of each window will be nearly that of the screen. A small part of each
inactive window is left visible.

Side-by-side arranges all open windows so that they form columns which fill
the screen.

Over/Under causes all open windows to be stacked vertically on the screen.

4.4 RUNNING PROGRAMS

43

Show Stdio causes the special “STDIO” window to appear. This window is
like any editor window, except that tools, such as the compiler, print
messages directly into the window. (see section 4.2.1). If the window is
currently visible, the menu will read Hide Stdio. Note that the contents
of the “STDIO” window may not be saved.

4.3.12 File Information

The Info menu contains general information concerning the top window. It also
contains a handy reference chart of C operators. The operators are listed top-
to-bottom in order of precedence.

The information presented in the Info menu concerns the size of the current
file and the current position in the file.

4.4 Running Programs

Programs may be run from the Shell by one of two methods; either by making
a choice from the Execute menu, or by typing a command line (a program
name followed by program parameters) into a window.

4.4.1 Menu Command Execution

The Execute menu has commands for running the compiler, the linker, per-
forming an automatic compile, link, and run, and for running any other pro-
gram. In addition, the names of user defined tools (see section 4.2) will appear
in the Execute menu, and may be run by choosing them.

The Compile ... and Link ... options will not be selectable if they have
not been located (see section 4.2). The Run item will only be selectable if both
the compiler and linker have been located, and the top editor window contains
a “.C” file.

Compile ... brings up a file selector box like the one used to open a file for
editing. This box however will only display files which have an extension
of “.C”. One or more files may be selected to compile. The usual file
selector usage applies. Clicking on the “OK” button runs the C compiler
on the selected source files. “CANCEL” aborts the compile. Compiler
messages, including syntax errors, are sent to the “STDIO” window, which
will automatically appear if hidden.

Pressing “Control-K” on the keyboard will run the compiler on the current
window, provided it is named with the “.C” extension.

44

CHAPTER 4. LASER SHELL AND EDITOR

File(s) to compile

[oamceL] I

MAKECOM.C

Figure 4.6: Compile Dialog

Link ... invokes the linker dialog, which contains two selector boxes, some

Run

buttons, and a typing entry box. The left file selector box is used to
locate object files. As each file is located, it should be added to the
“To be Linked” selector box by selecting it with the mouse and then
pressing the “>> ADD >>” button. Inadvertantly added names may be
removed by selecting them and pressing the “Remove” button. The name
of the linker output file may be changed from the default “A.PRG” by
pressing the “Esc” key then retyping the new name. Executable programs
should have extensions of “PRG”, “.TOS”, “*.TTP”, or “*.ACC” (see
section 2.4.3). Desk accessories are GEM applications which are named
with the “.ACC” extension. When the computer is started, any “.ACC”
files which appear on the root are loaded into RAM and started. A desk
accessory should call evnt_multi () to share processor time with the main
application and other desk accessories.

The “Save ...” button allows the list of “To be Linked” files to be saved
to disk, so that the next time the Shell is used to link the current program,
the component object files will not need to be re-added. The default saved
file will be named after the executable, but with an extension of “*.LNK?”.
The name of the file may be changed, but the “.LNK” extension is re-
quired. To restore the “To be Linked” list from a “.LINK? file, locate and
select the file in the left selector box. The “Save ...” button will change
to “Load”, which when clicked on will perform the restore.

checks the dates of the “.O” files and the coresponding “.C” files used
in the last Link dialog, and compiles any “.C” files which have been
changed since their “.O” files were produced. Then all “.0” files are

4.4 RUNNING PROGRAMS

45

Megamax Linker Y2.0 To be Linked
INITA.D

I t | HELLO.0

MEGAHAX
HELLD.D

<

KA
Executable File! nmu.mh-_

(Placed in dir. from the above box)

[] Include symbols in executable (for stack dump)

Figure 4.7: Linker Dialog

linked, using the last specified executable name. Finally, the executable
program is run. If any compiler or linker errors occur, the run is aborted.
If no previous link was performed and the file name in the top window
has the “.C” extension, the above procedure is applied only to that file.
The executable file, in this case, will be the default “A.PRG”. If the
name of the top “.C” file was not represented in the last link dialog, the
contents of the last link are erased.

4.4.2 Command Line Execution

The alternate method of running programs is similar to that of a command line
shell, except that commands need not be retyped. A command line may be
typed into any window and executed by pressing the “Enter” key while the en-
tire line is selected. If the command to be executed is in the “STDIO” window,
the insertion point may simply be positioned at the end of the command line be-
fore pressing the “Enter” key. Multiple commands may be executed by selecting
several lines, thus creating a simple batch mechanism. A file of commonly used
commands may be written to disk, thus, saving the trouble of retyping them
each time the Shell is started. In place of the “Enter” key, “Control Return”
may instead typed. Note that while the contents of the “STDIO” window may
never be saved, part or all of these contents may be copied to another window
which may then be saved.

46

CHAPTER 4. LASER SHELL AND EDITOR

The Shell supports some built-in commands which may only be executed

via command line:

cd

pwd

pushd path|-n

popd

dirs

tos line

Change current working directory (folder). Asa conve-
nience, files in the current folder need not be specified
with a full path name. A file name with no path is
assumed to be in the current directory.

Print the current working directory.

Push the named directory onto the directory stack.
The Shell maintains a stack of directories, so that when
constantly switching among several working directo-
ries, the directory names need not be retyped. To add
a directory to the stack, type pushd path, where path
is the directory name. The current directory is always
the top of the stack. To change to a directory in the
stack, type pushd -n, where n is the ordinal number
in the stack (from the top, starting with zero) of the
desired directory. The current directory is swapped
with the desired directory in the stack, and the de-
sired directory becomes current. The -n option may
be omitted to mean pushd -1.

Pop the top of the directory stack, changing the cur-
rent working directory to that of the next item in the
stack.

Print the directory stack. The top of the stack is the
left-most item.

By default, executing a “.TOS” program from a com-
mand line causes the program’s output to go to the
“STDIO” window. The tos command followed by a
command line will cause a “.TOS” program to use
the entire screen, as it would if run from the GEM
desktop.

4.5 DISK OPERATIONS 47

Rehash the search path table. It is often desired that
programs other than those in the current directory be
executed. To save the inconvenience of typing in a full
path name, the Shell searches for the program name
using the search path given in the environment vari-
able “PATH” (see section 4.2.2). To avoid having to
search the disk each time the search path is used, it
is searched once, saving the names of all programs in
the path. If a program is added to a folder in the
search path (other than the current folder), it will not
be found until rehash is done.

rehash

See the chapter Disk Utilities for the names and usages of the disk-based com-
mand line utilities.

4.5 Disk Operations

Files may be copied, moved, deleted, or renamed from the Laser Shell by choos-
ing Disk ops ... from the File Menu. The “Disk Operations” dialog contains
two file selector boxes and some buttons.

5 File Operations [%] A:\MEGAMAX\
4 AUTO [HEADERS
% MEGAMAX [>> Copy >> | CLIB.A R
DESKTOP, INF INITA.O
HELLO.C EEEEXUTEENNE | LasEr, CFo
HELL0.0 LASER . DEF
HELLOD. PRG |_Delete || Touch | LASER . H
ISSEND, TTP LASER.RSC
LASER . PRG | Renanme. .. | LASERC, TTP
MAKECOM.C _ LD.TTP -
SCREEN. COM |__New Folder... | MAKE. TTP
| Quit |
11369 total bytes
i in 3 files.,

Figure 4.8: File Operations Dialog

Using the “Disk Operations” dialog involves basically two steps; selecting
desired folders and/or file names, then clicking on a button to perform the
desired file operation. Each of the two file selector boxes may be manipulated

48

CHAPTER 4. LASER SHELL AND EDITOR

independently. Only one file selector box is active at a time, indicated by
the grey stripes in the bar at the top. An inactive selector box is activated
by clicking the mouse anywhere inside the box. The filter buttons filter the
contents of the currently active selector box, exactly as in the file open dialog.
The lists may be scrolled with the scroll bars if the list of file names is longer
than the space allowed by the selector box. Multiple selections are allowed in
both selector boxes.

Once folders and/or files are located, operations may be performed. A
file name must be selected for the buttons to become active. The following
operations are supported:

Copy Copy the file or files selected in one box to the directory
located in the other box. The “>>” or “<<” characters
indicate the direction of the copy.

Move Move the file or files selected in one box to the direc-
tory located in the other box. The “>>” or “<<”char-
acters indicate the direction of the move.

Delete Delete the selected file or files from the disk.

Touch Touch updates the modification time of the selected
file or files. This is useful to force recompilation of a
program (see section 4.6 below).)

Rename Rename the selected file or files on the disk. The re-
name will fail if there is an attempt to rename a file
to an existing name.

New Folder Allows creation of a new folder. A prompt is supplied
to get the name.

Click on “Quit” or pressing the “Return” key to close the dialog box.

4.6 Project Management (Make)

The Laser Shell has an advanced project management facility which uses the
separate program Make (see chapter 10),compatible with the UNIX Make util-
ity. Using Make involves creating a text file, called the “Makefile”, which speci-
fies what files are used to create a program (the target), and how those files are
converted into that program (the transformation rules). Make checks the mod-
ification times of the specified files and performs the transformations necessary
to update the target program. The detailed discussion of the Make program
should be read before attempting to use the Shell’s Make command.
The steps involved in using Make from the Shell are:

4.7 DEBUGGING

49

e Assure that the Make program has been located (see section 4.2). If not
located, the Set Make ... menu command will be disabled.

e Create, using the editor, the “Makefile”. See Make for information on
what this file should contain.

e From the Make menu, select Set Make A file selector box is dis-
played. Locate and select the “Makefile” and click on “OK”. The “Make-
file” will be processed by Make generating a list of targets. Any syntax
errors are reported to the “STDIO” window. If no syntax errors are found,
the list of targets is inserted into the Make menu.

e Selecting a target reads the “Makefile” and updates the selected target.

4.7 Debugging

Should a user program cause a processor exception (a crash) during execution,
a dialog is presented. The dialog explains the type of crash that occurred and
allows one of three choices to be made. Clicking on the “Reboot” button resets
the machine. Clicking on the “Shell” button cleans up GEM and returns to
the Shell. Clicking on the “Dump” button also returns to the Shell, but upon
return, a stack dump is performed. The stack dump lists the names of functions
in their activation order, from the currently active function down to the first
main() call. If the program was not linked with the “Include symbols ...”
option, “Unknown” is printed in place of function names. Beside each name,
an offset into the code from the function start is printed.

The Shell will usually be intact when a user program crashes. Certain
processor exceptions are more likely to have been caused by a program error
which corrupted GEM or some other memory. The dialog will have a message
indicating “Probably should reboot” when; a GEM checksum error occurs while
returning from a user program, a processor exception occurs in the Shell, or the
disk cache has been corrupted. The message “Probably safe to go to the shell”
will appear otherwise. >

If a program is caught in an infinite loop, it may by stopped by typing
“Control-Delete”. When typed, a dialog similar to the processor exception
dialog is will be presented, except that the “Reboot” button is replaced by
“Continue”. Clicking on the “Continue” button will close the dialog and resume
program execution.

If an external debugger is installed (usually when the computer is started),
it may be used from the Shell by choosing External Debugger from the

50 CHAPTER 4. LASER SHELL AND EDITOR

Options menu. When chosen, the external debugger will be invoked as a
result of a processor exception, rather than the dialog box discussed above.
The following program will cause a processor exception:

/* Example of a divide-by-zero processor exception

*/
main()
{
int a = 1;

a = divide(a, 0);

}

/* Divide m by n

*/

int divide(m, n)
int m, n;

{

return m/n;

}

When the above program is compiled, linked (using the “Include symbols
..” option), and then run, it will crash (see figure 4.9 below). Clicking on
“Dump” will terminate the program and print the following information into

the “STDIO” window.

68000 Exception 085 in prog.:
A:\CRASH.PRG

Probably safe to go to shell
R
|Reboot] [Shell | | Dump |

Figure 4.9: Processor Exception Dialog

_divide + OxE
_main + 0x16
__main + 0x70

4.8 MENU SUMMARY 51

The underscores are added to each name by the compiler. The name __main
is name of the initialization code and the entry point into the program.

4.8 Menu Summary

The following summary lists menu items in their actual order in the menu bar
and their function.

Fuji
About ... Shell version and copyright information.
File
Open Open an existing text file.
New Create a new text file.
Disk Ops... ... Open the Disk operations dialog.
Save Save the file which is in the front editor window.
Save as ... Save under a new name (front window).
Close Close the front window.
Close all Close all open file windows.
Revert Revert to the last saved changes (front window).
Quit Quit the Laser Shell.
Edit
Cut Cut the current text selection to the scrap.
Copy Copy the current text selection the scrap.
Paste Paste the contents of the scrap at the insertion point.
Erase Erase the current selection without affecting the scrap.
Undo Undo the last editing change.
shift left Shift the currently selected line left by one tab.
shift right Shift the currently selected line right by one tab.
Execute
Compile Run the C compiler.
Link Run the Linker.
Run Compile, link, and run. Based on the last link performed.
Other ... Run any program.
Make
“Makefile name” Currently set “Makefile”.

Set Make Set the name and targets for the current “Makefile”.

CHAPTER 4. LASER SHELL AND EDITOR

Options
Tabsize
Autoindent
Autosave
Visible tabs
Ignore case
No Undo
Tool Locate ...
Environment Vars ...
External Debugger

Cache Management ...
Flush Resident Progs.

Save Configuration

Search
Find ...
Find Next
Change next
Goto line . ..

Windows
Overlap
Side-by-side
Over/Under
Show/Hide Stdio

Info
C Operators

Set tab width in spaces.

Toggle autoindent.

Engage or disengage the autosave feature.
Make tabs visible or invisible.

Ignore case when searching.

Disable the Undo command and free the undo buffer.

Configure compiler, linker, etc.
Set environment variables dialog.

Allow an external debugger to be used from the Shell.

RAM cache operations dialog.
Flush dirty RAM cache blocks to disk.
Save the current editor settings, environment.

Search for text dialog.

Find last searched text again.
Change to last replacement text.
Go to a specific line number.

Overlap all windows.

Arrange windows as columnar “tiles.”

Arrange windows as horizontal “tiles.”

Show or hide the special standard I/O window.

Show C operator precedence.

4.9 Keyboard Summary

A list of keyboard commands is presented below:

Backspace
Delete
Insert
Shift-Insert

Erase the character left of the insertion point.
Erase the character right of the insertion point.
Insert a blank line after the current line.

Insert a blank line before the current line.

4.9 KEYBOARD SUMMARY 53

Control-Delete Delete the current line.

Up Arrow Move the cursor up one line.

Down Arrow Move the cursor down one line.

Left Arrow Move the insertion point left one character.

Right Arrow Move the insertion point right one character.

Shift-Up arrow Scroll up one line.

Shift-Down Arrow Scroll down one line.

Shift-Left Arrow Move the insertion point left one word.

Shift-Right Arrow Move the insertion point right one word.
Control-Right Arrow Move the insertion point to the end of the current line.
Control-Left Arrow Move the insertion point to the start of the current line.
Help Display keyboard help.

Undo Undo the last change.

Clr Clear from the insertion point to the end of line.
Home Move the insertion point to line one, column one.

F1 Move the cursor up one page.

F2 Move the cursor down one page.

Shift-F3-F10 Mark a line in a window.

F3-F10 Position the insertion point on a set mark.

Chapter 5

C Compiler

Introduction

The C compiler is a fast single pass compiler generating absolute MC68000 ma-
chine code. The compiler reads a single C source file and outputs a relocatable
object code file (see File Formats, section A.1). The source file must have a file
name extension of “.C”, and the resultant object file will have the extension
“.O” .

The compiler will place the object file on the same disk as the source file.
For this reason, the programmer should ensure that sufficient space is available
on the disk for both the source and the object.

5.1 Command Line Usage

While the compiler may be run from the GEM desktop, it will normally be run
from the Laser Shell. The command line syntax is:

ccom.ttp [-Dname[=value]] [-Uname] [-Ipath[,path,...]]
[-s[al.b[,c]1]] file.c

-Dname [=value] Define name with optional value option. This
option adds name to the compiler’s preproces-
sor symbol table as if, in the source being com-
piled, the line #define name value had been
inserted. The value is optional.

-Uname Undefine a predefined name as #undef name.

55

CHAPTER 5. C COMPILER

-Ipath[,path,...] Include path option. This option tells
the compiler in which directories (folder(s))
it should look to find include files, as in
#include <stdio.h>. There can be up to 13
paths given and the compiler will look in each
directory in the order given. As a default,
the compiler uses only the directory that the
source file resides.

-S[a[,bl,c]1]] Alter the compiler’s choice of switch state-
ment code generated. See section 3.2.3 for a
description of this option. The default values
are; a = 10, b = 2, and ¢ = 12. Omission of
any of these parameters leaves the default.

5.2 Compiler Errors

Error messages generated during compilation are reported to the screen, ac-
companied by the line of source code containing the error. Error messages are
of the form:

"file-name", line line-number: error message text

I/O redirection may be used to save the error messages to a file if desired.

5.3 Memory Usage

The C compiler dynamically allocates memory on an as-needed basis while
compiling a program. The only limit on the size of a program is available
RAM, thus extremely large programs may be compiled.

Chapter 6

Linker

Introduction

Separate compilation of program source can greatly decrease development time
by eliminating the need to recompile all code necessary to create an executable
program. For example, the program:

main()
{

printf("Hello, world\n");
}

calls the function printf(). Without separate compilation, the source code for
printf(), as well as that of any functions which printf() may call, would have
to be recompiled each time the function main() is compiled. Instead, printf()
can be compiled into object code. The function main() need only reference
printf() by name (known as an external reference). The task of combining
separately compiled object files into a single executable program is performed
by the linker. The linker reads multiple object and archive files (collections of
object code), resolves external references, and produces an executable program.
The linker must be used even if a program doesn’t contain any external
references because an object file created by the compiler is not executable.

57

58 CHAPTER 6. LINKER

6.1 Command Line Usage

The linker can be run from GEM desktop, the Laser Shell, or a command line
shell. Normally, the linker is run from the Laser Shell.
When the linker is run from a command line shell, the usage syntax is:

1d.ttp [-G] [-Lx] [-M] [-V] [-Txcx] [-O output] [object...]
[library...]

-G Global symbol include. The GEMDOS executable file
will contain symbol entries for function names. If the
program run from the Laser Shell terminates abnor-
mally, a stack dump can be printed for debugging
purposes. Static functions begin with tilde (7) while
global functions begin with an underscore (_).

-V Verbose option. The linker will print to the standard
error the names of object files as they are included by
the linker. This option is useful to see which object
files are included from an archive.

-M Map option. Setting this option will cause the linker
to print names and addresses of globals which are in-
cluded in the executable program.

-Lx Library name option. The linker will look in the di-
rectories given in the LIBPATH environment variable
for a library named libx.a. X is a single character. For
example -Lc will search the directories for libc.a

-Txox Text base option. The text base option causes the
linker to adjust references within the program as if the
program were at hex memory location xxx. Normally,
the program is linked as if it were based at location
zero, and relocation information is included so that
when a program is run, the references may be adjusted
for the actual memory location. Setting this option
also prevents this relocation information from being
included.

-0 output Output file name. The linker’s output is named out-
put. Without this option the output is named a. prg.

object Object files produced by the compiler.

6.2 LINKER ERRORS 59

library Library of object files. The Laser library of UNIX func-
tions and Atari ST ROM interface routines is named
libc.a.

Example:

1d.ttp \megamax\init.o myprog.o -Lc

Link myprog.o with the Laser initialization code and the Laser system library.
The final program produced is written to a.prg. Note that the inclusion of
the initialization code, init.o, is required as the first file for any application
program.

6.2 Linker Errors

Should an error occur during the link, the link is aborted and no output program
is written. Error messages and possible causes are:

Usage: 1d.ttp ... Either an invalid link option was specified, or no object or
library files were given.

File open error: name
The object or library file name was not found. Check to see that the file
name and path name are given correctly and that the file actually exists.

File read error: name
Likely a problem with the disk. Try a newly formatted disk.

File write error: name
Either the disk onto which the linker output is being written is full, or
there is a physical problem with the disk. Check to see that adequate
space for the output is available.

Unable to open output file: name)
Check to see that the disk is not write protected, and that the path given
the output, if any, is correct. (May also be the result of a problem with
the disk).

File format error: name
The named input file is not a Laser or DRI format object or library file
or it has been corrupted. (Assure that only object and library files are
specified).

60

CHAPTER 6. LINKER

Undefined symbol(s):
The linker found references to function name(s) or global variable name(s)
for which there is no definition. Make sure that the listed globals are actu-
ally defined, and that references to library functions are spelled correctly.
Note that a leading underscore (_) is added to each global by the compiler
and should be ignored by the user.

Duplicate name definition: name
The global name has been defined in more than one place. Eliminate or
rename one of the functions/variables.

No name list: file
File is missing symbol table information. Object files must have at least
one global name to be linked.

No string table: file
File is missing it’s string table, a list of the actual names referred to by
the symbol table.

6.3 The Linking Process

The linker examines each argument in the order given. Object code files are
always included, but libraries are searched by the linker and only the object
code modules needed are actually included in the final executable program.
The linker is capable of linking object code produced by the Laser C compiler,
as well as object produced by the DRI (Digital Research Inc.) C compiler or
assembler. The linker will also read library files produced by either the Laser
archiver or the DRI archiver.

Since libraries frequently contain many object code modules and may there-
fore be rather large, a mechanism, known as randomization, has been imple-
mented by which the archiver may be used to add an index of global function
and variable names to the beginning of a library. Using this index, the linker
can quickly resolve external references, thus greatly speeding the linking pro-
cess. The index, if it exists, is loaded into memory and searched repeatedly
until either no more undefined names need resolving, or a complete pass of the
index is made and no additional object code modules are extracted. If the li-
brary does not contain this index, the linker will make only one sequential pass
of the library, including code modules only if they are needed. Thus, without
the index, references must refer to object modules which appear further in the
file or in a subsequent file in the command line.

6.4 DESK ACCESSORY SUPPORT

61

Symbols defined in user specified object files and libraries will override def-
initions of the same symbol in the libraries provided they are encountered by
the linker first. The programmer may make use of this feature by writing his
own versions of system library functions (such as malloc() for instance) while
still using other procedures from the library.

6.4 Desk Accessory Support

Desk accessories are GEM applications which are named with the “.ACC”
extension. When the computer is started, any “.ACC” files which appear
on the root are loaded into RAM and started. A desk accessory should call
evnt_multi() to share processor time with the main application and other
desk accessories.

Chapter 7

Disassembler

Introduction

The disassembler prints the assembly language equivalent of either a Laser for-
mat object code file (see File Formats, section A.1), a DRI (Digital Research,
Inc.) format object file, or an executable (GEMDOS) format file. If the file
contains symbol information, it is used where possible, otherwise actual refer-
ence values are printed. Since references internal to an object file are resolved
by the compiler, there will be instances where no name is associated with a
reference. In these instances, the disassembler attempts to make an educated
guess as to the name of a reference and if possible print it rather than just a
value. All numeric values are printed in hexadecimal.

7.1 Command Line Usage
When used from a command line shell the usage syntax is:

dis.ttp [-N] [-I] [-R] [-Fname] object ...

-N Suppress reference names. Actual reference values are printed.
By default, symbol names are printed when available. Also,
addresses are not printed with this option.

-1 Instruction print. The hex value of each instruction is printed
before the instruction is disassembled.

63

64

CHAPTER 7. DISASSEMBLER

-R Relative branches. Normally branch instructions, which spec-
ify addresses relative to the program counter, are converted to
absolute addresses. This option suppresses the conversion.

-Fname Disassemble the named function only.

7.2 Disassembler Errors

Error messages and possible reasons are:

Usage: dis.ttp [-N] [-I] [-R] [-F function] object ...
When run from a command line either an invalid option was specified, or
no object or program files were given.

File open error: name
The input file name was not found. Check to see that the file name and
path name are given correctly and that the file actually exists.

Memory full while processing
Memory exhausted. Remove RAM disk.

File format error: name
The file name is not an object file or program file, or is corrupt.

Example:
laserdis.ttp myprog.o

Disassembles the object code file myprog.o

Chapter 8

Archiver/Librarian

Introduction

The archiver maintains groups of files combined into a single archive file. It is
primarily used to maintain libraries (groups of object code files) for use by the
linker, but may be used to archive any type of files (including text files). The
archiver will maintain both Laser and DRI format archives.

8.1 Command Line Usage

The archiver can be run from the Laser Shell, or the GEM desktop. When used
from a command line, the usage syntax is:

ar.ttp key[V] [pos] archive [file] [file...]
key Archiver function key. One of the following keys directs the
archiver function:
Delete from archive file file...
Convert the archive into a randomized library.
Replace/add to archive copies of file file...

RA Like the R key above except the replace/add begins after the
component in archive named in pos. Note that pos is required
with this option.

T List a table of component names in archive.

65

66

CHAPTER 8. ARCHIVER/LIBRARIAN

w Write a copy of component file in archive to the standard
output. Normally redirected to a file.
X Extract copys of file from archive.
' Optional verbose. When used with keys D (delete), R (re-

place), RA (replace after), and X (extract), the archiver will
print a line which verifies the operation performed. When used
with the key T (table), The size of each component will be
printed after each name.

pos Used with key ra above.
archive The archive file upon which the operations are to be performed.
file One or more files used depending on the operation performed.

Example:
ar.ttp rv megamax\libc.a a.o b.o c.o

Replace (or add if they are not already present) in the archive libc .a the object
files a.o0, b.o, and c.o.

Note: If the archive specified on the command line does not exist the archiver
will create a new archive with that name.

8.2 Random Library

The L (randomize) key converts an archive of object files into a random library
so that it can more efficiently be searched by the linker. The archiver performs
this randomization by examining the entire library and collecting global func-
tion and variable names, along with information about the object modules in
which they are defined, and writing a special component into the library named
-_.SYMDEF. The __.SYMDEF will always be the first component of the library. It
is important to always randomize a newly created library. Once randomized,
the archiver will automatically re-randomize any library which is changed.

8.3 Archiver Errors

Error messages printed by the archiver and possible reasons:

Usage: ar.ttp key[V] [pos] archive file [file...]
When run from a command line either an invalid key was specified, or no
object or library files were given.

8.3 ARCHIVER ERRORS

67

File open error: name
The file name was not found. Check to see that the file name and path
name are given correctly and that the file actually exists.

File read error: name
Likely a problem with the disk. Try a newly formatted disk.

File write error: name
Either the disk is full or there is a physical problem with the disk. The
archiver writes a temporary file, called “AR__.TMP” to the current disk.
Check to see that adequate space is available on both the archiver’s disk
and the disk on which the archive exists.

File create error: name
The archiver is unable to create a new archive. Check to see that the
disk is not write protected, and that the path given the output, if any, is
correct. May also be a disk problem.

Temporary file open error
The archiver is unable to create the temporary file. There is either a
problem with the disk or the disk from which the archiver is being run is
full. Check to see that adequate space for the temporary file, which will
be as large as the archive itself, is available.

File format error: name
File given is not an archive file.

Memory allocation error
Memory is exhausted. Remove RAM disk.

Malformed archive (0xXXX)
The archive file is internally corrupt. Make or copy a new one. The
hex number given is the address where the archiver expected to find the
beginning of a component file but did not.

Chapter 9

Symbol Namer

Introduction

Object files and application files may contain symbolic information in their sym-
bol tables (see File Formats, section A.1). This symbolic information may be
printed with the Symbol Namer utility. The nm program is capable of print-
ing tables of Laser format object files, DRI format object files, and GEMDOS
format executable files.

Two different formats are used to print the resultant information. If the file
is a Laser format object, each symbol is preceded by its value (in hexadecimal)
and one of the following letters:

Absolute

Bss segment
Common symbol
Data segment

Text segment
Undefined symbol

cHOQW»

If the letter is lower case, the symbol is local. Otherwise the symbol is global.
If a DRI format object or GEMDOS file is printed, each symbol name is

followed by its address (in hexadecimal) and one or more of the words: global,

external, data_based, text_based, bss_based, equated, or equated_register.

69

70

CHAPTER 9. SYMBOL NAMER

9.1 Command Line Usage

When used from a command line shell the usage syntax is:
nm.ttp [file]

Where file is either a Laser format object file, a DRI format object file, or a
GEMDOS format executable file which has been linked such that it still has its
symbol table.

9.2 Namer Errors

Error messages and possible reasons are:

Usage: nm.ttp file
When run from a command line either an invalid option was specified, or
no object or application file was given.

File open error
The input file was not found. Check to see that the file name and path
name are given correctly and that the file actually exists.

File format error
The file is not a valid object or application file or program file, or is
corrupt.

No name list
The file has no symbol table.

Example:
nm.ttp myprog.o

Dump the object code file myprog.o

Chapter 10

Make Utility

Introduction

Programmers often divide large programs into smaller pieces. These smaller
units are easier to work with on an individual basis, but tracking the relation-
ships and dependencies among the pieces becomes a time consuming task. As
the program is modified, it is difficult to remember which files depend on which
others, which files have been modified, and the exact sequence of operations
needed to make or test a new version of a program.

The Make utility automates a number of program development activities so
that up-to-date versions of programs may be maintained with a minimum of
effort.

Make requires that a description file, called the “Makefile” be created which
identifies the target files, the dependencies of the targets, and command lines
used to create or update the targets. A target is a file, for example a “.0” file,
which depends on other files, such as a corresponding “.C” file.

The information in the “Makefile” enables Make to identify the operations
necessary to update and compile a program after modifications have been made.

The basic operation of Make is to:

e Find the name of a specified target file in the “Makefile”.

¢ Ensure that the files upon which the target depends (the dependency files)
exist and are up-to-date.

e Update or create the target to incorporate modifications that have been
made to the dependency files.

71

72

CHAPTER 10. MAKFE UTILITY

In addition to the information in the “Makefile”, Make maintains a table of
built-in rules in a special table (called the suffixes table). It uses the information
in this table to determine which file name suffixes are applicable, and how to
transform those files with specific suffixes into files with other suffixes. For
example, an built-in rule is that “.0” files are made from “.C” files by running
the C compiler on the “.C” files.

10.1 Command Line Usage

Running Make executes command lines in a “Makefile”, causing specified target
files to be updated or created to reflect changes made to files on which they
depend.

Make executes the file with the default name “MAKEFILE” unless a dif-
ferent name is specified.

When used from a command line, the syntax for Make is:

make [opt] [target] [macro=value] [-Fname...]
The following options are available:

-1 Ignore error codes returned by invoked programs. Alternately,
error codes can be ignored using one of two other methods:

e Enter IGNORE as a false target in the “Makefile”.

e Enter “Tab” “-” preceding a command line in the “Make-
file”.
-N No execute mode. Print commands lines, but do not execute
them.
-R Do not use Make built-in rules specified in the suffixes table.

Alternately, the use of the suffixes table can be inhibited by en-
tering .SUFFIXES, without a dependency list, as a false target
name in the “Makefile”.

-S Silent mode. Do not print command lines before executing.
Alternately, the silent mode may be, using two other methods:

e Enter .SILENT as a false target in the “Makefile”.

e Enter “@” as the first character of a command line in the
“Makefile”.

10.2 A SIMPLE “MAKEFILE”

73

-Fname The name of the “Makefile” to use. In the absence of this
option, Make looks for the default names of “Makefile”. More
than one -f“Makefile” parameter can occur.

target The names of one or more target file names separated by a
blank space. If target files are not specified in Make, the
target(s) specified in the first line of the “Makefile” are up-

dated/created.
-P Print all macros and targets.
-qQ Question up-to-dateness of a target.
-X Prints a list of all targets in the “Makefile”.
macro=value Define a Make macro (see section 10.3.3).

NOTE: All environment variables become defined as macros each time Make is
run.

10.2 A Simple “Makefile”

It is not necessary to fully understand Make before it can be used. The following
example may be adapted to a particular project by changing the file names used.
Note that (tab) means enter a “Tab” character into the “Makefile”.

Example Makefile

#
The target is the application program ‘‘test.ttp’’, which
is created by compiling ‘‘filel.c’’, ‘‘file2.c’’, ‘‘file3.c’’,

and then linking them with the C initialization code and the C
library.

test.ttp : filel.o file2.0 file3.o
(tab) cc filel.o file2.0 file3.o0 -o test.ttp

In the above example, Make knows (by default) that the C compiler utility
CC may be used to compile any “.C” file to a corresponding “.0” file. The
target “TEST.TTP” depends on the three “.O” files and is created with the
CC utility by the command line given after the “Tab”. Note that “CC.TTP”
must be located in the current folder, unless the CC environment variable is
defined as the path of CC.

74

CHAPTER 10. MAKFE UTILITY

10.3 Makefile Structure

Touse Make, a “Makefile” that specifies the target files and the files that depend
on them must be created. A “Makefile” contains the following information:

e Entries (targets + dependencies + commands)
e Comments

e Macros

10.3.1 Entries

The entry is the most important part of a “Makefile”. It consists of the target
file names, their dependencies, and command lines.
There are two types of entries:

e Dependency lines
e Command lines

A dependency line defines the target files and their dependencies (the files
that the target depends on). Optionally, a dependency line can contain one or
more command lines. If a noncomment line is too long, it can be continued
using a backslash. If the last character of a line is a backslash, the backslash,
return, and following blanks and tabs are replaced by a single blank space.

The form of a dependency line is:

target...:[:] [dependent...][;command...]

A command line contains a program name followed by program parameters.
Command lines must begin with a “Tab”. The form of a command line is:

(tab) [command. . .]
The items in a “Makefile” entry are described below.

targets The target is the name of one or more target files. These are the
files that are to be updated or created. Target names are GEMDOS file
names. Multiple target names are separated by blank spaces.

dependent The dependent is the name of one or more files that the target files
depend on. Dependent names are also GEMDOS file names. Multiple
dependent names are separated by blank spaces.

10.3 MAKEFILE STRUCTURE

: A single colon (:) or double colon can be used (::) to separate the targets
from the dependencies. A target name can appear on more than one
dependency line but all lines that it appears on must be of the same
(single or double colon) type.

If a target appears on more than one dependency line and a single colon is
used, only one of the dependency lines can have a command sequence as-
sociated with it. If the target requires updating, and a command sequence
is specified, the command sequence is executed.

If a target appears on more than one dependency line, and a double colon
is used, each dependency line can have a command sequence associated
with it. If the target requires updating, the associated commands are
executed, including built-in rules. The double-colon form is valuable for
updating archive-type files.

command A command is a program name followed by optional program pa-
rameters (any string of characters, excluding a # or carriage return).

Command lines can appear on a dependency line or on the line immediately
following a dependency line. If a command appears on the dependency line
it is preceded by a semicolon. If a command appears on the line following a
dependency line, the command line must begin with a tab.

A line is printed when it is executed unless the -S option is used or .SILENT
is entered as a false target name in the “Makefile”.

Commands returning nonzero status cause Make to terminate, unless the -i
option is used or IGNORE is entered as a false target name in the “Makefile”.

Some commands return nonzero status inappropriately. For these cases, use
the -i option or begin the particular command with “Tab” “-” in the “Makefile”.

10.3.2 Comments

The pound sign (#) indicates a comment. All characters, from a pound sign
to the end of the line, are ignored. Blank lines and lines beginning with # are
ignored totally. Comments can appear on dependency lines or command lines.

10.3.3 Macro Definition

Make also provides a simple macro substitution facility for substituting strings
in dependency lines and commands.

A macro line contains an equal sign (=) which is not preceded by a colon
or a tab. The macro name is the string to the left of the equal sign (trailing

75

76

CHAPTER 10. MAKFE UTILITY

blanks and tabs are stripped). The macro is assigned the string of characters
to the right of the equal sign (leading blanks and tabs are stripped).

For example, to define a macro named OBJECTS as the object files, filel.o,
file2.0 and file3.o, enter:

OBJECTS = filel.o file2.o0 file3.o
A null string may be assigned as a macro value by leaving the right of the

equal sign blank. For example, to assign a null value to the macro named ZIP,
enter:

ZIP =

Macros can also be defined in the Make command itself.
A macro is invoked using a dollar sign ($) as shown below:

$ (macro name) or ${macro name}

If the macro name is a single character, the parentheses or braces are op-
tional. Macro names exceeding one character in length, must be enclosed in
parentheses () or braces {},as shown.

For example, to invoke a macro named Y, a single-character name, enter
either:

$Y or $(Y) or ${Y}

To invoke a macro named OBJECTS, enter either:

$ (0BJECTS) or ${0OBJECTS}

There is also a facility to perform translations when a macro is referenced
and evaluated. The general syntax for a macro reference is :

$(macro : stringl = string2)

This causes each occurrence of stringl to be substituted with string2 in the
macro being evaluated, where macro is the name of the macro being evaluated.

Note that all environment variables which are defined as Make is executed,
become macro definitions in Make.

10.3 MAKFEFILE STRUCTURE 77

10.3.4 Implicit Macros

If a file is generated using one of the built-in transformation rules, the following
macros can be used:

$x Name of the file to be made (excluding the suffix)
$@ Full name of the file to be made

$< List of the dependencies

$? List of dependencies that are out of date

10.3.5 Dynamic Dependency

To use these implicit macros, there is a dynamic dependency parameter refer-
enced by the notation:

$se

It has meaning only when it appears on a dependency line. The $$@ refers
to the item(s) to the left of the colon, which is referenced by the $@ implicit
macro.

The following is an example using implicit macros and the dynamic depen-
dency parameter.

PROGS= s1 s2 s3 s4
Defines the macro PROGS as the four files s1-s4.

$(PROGS) : @.c
Invokes the PROGS macro, defining the target file names as s1, s2, 83, and
s4. Defines their dependencies as C source files (.c) with the same file
names: sl.c, s2.c, s3.c, and s4.c.

There is also a second form of the dynamic dependency parameter which
refers to the file part of $@. This form is referenced using the notation $$(@F).

10.3.6 Suffixes Table

As mentioned previously, Make maintains a table of suffixes and built-in trans-
formation rules in suffixes table. This table may be altered with the . SUFFIXES
directive. For example:

Add the suffixes .o and .c to the suffixes table
.SUFFIXES : .o .c

78

CHAPTER 10. MAKFE UTILITY

When attempting to determine a transformation for a file which has no
explicit target mentioned in the “Makefile”, Make uses the suffixes table. Make
looks for a file with the desired suffix, and uses the associated transformation
rule to create or update the target file.

10.3.7 Transformation Rules

A transformation rule name is the concatenation of the two suffixes. For exam-
ple, the name of the rule that transforms .c files to .o files is .c.o. For example:

Compile (with CC) a .c file to produce a .o file.
.c.o :
cc -c $*.c

A transformation rule is used only if the user’s “Makefile” does not contain
an explicit command sequence for these suffixes.

The order of the . SUFFIXES list is significant. Make scans the list from left
to right, and uses the first name that has both a file and a rule associated with
it. To append new names to the suffix list, the word . SUFFIXES may be entered
as a special target in the “Makefile”, listing the new suffixes as dependencies.
The dependencies will be added to the suffix list.

.SUFFIX | Transformation
.C.0 cc.ttp file.c -c
.p.o pc.ttp filep -c

Figure 10.1: Built-in Transformation Rules

For example, to transform a source file into an object(.o) file, Make calls up
the appropriate compiler. There are also transformation rules to create library
(.a) files from source files.

To delete the built-in suffix table, enter .SUFFIXES as a target, without
listing any dependents in the “Makefile”. It is necessary to do this to clear the
current list if changes in the order of the suffixes is desired.

10.4 Examples

Some example “Makefile”s are described below.
Example 1. For this example, the built-in suffixes table is used.

10.4 EXAMPLES

79

Example 1

#

prog.ttp : x.0 y.o z.0

(tab) cc.ttp x.0, y.o z.0. -o prog.ttp

‘“x.0’’ and ‘‘y.o’’ depend on the header file ‘‘prog.h’’. They
will be recompiled if their header is changed.

.0 y.o : prog.h

®o#®

Example 2: This example illustrates the use of macros.

Example 2

#

Define a transformation rule for creating .o files from .c
files by compiling them. While this is predefined as a

built-in rule, it makes a good example.

#

.SUFFIXES .o .c

.C.0 :

(tab) ccom.ttp $x.c

Define the macro OBJECTS to be the three object files x.o,
y.o, and z.o.

#

OBJECTS = x.0 y.o z.0

Define the library option (given to 1d.ttp) as the C library.
#
LIBES = -lc

Create prog.ttp (the default target) by linking the updated
objects. Uses silent mode on CC.

#

prog.ttp : $(OBJECTS) myarc.a

(tab) @cc $(OBJECTS) $(LIBES) -o prog.ttp

This target will update and run prog.ttp
#

prog : prog.ttp

(tab) @prog.ttp

80

CHAPTER 10. MAKE UTILITY

This target just removes the .o files associated with
the project.

#

clean : $(0OBJECTS)

(tab) rm $(OBJECTS)

Chapter 11

Resource Construction
Program

Introduction

The idea behind resources is that specifications for certain graphical/textual
objects may be kept separate from the program which uses them. Thus, items
such as menu bars, dialog boxes, and icons may be created and changed inde-
pendent of the actual program. This not only simplifies coding, but also makes
a program “international”, since the textual strings can easily be translated
into other languages. These object specifications are called resources or object
trees, and are stored in a type of file known as a resource file. The Atari’s
ROM provides routines which use these resource files (see section 16.8). The
Resource Construction Program (called “RCP.PRG”) is used to create and
modify resource files.

11.1 Definition of Resource Files

A resource file contains a number of resources stored in the “tree table”. A
resource (or object tree, the terms are used interchangeably) is a description
for either the menu bar or a dialog box. It is composed of a collection of
“objects” and their locations on the screen. An object is a basic element that
the object manager can display and manipulate. Examples include buttons,
strings, editable text, icons and boxes.

Resource files end with the extension “.RCS”. The RCP also creates two

81

82

CHAPTER 11. RESOURCE CONSTRUCTION PROGRAM

additional files for each resource file. The “.DEF” file containssome information
that the RCP needs that isn’t normally part of an “.RCS” file. The “.H” file
contains C #define commands that relate names given to the various resources
and objects to index numbers that are used internally within a resource file. If
the “.H” is included in a program that uses the resource file then these names
can be used to access the resources instead of the index numbers (which may
change if the resource file is later modified).
An example of a resource can be szen in figure 11.1.

Please insert paper into printer

Figure 11.1: “TEST.RSC”

The resource contains three objects: a bit image, a string and a button. The
“H” file looks like this:

#define PAPER 1
None of the objects have been given names. Here is a program that displays
the dialog and waits for the user to press the OK button:
#include "TEST.H"
#include <obdefs.h>

main()

{
OBJECT #*paper;
int x,y,w,h;

appl_init();

rsrc_load("TEST.RSC");

rsrc_gaddr(0, PAPER, &paper);
form_center(paper, &x, &y, &w, &h);
objc_draw(paper, O, 10, x, y, w, h);
form_do(paper, 0); /* Wait for OK button */
appl_exit();

11.2 RCP USAGE

appl_init and appl_exit are required calls for any program using GEM. The
resource file is loaded with rsrc_load. rsrc_load translates the resources from
the format used in the “.RSC” to that used by the object manager in memory.
rsrc_gaddr returns a pointer to a resource given its index number (which was
defined as PAPER in “TEST.H”). Object tree pointers are used by the object
and form managers. The form_center call changes the location of the dialog so
that it is centered within the screen. The RCP doesn’t set the location of object
trees because the resolution of the screen may be different each time a program
is executed. The rsrc_load call also adjusts the objects within the resource to
match the screen resolution.

objc_draw draws the resource on the screen. It will look just as it does in the
RCP. This visual correspondence makes creating resources with the RCP easier.
form do handles user interaction with the dialog and returns the number of the
object that caused the dialog to exit. We are not interested in this number
since there is only one way to exit this simple dialog.

In a more complex dialog, particularly one with editable text objects, we
would have to manipulate the object tree directly with C. See the object man-
ager section for details on the format of a resource in memory.

11.2 RCP Usage

The screen is divided into two sections: a window containing the resources being
edited and a palette of objects that can be added to the window. If the user
selects New (to create a new resource file) or Open (to load an existing one)
from the File menu the window containing the tree table for the resource file
will be displayed. Any changes made will not affect the file until it is saved (by
choosing Save from the File menu).

When the tree table is displayed the palette will contain templates of legal
tree types that can be added to the file. The window shows the type and name
of all object trees in the resource file. With the tree table displayed one may
create, delete, copy or name entire object trees. One may also Open a tree
which will show the object structure of the tree in the window (which is called
an object display). One should close the window (with the close box or by
choosing Close in the File menu) to return to the tree table.

The object display will show the resource as it will appear when drawn by
a program.

83

84

CHAPTER 11. RESOURCE CONSTRUCTION PROGRAM

11.2.1 Tree Types

RCP currently supports four tree types: unknown (when no “DEF” file is
found), free, dialog and menu.

A free tree is the most general type. Any of the other trees can be converted
to a free tree by using the Name item under Options menu. In a free tree, the
entire tree is always displayed and objects can be located at any pixel location.
Unknown trees are treated the same as free trees so there is really no need to
create them. Free trees might look different on the high and medium resolution
monitors.

Dialog trees are like free trees except objects are aligned to character cell
locations when they are moved. The alignment only happens when an object
is moved or Snap is selected from the Option menu.

Menu trees are very restricted; as a rule, a non-menu tree should not be
converted into a menu tree, since there is a good chance that GEM will crash.

The following information is useful when manipulating the tree structure of
a resource directly with C.

The palette for free, unknown and dialog tree object displays contains the
following objects in order:

G_BUTTON, G_STRING, G_FTEXT, G_FBOXTEXT, G_IBOX, G_BOX,
G_TEXT, G_BOXCHAR, G_BOXTEXT, G_ICON, G_IMAGE.

The palette for menu tree object displays contains the following objects:
G_TITLE, G_STRING, G_STRING (gray hyphens), G_BOX.

These object type names are defined in the file “OBDEFS.H”. See the Object
Manager section of the AES documentation for a description of the format of
each of these types.

11.2.2 Visual Hierarchy

The object display uses a convention called “visual hierarchy” to make edit-
ing resources easier. Assume that one object (say a box) surrounds another
object (say a button) on the screen. Visual hierarchy says that any operation
performed on the box is also performed on the button. The box is called the
parent of the button and the button called a child of the box. There can be
multiple children of a parent, and those children may also have children. The
relationship can be removed by simply dragging the button outside of the box
(the Flatten command will also remove it).

11.2 RCP USAGE

85

11.2.3 Menu usage

Some menu items may not be selectable depending on what is currently being
done with RCP. Items which are unavailable are dimmed in the menu bar.
Some commonly used items are preceded by a letter. If the “control” key is is
held down while simultaneously pressing the letter, then that menu item will
be executed.

When selecting Paste from the Edit menu, the mouse button should be
held down so that the object in the clipboard can be placed in its correct place
(this is discussed further in the reference section for the edit menu).

11.2.4 Mouse usage

The mouse is used in combination with the keyboard to move, select and resize
the objects and trees. See the Conventions section of the Introduction chapter
for definitions of mouse usage terms used here.

Clicking over an object in the window will select it with the effect of it being
drawn as a negative image. At this point many of the menu functions
become available. The selection may be canceled by selecting another
object, clicking outside the window, or clicking in the gray region of the
window.

Control-clicking an object selects the object’s parent. This is useful for se-
lecting a box containing a bunch of buttons for instance or whenever the
child of an object overlays its parent.

Double clicking opens an object. This is always the same as clicking and
then selecting Open from the File menu.

Dragging changes an object’s location on the screen. If an object is moved
such that it is entirely enclosed by another object, then the dragged object
is made a child of the enclosing object. Dragging always makes the selected
object become the last child of whatever object it is released over. A tree
is drawn so that the last child will be drawn last (making it appear on
top of any other siblings it may partially overlap). The effect of this is
that if two objects overlap, pressing the mouse button on the lower object,
holding and then releasing will move it to the top. The main box for a
tree (called the root) cannot be dragged.

Shift-dragging makes a copy of the object before dragging. The copy will not
have a name (even if the original object did).

86

CHAPTER 11. RESOURCE CONSTRUCTION PROGRAM

Control-dragging or shift-control-dragging operates on the object’s par-
ent (unless it is the root of the tree).

11.2.5 Resizing

If the mouse is very close to the lower right corner but nevertheless inside an
object when dragging occurs, then only the lower right corner of the object’s box
will be tracked by the mouse. The size of the object will be changed when the
mouse button is released. The corner will not be permitted to move outside the
parent’s box, nor will it be allowed to move into a child’s box. Shift-dragging
works the same as dragging when re-sizing. Control-dragging is useful when
resizing an object which has a child object in the lower right corner, covering
the “resize” zone.

11.2.6 Keyboard Usage

With an object selected, the keyboard arrow keys may be used as follows:
arrow moves the selected object one pixel in the direction of the arrow.

shift arrow moves only the lower right corner, resizing the object.

11.3 Menu Functions

The following is a short description of all menu items under each menu title.

11.3.1 Edit Menu

The edit functions operate with a special holding area called the clipboard. The
clipboard can hold either a tree or an object along with its name (if it is a tree,
then the names of all the objects in the tree are also stored). The value in the
clipboard will remain there until it is replaced or RCP is terminated. This is
useful for copying resources between two resource files.

Cut The selected object is placed into the clipboard. The object’s name will
also be placed in the clipboard.

Copy A copy of the selected object is placed into the clipboard. The copy will
not have a name.

11.3 MENU FUNCTIONS

87

Paste If object is currently selected, then it is replaced by a copy of what is
in the clipboard. If not, then while the mouse button is down the pasted
object will be dragged. If the object in the clipboard had a name, then the
copy pasted will have that name and the clipboard object will no longer
have one. Care must be used when dragging in this case since if the mouse
button is released outside the window, the name will be lost.

Erase The selected object and its name (if it has one) is deleted.

11.3.2 File Menu

New Create new tree table window.

Open If no window exists at all, then read a resource file from disk. If the
tree table window is displayed and a tree is selected, open the object
display window. If the object display window is displayed and an object
is selected, open the appropriate dialog box.

Merge Read in new resources from another resource file, but don’t delete the
current trees.

Close If the tree table window is displayed, delete all trees and close the win-
dow (without saving). If the object display window is shown, return to
the tree table window.

Save Write the current trees to the file with the same name as the title of the
window.

Save as ... Write the current trees to a file to be specified in a dialog box.
Abandon Same as closing from the tree table window.

Quit Terminate the RCP program.

11.3.3 Options Menu

Info Displays some pertinent information about the selected object.

Name ... If a tree is selected, display a dialog which allows the tree type and
name to be changed. If an object is selected, display a dialog which allows
the object type and name to be changed. Names must be all upper case
and are restricted to a length of 8 characters.

88

CHAPTER 11. RESOURCE CONSTRUCTION PROGRAM

Hide Set the HIDETREE flag for the object, the effect of which is to hide it and
all its children. The root object cannot be hidden.

Unhide Reset the HIDETREE flag for all children of the selected object, display-
ing the children.

Sort ... Sorts the children of the selected object, changing the order in which
they are displayed. The index numbers of the children are not affected by
this operation. The sort can be done either by X-axis or Y-axis coordinate
(in ascending order) or by one then the other.

Recreate Forces physical tree structure to match logical structure by perform-
ing a preorder traversal. Useful for getting the tab and arrow keys to work
correctly with edit fields in a dialog box.

Flatten Rearrange so that children of the selected object becomes siblings of
the selected object.

Snap Aligns the selected object to a character cell boundary (this is the default
mode for all dragging operations when editing dialog trees).

11.4 Object Dialogs

When an object is opened (by double clicking or by choosing Open from the
File menu) a dialog box will appear which allows certain attributes of the object
to be changed depending on its type. There are five such dialogs. The simplest
is for a G_.BUTTON or G_STRING (see figure 11.2).

[_CHECKED | [EDITRBLE |
[DEFAULT | [“SHADOWED | [TOUCHEXIT]
[EXIT | [OUTLINED | [DISABLED]
[RADIO BUTH] [CROSSED |

TEXT:BUTTON.

Figure 11.2: Object Dialog

11.5 THE ICON DIALOG 89

The array of eleven check boxes shows the setting for the useful ob_state
and ob_flags bits. All object dialogs have these eleven boxes. The only other
attribute for a button or string is the value of the text. If “CANCEL” is clicked
then any changes made to the object will not take effect. Pressing “Return”
has the same effect as clicking the “OK” button.

Some objects allow the setting of color, shading and outline characteristics.
Those that do will have one or more of the following gizmos:

[

| colPr Shade

IBorder color

L[]

Text color

The color bars have the values 0-9 and A-F listed for a total of 16 colors.
Each is a different entry in the color look-up table in the ST (the actual color
displayed depends on what is stored in the table, so RCP uses the entry num-
ber). By pressing on the arrows the bar can be rotated. The current setting is
shown in the character box offset slightly to the right of the bar. The setting
can be changed by pressing on a value in the bar. The same is true of the shade
and border style bars (except they can’t be rotated).

The text objects (G_TEXT, G_FTEXT, G_BOXTEXT and G_FBOXTEXT) include a
PTMPLT, PVALID and PTEXT field for each of the TEDINFO strings. RCP translates
the underscore ‘.’ character in the PTMPLT field to a tilde ‘=’ for display purposes
(the underscore is where the user input will go). The tilde is also used in the
PVALID and PTEXT fields as a place holder so the non-tilde characters line up
with the tildes in the PVALID string. These place holder tildes are not actually
in the strings.

11.5 The Icon Dialog

Icons have two dialog boxes. The first dialog for the icon has the eleven bit
boxes, the value of the text field, and the “extra character”. In addition, there
are two color bars for the icon’s foreground and mask images. Clicking on the
“Edit Icon” button will display the second dialog box (see figure 11.3). It also
causes a “CANCEL” of the first box, except for color settings. The second box
operates in three modes chosen by the “Icon”, “Text” and “Character” buttons.

The icon mode allows drawing into the bit image of the icon. By clicking
the mouse on the enlarged image, the icon may be drawn. Freehand drawing

90

CHAPTER 11. RESOURCE CONSTRUCTION PROGRAM

R AU IR AOR RN, ; <3 [_Clear] [Invert |

-4 5w

| Black | [Show |

|Copy to Mask|

| Icon ||
Character

H Show Mask H

[CANCEL | | OK |

Figure 11.3: Icon Dialog

may be done by holding down the mouse button. The state (set or not set) of
a drawn pixel is the opposite of that of the pixel which is first clicked on. The
size of the icon is indicated by the gray outline. The Icon may be repositioned
by dragging the gray outline. It may be re-sized by dragging the lower right
corner of this gray outline. The icon width must always be a multiple of 16
pixels (the re-size code ensures that this is so). If the mouse is clicked in the
drawing region for the icon but with the shift key depressed, a selection range
may be defined. By dragging the mouse, the selection range may be sized until
the mouse button is released. The pixels within the selection range may then
be moved by dragging with the mouse the entire box defining the range. By
holding down the shift key while moving the selection range, a copy is made of
the pixels within the box, rather than a cut. Clicking the mouse outside of the
selection range removes it.

The buttons “Black”, “Invert”, and “Clear” change each pixel within the
selection range, or the entire image (either foreground or mask) if no selection
is made. “Show” shows quickly what the icon will look like at its normal size.
The up, down, right, and left arrows shift the pixels of the icon (or the selection
range if any). The icon can be displayed as it will appear in medium resolution
by clicking the “Color” button.

11.6 THE BIT IMAGE

91

You can draw either into the foreground or mask images by clicking on the
“Show Icon” and “Show Mask” buttons. The foreground image can be copied
to the mask image by clicking “Copy to Mask”.

Text mode allows the positioning and sizing of the text string. The icon is
displayed in gray and the limits of the text string are displayed in black. The
text position can be changed by dragging the black rectangle. It can be re-sized
by dragging the lower right pixel. The text string starts out only 2 pixels tall
and will need to be resized for the text to show in your icon.

Character mode allows the positioning of the “extra character”. It can only
be moved since its size is fixed (being only one character).

11.6 The Bit Image

Bit images (type BITBLK) also have two dialog boxes. The first has eleven
bit boxes and one color bar for the color of the image’s set pixels. Clicking
on the “Edit Image” button will display the second dialog box (and causing a
“CANCEL” of the first box, except for color setting).

The second, image edit dialog box behaves exactly as does the icon edit
dialog, except that some buttons which pertain only to icons have been hidden.

11.7 Using RCP as a Resource Editor

If the source code to the program(s) which use a resource file is not available
then extra care must be taken when modifying the resource file. In particular,
the index number must not be changed for any object that is used. RCP ensures
this is true for all objects except menus. One cannot add, delete or change the
order of menu titles and items without recompiling. One may however change
the text of the titles and items since this does not affect the structure of the
menu tree. RCP will alert the user if changes have been made that require
recompilation.

If the “.DEF” file is not available then the names and types of the resources
will be unknown. Each resource will have to be opened to determine its type.
Menu bars should be changed into menu bar resources prior to making changes.

Chapter 12

Compile and Link

Introduction

This program simplifies the compile and link process when developing from the
GEM desktop or from a shell which does not have a built-in compile and link
mechanism. This program runs the compiler (found with the environment vari-
able CCOM) on any “.C” files, and then the linker (found with the environment
variable LINKER) on any “.0” files, as well as the “.O” files produced from
“.C” files.

The environment variable CINCLUDE is passed to the C compiler. The
environment variables CLIB and CINIT are passed to the linker. Any options
are passed to the appropriate programs. Unknown options are reported.

12.1 Command Line Usage

When used from a command line shell the usage syntax is:

cc.ttp [options] [-C] [file.c ...] [file.o ...] [file.a ...]

options Compiler and/or linker options are passed to the appropriate
programs.

-C Suppress the link phase.
file.c Multiple C source files to be compiled.

file.o Multiple object files to link.

93

94

CHAPTER 12. COMPILE AND LINK

file.a Multiple archive files.

options Command line options to either the compiler or to the linker.

12.2 CC Errors

Error messages and possible reasons are:

Unknown option:
When run from a command line an invalid option was specified.

Cannot access: name
The named program could not be found. Check that the environment
variables LINKER and CCOM are the correct path names for the C com-

piler and the linker.

12.3 Examples
cc.ttp hello.c aux.o -o hello

This will produce the following command lines:

ccom.ttp hello.c -o hello.o -I/MEGAMAX/HEADERS/
1d.ttp -o hello /MEGAMAX/INIT.O hello.o aux.o /MEGAMAX/LIBC.A

which will compile hello.c, link hello.o and aux.o with the initialization
code specified by CINIT and the library specified by CLIB , outputting a file
called “hello”.

Chapter 13

Egrep

Introduction

Egrep searches files for patterns that the user specifies. The patterns are in
the form of regular expressions. Normally, each line found is copied to the
standard output. Egrep patterns are extended regular expressions; it uses a
fast deterministic algorithm that sometimes needs exponential space. Lines are
limited to 1024 characters; longer lines are truncated.

The file name is shown if there is more than one input file. Care should
be taken when using the characters $ * [= | () and \ in the expression,
as they may also meaningful to the shell. It is safest to enclose the entire
expression argument in single quotes ().

Egrep accepts extended regular expressions. A regular expression specifies a
set of strings of characters. A member of this set of strings is said to be matched
by the regular expression. In the following description the term “character”
excludes newline:

e A \ followed by a single character other than newline matches that char-
acter.

e The character ~ matches the beginning of a line.

e The character $ matches the end of a line.

A period (.) matches any character.

Any other character matches that character.

95

96

CHAPTER 13. EGREP

A string enclosed in brackets ([]) matches any single character from the
string. Ranges of ASCII character codes may be abbreviated as in a-z0-9.
A] may occur only as the first character of the string. A literal - must
be placed where it cannot be mistaken as a range indicator.

A regular expression followed by an asterisk (*) matches a sequence
of zero or more matches of the regular expression. A regular expression
followed by a plus (+) matches a sequence of one or more matches of
the regular expression. A regular expression followed by a question mark
? matches a sequence of zero or one matches of the regular expression.

Two regular expressions concatenated match a match of the first followed
by a match of the second.

Two regular expressions separated by | or newline match either a match
for the first or a match for the second.

A regular expression enclosed in parentheses matches a match for the
regular expression. The order of precedence of operators at the same
parenthesis level is as follows: [] then * + ? then concatenation, then |
and newline.

13.1 Command Line Usage

egrep.ttp [-C] [-L] [-V] [-N] [-S] pattern [files]

Matching line count option. This option will make egrep print
only how many lines matched the pattern.

File listing option. This option will make egrep print out once
the file names with matching lines.

Print all non matching lines option. This option makes egrep
print out all lines that do not match the pattern.

Print line number option. This option will make egrep print
out the line number of the matching line.

Silent option. This option will make egrep print only error
messages.

13.2 EGREP ERRORS 97

13.2 Egrep Errors

Usage: egrep.ttp [-C] [-L] [-V] [-N] [-S] pattern [files]
No pattern or files were given.

Unable to open: name
Egrep can not open the file name.

Unknown flag: flag
Flag is not used by egrep.

Invalid regular expression
Something is wrong with the regular expression.

Unmatched (
A right parenthesis has been left off the expression.

Unmatched)
A right parenthesis has been left off the expression.

Premature end of regular expression
The expression finished before it should have.

Nesting too deep
The nesting of parentheses was to great

Regular expression too big
The expression was to big for egrep to compute

Memory Exhausted
Egrep ran out of memory

13.3 Example Searches

Suppose we have a file with the following line:

The Lazy dog jumped over the Cow with 4 big ears.
To search for the word “dog” in the file myfile use:

egrep ’dog’ myfile
The next search will list all functions in a file:

egrep '~ ([a-zA-Z]I[_1)([a-2zA-Z20-9]I1[_]1)*[1*\(’ myfile2.c

98 CHAPTER 13. EGREP

Using the above search on:

main()
{
int i;
foo();
}

foo()
{

int i;
main() ;
}
would print:

main()
foo()

The regular expression above searches for a beginning of a line with a character
or underscore followed by one or more characters, digits or underscores followed
by any number of spaces followed by a left parenthesis.

Chapter 14

Disk Utilities

Introduction

This chapter documents the following disk utilities:

LS.TTP List files

CP. TTP Copy files

MV.TTP Move files or directories
RM.TTP Remove files

RMDIR.TTP Remove directories

MKDIR.TTP Make directories

CAT.TTP Concatenate and print files
DUMP.TTP Print files in hex

SIZE.TTP Print size information of object files

14.1 LS

LS prints a listing of files and/or directories (folders) and information about
them. If a directory (or drive specifier) is given, the name of the directory and
a count of files and folders within the directory is printed, followed by a listing
of all the files in the directory. If a file name is given, matching file names are
listed. If no file/directory names are given, the contents of the current directory
is listed. In the absence of a sorting option, names are sorted alphabetically.

99

100 CHAPTER 14. DISK UTILITIES

Command Line Usage

1s.ttp [-L] [-S] [-D] [-K] [files] [directories]

Options

-L Long listing option. This will list information about the files
and directories. The information includes the name, size, date
of creation, and date of last modification. LS -L will print out
each file on a separate line.

-S Sort by size option. This option will sort the listing by size.

-D Sort by date option. This option will sort the listing by date
of last modification.

-K Sort by kind option. This option will sort the listing by the
extension. That is, all .ttp will be together, all .c will be
together.

Errors

Unknown option: option
An option was given that LS does not recognize.

File not found: name
The file or directory name does not exist.

Drive DRIVE: not available.
The drive is not available

14.2 CP

CP copies files. There are two forms of CP. The first will copy filel to file2.
The second will copy a number of files to a specific directory.

Command Line Usage

cp.ttp filel file2
or
cp.ttp files directory

14.3 MV

Errors

Can’t copy file to itself: name
CP was given the same file name to copy to as the source file name.

name: not a directory
The name of the directory to copy to was invalid.

Can’t open: name
The file that is to be copied does not exist or there is something wrong

with the disk.

14.3 MV

MYV moves files. The old copies of the files are removed. The are two forms of
MV. The first will move filel to file2. The second will move a number of files
to a specific directory.

Command Line Usage

mv.ttp filel file2
or
mv.ttp files directory

Errors

Can’t copy file to itself: name
MYV was given the same file name to move to as the soucre file name.

name: not a directory
The name of the directory to move to was invalid.

Can’t open: name ’
The file that is to be moved does not exist or there is something wrong
with the disk.

14.4 RM

RM deletes files.

101

102 CHAPTER 14. DISK UTILITIES

Command Line Usage

rm.ttp [-R] [-F] [-I] file(s)

Options

-R Recursive directory delete. This option will cause RM to re-
cursively open any directory and delete all files within the di-
rectory.

-F Force option. With this option, no errors are reported.

-1 Interactive option. RM will ask for verification to delete each
file.

Errors

Usage: rm file ...
There are no options to rm

14.5 RMDIR

RMDIR deletes directories. The directory must not contain any files.

Command Line Usage

rmdir.ttp directory(s)

Errors

No such directory: name
The file name does not exist or the disk is write protected.

14.6 MKDIR

MKDIR creates directories. If a partial pathname is given MKDIR creates the
directory in the current directory.

Command Line Usage

mkdir.ttp directory

14.7 CAT

103

Errors

Can’t create directory: name

The directory name already exists or the disk is write protected.

14.7 CAT

CAT will print files to standard output.

Command Line Usage

cat.ttp files

Errors

File not found: name
The file or directory name does not exist.

14.8 DUMP
DUMP will print files in hex to standard output.

Command Line Usage

dump.ttp files

Errors

File not found: name
The file name does not exist.

14.9 SIZE

SIZE will print size information for the different segments of object or executable

files to standard output.

Command Line Usage

size.ttp files

104 CHAPTER 14. DISK UTILITIES

Errors

File not found: name
The file name does not exist.

File format: name
The file name is not an object or executable file.

Chapter 15

UNIX Compatible

Routines

Introduction

The functions described in this chapter are compatible with functions by the
same names which are available to C programmers using the UNIX operating
system. Most of these routines are available in all C implementations; even
those on micro-computers without UNIX. Use of these functions will therefore
reduce the effort involved in porting a C program to another computer.

Many of the services provided here are also available through BIOS, XBIOS
or GEMDOS functions, but these should be avoided if portability is a concern.

15.1 Line Separators

Because of the heritage of the C language, the ASCII line feed character (nu-
merically, 10 decimal) is usually considered to be the line separator character.
The ST software considers a carriage return/line feed combination to be the
line separator. In order to easily overcome this difference, the Laser C run
time library automatically converts carriage return/line feeds to line feeds on
input, and converts line feeds to carriage return/line feeds on output to files.
This conversion occurs at a very low level within the library routines. Files
may be opened in untranslated or binary mode by setting a flag when the open
procedure is called. For example fopen("FILE.0", "br"); would open the
file “FILE.O” for untranslated (binary) read.

105

106

CHAPTER 15. UNIX COMPATIBLE ROUTINES

15.2 File I/O

Contained in the system library are routines for both buffered and unbuffered
input/output to disk files. The buffered routines are those whose names begin
with “f” comprising the stream file interface. The unbuffered routines are the
low-level read() and write() routines. Both levels of I/O allow random access
to disk files. Along with these routines, the programmer is free to use the BIOS
routines for input/output.

Stream I/0

A stream file is a pointer to a FILE data structure (declared in the header file
“STDIO.H”). Each stream is associated with a regular file via a file descriptor
(returned by open or creat). Streams buffer data through the file descriptor so
single character I/O is efficient. The buffer size may changed from the default
of 512 bytes for added speed by using the setbuffer call. Streams are used
because of the large number of functions available as compared with the Basic
I/0O level.

Three streams are open when a program starts: stdin, stdout and stderr.
stdin is open for reading only and is connected to the keyboard (ie. its file
descriptor is 0). stdout and stderr are open for writing only and are connected
to the screen (file descriptor 1).

15.3 I/0 Redirection

I/O redirection is a mechanism where stdin and stdout are changed from using
the keyboard and screen to using files. stdin is changed by passing ‘<INFILE’ on
the command line. stdout can be changed in two ways: ‘>0UTFILE’ will open
and erase outfile, while >>0UTFILE’ will append to an existing outfile. The
program does not have to be changed for I/O redirection to work (although it
must have the argc and argv parameters declared for main()).

15.4 Device I/O

All of the system devices are available to the C programmer through the C
input/output system. Legal device names are: ‘AUX:’, ‘PRT:’ and ’CON:’. For
most device input/output, it is wise to use setbuf() to prevent buffering on the
stream connected to the device.

15.5 MEMORY ALLOCATION

107

When using the unbuffered input/output services, the only significant flag
in the mode word is the binary (0_BINARY) flag. If this flag is set, there will be
no special treatment for line separator characters. Note that one cannot creat()
a device.

BIOS routines may be used to manipulate devices, but they require the file
descriptor number. This number is just the fileno() (defined in <stdio.h>) of
the stream or the file number returned by open().

15.5 Memory Allocation

The memory allocation routines malloc() and calloc() are available to the C
programmer. Because of the high space overhead (not to mention the bugs) in
memory allocation at the GEMDOS level, these routines allocate memory in
8KB blocks, breaking the blocks up as necessary to satisfy the requests made
from the C program. The free() routine will coalesce space which is returned
and the allocation system will reuse deallocated space; however, memory will
not be returned to the GEMDOS routines.

Programs begin execution with 8KB of stack space available. This is plenty
of stack for most applications (the C compiler, in fact, uses less than 5KB).
The size of the stack may be changed by declaring global variable _stksize
and initializing that variable to the size of the stack required. Example:

long _stksize = 16384L;

Note that because pointers are 32 bits long, a C program can use as much
memory as is available on the machine through dynamic allocation.

IMPORTANT NOTE: you must make the declaration:
extern char *malloc();

in your program before you use malloc (the same is true for calloc()). If you
don’t do this the compiler will assume malloc() returns an int (which is only
16 bits wide). The declaration is included in <stdio.h>.

15.6 Program Parameters

Program parameters passed from GEM desktop or a shell are available through
the argc and argv program parameters to main():

main(argc, argv, envp)
int argc;

108

CHAPTER 15. UNIX COMPATIBLE ROUTINES

char *argv[];
char *envpl[];

argc is the number of strings in the argv array. argv[0] is not defined. If you
don’t need program parameters, just declare main() without any parameters

and the linker will not load the code to retrieve them.

envp is a pointer to a NULL terminated list of environment variables from
the previous program, and is optional.

15.7

open
read

Iseek
creat

fopen
fdopen

fclose
feof
clearerr
fread
fseek

ftell
getc
fgetc
gets
putc
fputc
puts
printf
sprintf
scanf
setbuf
setlinebuf

atof
atol

toupper
_toupper
toascii

Basic I/O Functions

open a file

read data from file

reposition file

create a file (old method, use
open)

Stream I/O Functions

open a stream
use existing file with stream

close a stream

test end of file

remove error state
read data from stream
reposition stream

report position

fast read byte

read byte

read string from “stdin”
fast write byte

write byte

write string to “stdout”
formated write to “stdout”
formated “write” to array

formated read from “stdin”
set buffer (standard size)

set buffer mode

Summary of Routines

close
write
isatty
unlink

freopen

fllush
ferror
fileno
fwrite
rewind

getchar
getw
fgets
putchar
fputw
fputs
fprintf
sscanf

fscanf
setbuffer

ungetc

close a file

write data to file
determine file type

delete a file

use different file with stream

write buffer to disk

test for error

file associated with stream
write data to stream
reposition stream to front

read byte from “stdin”
read word

read string

write byte to “stdout”
write word

write string

formated write

formated “read” from array

formated read
set buffer (any size)

put byte back on “stdin”

Conversion and Classification Functions

ASCII to float
ASCII to long

byte to uppper case
fast toupper
int to ASCII

atoi
strtol
tolower
_tolower
isalpha

ASCII to int
ASCII (any base) to long

byte to lower case
fast tolower

test for letter

15.7 SUMMARY OF ROUTINES 109

Conversion and Classification Functions, con’t.

isupper test for upper case islower test for lower case
isdigit test for digit isxdigit test for base 16 digit
isalnum test for alphanumeric isspace test for white space
ispunct test for punctuation isprint test for printable
iscntrl test for control char isascii test for ASCII

String Functions

strcat append strings strncat append “n” bytes

strcmp compare strings strncmp compare “n” bytes

strcpy copy string strncpy copy “n” bytes

xtrcat append, but return end xtrcpy copy, but return end

xtrncpy copy “n” bytes, return end strlen length of string

index find byte in string rindex find byte from end
Math Functions

abs absolute value of int labs absolute value of long

log natural logarithm exp base e exponential

logl0 base 10 logarithm explO base 10 exponential

log2 base 2 logarithm exp2 base 2 exponential

sin sine cos cosine

tan tangent asine inverse sine

acos inverse cosine atan inverse tangent

sqr square sqrt square root

powerd raise to power poweri raise to integer power

dabs absolute value of double dint integer part of double

mulpower2 fast n x 2k Ingamma log of gamma function

fac factorial matinv matrix inversion

Memory Allocation Functions

malloc allocate memory Imalloc allocate lots of memory
calloc allocate and clear lcalloc allocate a lot and clear
realloc resize allocated memory Irealloc resize a lot of memory

free release memory alloca allocate on stack

sbrk another way to get memory

Miscellaneous Functions

exit terminate program _exit terminate, but don’t clean up
rand random number srand start random sequence
setjmp non-local label longjmp non-local goto

perror print system error gsort quicksort

110 ABS

NAME

abs, labs — return integer or long absolute value
SYNOPSIS

int abs(i)

int i;

long labs(1l)
long 1;

DESCRIPTION

abs and labs return the absolute value of the number that is the parameter.

ATOF 111

NAME
atof — converts ASCII string to a floating-point number
SYNOPSIS

double atof(nptr)
char *nptr;

DESCRIPTION

atof converts a character string pointed to by nptr to a double precision floating
point number. The first unrecognized character ends the conversion. atof
recognizes an optional string of white-spaced characters, then an optional sign,
then a string of digits optionally containing a decimal point, then an optional
E or e followed by an optionally signed integer. If the string begins with an
unrecognized character, then a zero is returned.

SEE ALSO
strtol

112 BLOCK FUNCTIONS

NAME

bcmp, beopy, bzero — memory block operations.
SYNOPSIS
int bemp(blockl, block2, len)

char *blockl, *block2;
int len;

int bcopy(source, destin, len)
char *source, *destin;
int len;

int bzero(blockl, len)
char *blocki;
int len;
DESCRIPTION

These functions perform various operations on blocks of memory.

bcmp compares two blocks of memory blockl and block2. The size of the
blocks is 1en. A value of 1 is returned if they are identical.

bcopy copies the source block of memory to the block of memory pointed to
by destin. Both blocks are of size len.

bzero zeroes the memory pointed to by blockl. The block is of size len.

CLOSE 113

NAME
close — close a file.
SYNOPSIS

int close(fildes)
int fildes;

DESCRIPTION
fildes is a file descriptor obtained from creat or open.
Close will fail if fildes is not a valid, open file descriptor.
DIAGNOSTICS
If successful, a 0 is returned.

If unsuccessful, a —1 is returned and errno is set appropriately.

114 CONV

NAME
toupper, tolower, _toupper, _tolower, toascii — convert character

SYNOPSIS

#include <ctype.h>

int toupper(c)
int c;

int tolower(c)
int c;

int _toupper(c)
int c;

int _tolower(c)
int c;

. int toascii(c)
int c;

DESCRIPTION

toupper and tolower have a range from —1 to 255. If the argument for toupper
is a lower-case letter, the result is a corresponding upper-case letter. If the
argument for tolower is an upper-case letter, the result is a corresponding lower-
case letter. Arguments other than the ones mentioned are returned unchanged.

Toascii returns the argument with all but the low order 7 bits set to zero.

_toupper and _tolower are similar to toupper and tolower but have smaller
domains and are faster. _toupper requires a lower-case letter as its argument.
_tolower requires an upper-case letter as its argument. Undefined results occur
if arguments are other than required.

CREAT 115

NAME

creat — create a new file or rewrite to an existing one.
SYNOPSIS

#include <fcntl.h>

int creat(fname, oflag)
char *fname
int oflag;

DESCRIPTION

creat creates a new file or writes to an existing one. If the file exists then the
length of the file is reduced to O.

If successful, the file descriptor is returned and the file is opened for writing.
The file pointer is set to the beginning of the file.

oflag may be set to 0_BINARY to indicate the untranslated mode. No other
flag values are allowed here (see open).

creat will fail if an OS error occurs.

No process may have more than 20 files open simultaneously.
NOTE
This function has been superceeded by open with the O_CREAT flag.
DIAGNOSTICS
If successful, a non-negative integer is returned (the file descriptor).
If unsuccessful, —1 is returned and errno is set appropriately.
SEE ALSO

open

116 CTYPE

NAME

isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isc-
ntrl, isascii — classify characters

SYNOPSIS

#include <ctype.h>

int isalpha(c)
int c;

int isupper(c)
int c;

DESCRIPTION

These macros classify character-coded integer values. A zero is returned for
false and a non-zero is returned for true. isascii is defined on all integer values,
the rest are defined where isascii is true and for EOF (—1).

isalpha c is a letter

isupper c is an upper-case letter

islower c is a lower-case letter

isdigit c is a digit

isxdigit ¢ is a hexadecimal digit

isalnum c is alphanumeric

isspace c is a space, tab, carriage return, new-line, or form-feed
ispunct c is a punctuation character (neither control nor alphanumeric)
isprint c is a printing character, 040 (space) through 0176 (tilde)

iscntrl c is a delete character (0177) or an ordinary control character (less than
040)

1sascii ¢ is an ASCII character, code less than 0200

CTYPE 117

DIAGNOSTICS

If the argument of any of these macros lies outside its domain, the result is
undefined.

118 EXECV
NAME
execv, execve — Execute a file.
SYNOPSIS
int execv(pathname, argv)
char *pathname, *argv([];
int execve(pathname, argv, envp)
char *pathname;
char *argv[], *envp[];
DESCRIPTION

execve executes a program from the disk. execv calls execve, passing the value
of the global environ for the parameter envp (see below).

The parameter pathname is a pointer to a string which contains the name of
the program to be executed.

The parameter argv is an array of character pointers to strings, creating an
argument list that is made available to the new program. By convention, at
least one argument must be present in this array, and the first element of this
array should be the name of the executed program. However, since the Atari
operating system does not supply this information the first element is generally
NULL.

The parameter envp is also an array of character pointers to strings which are
not command line arguments, but system environment variables.

When the executed program begins, it is called as follows:

main(argc, argv, envp)
int argc;
char *argv[]
char *envpl[];

where argc, the “arg count”, is the number of elements in argv, and argv is
the array of character pointers to the arguments themselves.

The parameter envp is a pointer to an array of strings which are the environment
variables from the calling program. Note that a pointer to this array is also
stored in the global variable extern char **environ. Each string consists of
a name, an ”=" sign, and a null-terminated value. The array of pointers is

EXECV 119

terminated by a null pointer. The Laser Shell passes an environment entry for
each global shell variable defined when the program is called.

The result from execv and execve is the exit code or status of the program. If
an error occurs during the launch of the new program, execv and execve will
return the appropriate DOS error code.

NOTE

Since the command line on the Atariis limited to 128 characters, the Laser Shell
uses the environment variable ARGV= when this limit is exceeded. The value of
ARGV is a single string containing a space separated list of the arguments past
the 128 byte limit. These arguments are added to argv by the C initialization
code so the program never has to deal with them specially.

SEE ALSO
exit, DOS Error Codes (pg. 587)

| Ii:l

120 EXIT

NAME
exit, _exit — terminate a process

SYNOPSIS

exit(status)
int status;

_exit(status)
int status;

DESCRIPTION

exit performs some cleanup operations before terminating the program:
e The onexit functions are called in the reverse of the order in which
they were added.
e All open streams are flushed and closed.
e All remaining file descriptors opened with open or creat are closed.

e _exit is called.

_exit terminates the program immediately without performing any cleanup op-
erations.

status is returned to the calling program as the result of the execv or Pexec
call.

SEE ALSO

onexit, execv, Pexec

FCLOSE 121

NAME
fclose, fllush — close or flush a stream
SYNOPSIS

#include <stdio.h>

int fclose(stream)
FILE #*stream;

int fflush(stream)
FILE *stream;

DESCRIPTION
fclose writes any buffered data to disk and closes the stream file. It is called
for each open stream by exit,

fflush writes any buffered data to disk, but does not close the stream file.

DIAGNOSTICS
If successful, these routines return a 0. If unsuccessful, an EOF is returned.
SEE ALSO

exit, fopen

122 FERROR

NAME
ferror, feof, clearerr, fileno — stream status inquiries

SYNOPSIS

#include <stdio.h>

int feof(stream)
FILE *stream;

int ferror(stream)
FILE *stream;

clearerr(stream)
FILE *stream;

int fileno(stream)
FILE *streanm;

DESCRIPTION

feof returns a non-zero when EOF has previously been detected reading the
named input stream, otherwise zero is returned.

ferror returns a non-zero when an I/O error has previously occurred reading
from or writing to the named stream, otherwise a zero is returned.

clearerr resets the error indicator and EOF indicator to zero on the named
stream.

fileno returns the integer file descriptor for the named stream.

NOTE

All these functions are implemented as macros and therefore cannot be declared
or redeclared.

SEE ALSO

perror

FOPEN 123

NAME
fopen, freopen, fdopen — open a stream

SYNOPSIS

#include <stdio.h>

FILE *fopen(file_name, type)
char *file_name, *type;

FILE *freopeh(file_name, type, stream)
char *file_name, *type;

FILE *stream;

FILE *fdopen(fd, type)

int f4;
char *type;
DESCRIPTION

fopen opens the file named by file_name and associates a stream with it. fopen
returns a pointer to the FILE structure associated with the stream.

freopen substitutes the named file in place of the open stream. The original
stream is closed regardless of whether the open succeeds or not. freopen
returns a pointer to the FILE structure associated with stream.

freopen is typically used to attach the pre-opened streams associated with
stdin, stdout, and stderr to other files.

fdopen creates a stream from the file descriptor (£d) for a file opened with open
or creat.

file_name points to a character string that contains the name of the file to be
opened.

type is a character string with one of the following values:
r open for reading
w truncate or create for writing

a append; open or create for writing at end of file

124 FOPEN

r+ open for update (reading and writing)
w+ truncate or create for update

a+ random open for read or write; pointer will be repositioned to end of file
for writing

In addition, any of the above may be preceded by a “b” to indicate that line-
feed /carriage return combinations are not to be translated to line-feeds.

If a file is open for update, both input or output may be attempted on the
stream. However, output may not be directly followed by input without an
intervening fseek or rewind, and input may not be directly followed by output
without an intervening fseek, rewind, or an input operation which encounters
end-of-file, EOF.

Files open for append cannot have information overwritten. All output is ap-
pended to the end of file regardless of current pointer position. After output is
completed, the pointer is positioned at the end of the file.
DIAGNOSTICS
T If unsuccessful, these routines return a NULL pointer.

“#4% SEE ALSO

open

FREAD 125

NAME
fread, fwrite — binary input/output
SYNOPSIS

#include <stdio.h>

int fread(ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

int fwrite(ptr. size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

DESCRIPTION

fread places into an array nitems of data read from the input stream beginning
at ptr. The data items are a sequence of bytes of length size. Reading is
stopped when an error occurs, end-of-file is encountered, or nitems of data
have been read. fread places the pointer, if any, at the byte following the
last byte read, if one exists. The contents of the stream are not changed.

fwrite attempts to append nitems of data from the array pointed to by ptr to
the named output stream.

NOTE

fseek or rewind must be called before switching between reading and writing
on a stream that allows both.

DIAGNOSTICS

Both routines return the number of items written or read. If a non-positive
number is given for nitems, then a O is returned and nothing is read or written.

126 FSEEK

NAME
fseek, rewind, ftell — reposition a file pointer in a stream

SYNOPSIS

#include <stdio.h>

int fseek(stream, offset, ptrname)
FILE *stream;
long offset;
int ptrname;

rewind(stream)
FILE *stream;

long ftell(stream)
FILE *stream;

DESCRIPTION

3”% fseek sets the position of the next input or output operation on the stream. The
new position is at the signed distance offset bytes from the beginning, from
the current position, or from the end of the file, depending on the value
of ptrname (either O, 1, or 2 respectively).

rewind is equivalent to fseek(stream, OL, 0), except no value is returned.

ftell returns the the offset of the current byte relative to the beginning of the
file associated with the named stream.

fseek and rewind undo the effects of ungetc.

After fseek or rewind the next operation to the file may be either input or
output.

DIAGNOSTICS
If successful, fseek returns a 0.

If unsuccessful, a non-zero is returned. This can occur if fseek is attempted on
a file not open via fopen or if it is used on something other than a file.

SEE ALSO
Iseek

GETC 127

NAME
getc, getchar, fgetc, getw — get a character or word from a stream

SYNOPSIS

#include <stdio.h>

int getc(stream)
FILE *stream;

int getchar()

int fgetc(stream)
FILE *stream;

int getw(stream)
FILE *stream;

DESCRIPTION

getc returns the next byte from the named input stream and positions the
pointer ahead one byte in stream. getc is a macro and cannot be used
where a function is required, i.e. a function pointer cannot point to it.

getchar returns the next character from the standard input stream, stdin.
getchar is also a macro.

fgetc performs the same function as getc, however it is a true function. It is
slower, but takes less space per invocation.

getw returns the next word (integer) from the named input stream. EOF is
returned if end-of-file or error is encountered. Since EOF is a valid integer,
feof or ferror will need to be used to check the success of getw. The file
pointer is positioned at the next word. No special alignment is assumed.

DIAGNOSTICS

EOF is returned when end-of-file or error is encountered.

128 GETENV

NAME
getenv — get value of environment variable.
SYNOPSIS

char *getenv(envname)
char *envname;

DESCRIPTION

getenv searches the environment variable list (kept in environ (see execv)) for
the name envname. The form of an environment variable is name=value. If
the “name” of the variable is identical to envname a pointer to the “value” is
returned. If the variable name is not in the environment list a NULL pointer
is returned.

SEE ALSO

execv

GETS 129

NAME
gets, fgets — get a string from a stream

SYNOPSIS

#include <stdio.h>

char *gets(s)
char *s;

char *fgets(s, n, stream)
char *s;
int n;
FILE *stream;

DESCRIPTION

gets reads characters from the standard input stream, stdin, into the array
pointed to by s, until an end-of-file or new-line character is encountered.
The new-line character is discarded and the string is terminated with a
null character.

fgets reads characters from the stream into an array pointed to by s, untiln—1
characters are read, or a new-line character is read and transferred to s,
or an EOF is encountered. The string is terminated with a null character.

DIAGNOSTICS
If successful, s is returned.

If EOF is encountered and no characters have been read, then no characters
are transferred to s and a null pointer is returned.

If an error occurs, a null pointer is returned. Attempting to use one of these
functions on a file that has not been open for reading will cause an appropriate
error.

130 ISATTY

NAME
isatty — determine file device type.
SYNOPSIS

int isatty(£fd)
int f4;

DESCRIPTION

isatty determines the type of device that is associated with the file descriptor
fd. If the device is the keyboard the result of the function is 1.

LSEEK 131

NAME
lIseek — move read/write file pointer
SYNOPSIS

long lseek(fildes, offset, whence)
int <fildes;
long offset;
int whence;

DESCRIPTION
Iseek sets the file pointer associated with fildes according to whence as follows:
whence = 0 — the pointer is set to offset bytes.
whence = 1 — the pointer is set to current position plus offset.

whence = 2 — the pointer is set to the file size plus offset.

DIAGNOSTICS

If successful, the pointer position, measured in bytes from the beginning of the
file, is returned.

If unsuccessful, —1 is returned and errno is set appropriately.
Iseek will fail and the pointer will remain unchanged if:

e fildes is not an open file descriptor.

e whence is not 0,1, or 2.

e The resulting pointer position would be negative.

132 MALLOC

NAME
malloc, Imalloc, calloc, lcalloc, realloc, Irealloc, free, alloca — RAM allocator

SYNOPSIS

char *malloc(size)
unsigned size;

char *1malloc(size)
unsigned long size;

char *calloc(nelem, elsize)
unsigned nelem, elsize;

char *1lcalloc(nelem, elsize)
unsigned long nelem, elsize;

char *realloc(ptr, size)
char *ptr;
unsigned size;

char *lrealloc(ptr, size)
char *ptr;
unsigned long size;

free(ptr)
char *ptr;

char *alloca(size)
unsigned long size;

DESCRIPTION

malloc returns a pointer to a block of at least size bytes aligned for any use.
Note that the size parameter limits the size of the block to 64K.

Imalloc like malloc but accepts a long parameter (allowing more than 64K bytes
per allocation).

calloc allocates space for an array of nelem elements of size elsize. The space
is initialized to zeros.

NOTE

MALLOC 133

Icalloc like calloc but accepts long parameters.

realloc changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (potentially moved) block. Note that the data will remain
unchanged and any data defined beyond size will be lost.

Irealloc like realloc but accepts a long parameter.

free makes space, pointed to by ptr and formerly allocated by malloc, Imalloc,
calloc, or Icalloc available for further allocation. free does not affect the
contents of the space.

alloca allocates size bytes of space in the stack frame of the calling function.
This space is temporary and will be automatically released upon the re-
turn of the calling function.

alloca does not check for stack overflow. The size of the stack is set to the
value in extern long _stksize when the program starts (default 8K bytes).
_stksize should be redefined if more space is needed:

long _stksize = 10000;

main()

DIAGNOSTICS

The functions malloc, Imalloc, realloc, Irealloc, calloc and Icalloc will return a
null pointer if the memory requested is not available.

SEE ALSO

sbrk

134 MATH

NAME

math — floating point math routines
SYNOPSIS

#include <math.h>

double log(x), loglO(x), log2(x);
double exp(x), expl0(x), exp2(x);

double sin(x), cos(x), tan(x);
double asin(x), acos(x), atan(x);

double sqr(x), sqrt(x);

double powerd(x, y), poweri(x, a);
double dabs(x);
double dint(x);
double mulpower2(x, Kk);
double lngamma(x);
double fac (k) ;
double x, y;
int a, k;

double matinv(a, ¢, n)

double *a;

long *C ;

long n;
DESCRIPTION

These routines implement various mathematical functions. The format of a
double precision floating point number is as follows:

e The leftmost bit (63) is the sign for the mantissa.
e The next bit (62) is the sign for the exponent.

e The next 10 bits (61-52) contain the binary exponent which has a bias of
0x3ff (1023).

e The mantissa, contained in bits 51-0, is preceded by an implied 1-bit (left
of the binary point). Therefore, the theoretical precision is 53 X log;((2) =
15.95 decimal digits.

MATH 135

A zero is represented by all zeros in the floating point variable. The largest
possible value for a float variable is contained in the math libary variable
double dcsu. The value of this variable is Ox7fffffffffffffff. The value of
infinity is represented by the math library variable double dcin. It’s value is
Oxffffffffffffffff. This value is returned in the instances where a floating
point operation exceeded the maximum value of a double floating point number.

The smallest number z > 0 is:

T 0x0000000000000001
(1 + (2—52))(21025)
1.1125369292536009 x 10308

If the absolute value of a result is smaller than this number (called underflow),
a zero is returned.

log and exp are base e logarithm and exponential functions.
log10 and expl0 are base 10 logarithm and exponential functions.
log2 and exp2 are base 2 logarithm and exponential functions.
sin, cos, and tan are transcendental functions.

asin, acos and atan are inverse transcendental functions.

sqr is z2.

sqrt is \/T.

powerd is z¥. This is equivalent to exp2(x * log2(y)).
powerl is the same as powerd but with an integer a for y.
dabs is |z|.

dint is the integer part of the double that is the parameter. The fractional
part is truncated. This is equivalent to

sgn(z) x [|=|]
where
-1, ifz <0
sgn(z) = { 0, ifz=0;
1, ifz>0

136 MATH

mulpower2 performs a fast floating point multiplication by 2*.

Ingamma is the natural logarithm of the gamma function if 0 < z < 5.1 x 10%%%.
Outside of this range dcin (infinity), is returned.

fac is k!, where 0 < k < 170.

matinv is the matrix inverse of the n x n array a. The data in a may be stored
in either row or column major order (C double dimension arrays are row
major). ¢ is a vector (one dimensional array) of longs used during the
computation. matinv returns the determinant of a as the function result,
and the inverse of a in a. ¢ has no meaning after matinv finishes. A
determinant value of zero indicates failure (a is destroyed). Example:

#include <math.h>
double e[2][2] = {1, O, O, 1}; /* Identity Matrix */

main()

{
double det;
long C[2];

det = matinv(e, C, 2L);
printf("The determinant of e is %f\n", det);

NOTE

All intermediate floating point operations are done in double precision. The
transcendental functions use radians.

ONEXIT 137

NAME
onexit — call user defined function upon exit.

SYNOPSIS

int onexit(userfunc)
int (*userfunc) ();

DESCRIPTION

onexit is used to define user exit functions. These functions will be executed
before files are closed by the standard exit function exit. The maximum number
of exit functions allowed is eight. If the maximum is exceeded the result of the
function is 1, TRUE.

One of the eight functions is used by the program profiling code.
SEE ALSO

exit
DIAGNOSTICS

1 is returned after the maximum of eight functions are added to the exit list.

138 OPEN

NAME
open — open for reading or writing

SYNOPSIS

#include <fcntl.h>

int open(fname, oflag) :
char *fname;
int oflag;

DESCRIPTION

open opens a file for reading and/or writing as specified by the oflag. A file
descriptor for the file is returned. The parameter fname points to a string
containing the name of the file. The oflag values are constructed by OR-ing
flags from the following list:

O0_RDONLY open for reading only.
O_WRONLY open for writing only.
O0_RDWR open for reading and writing.
O_CREAT create file if it does not exist.

O0_TRUNC truncate size to O.

0_BINARY open in binary (untranslated) mode.

Note that only one of the first three may be used. Upon completion, the file
pointer is set to the beginning of the file.

NOTE
No program may have more than 20 file descriptors open simultaneously.
open with 0_CREAT superceeds the older function creat.
DIAGNOSTICS
If successful, the file descriptor is returned.

If unsuccesful, errno is set and —1 is returned.

PERROR 139

NAME
perror, sys_errlist, sys_nerr — System error messages
SYNOPSIS

perror(s)
char *s;

extern int sys_nerr;
extern char *sys_errlist[];

DESCRIPTION

perror writes a short description of the last error that set errno onto the stan-
dard stream stderr. The string s is printed first, then a colon, then the message
and a new-line. The string s is usually the name of the program which called
perror.

perror should only be called when a function which sets errno indicates an
error has occurred since errno is not cleared upon successful execution.

The messages printed are stored in the array sys_errlist and may be indexed
by —errno (this is not compatible with UNIX where errno is always positive).
The number of entries in sys_errlist is stored in sys_nerr.

140 PRINTF

NAME

printf, fprintf, sprintf, fprintf, _sprintf — print formatted output
SYNOPSIS

#include <stdio.h>

int printf(format [, arg]l . . .)
char *format;

int fprintf(stream, format [, arg] . . .)
FILE *stream;
char *format;

int sprintf(s, format [, arg] . . .)
char *s, *format;

int _fprintf(stream, format, args)
FILE *stream;
char *format, *args;

int _sprintf(s, format, args)
char *s, *format, *args;

DESCRIPTION

printf places output on the standard output stream stdout.
fprintf places output on the named output stream.

sprintf places “output”, followed by a null character (\0) in consecutive bytes
starting at *s; it is the user’s responsibility to ensure that enough storage
is available.

_sprintf works like sprintf except the arguments are retrieved from the pointer
args (which normally points into the stack).

tprintf is like fprintf except the arguments are retrieved from the pointer args.

Each function returns the number of characters transmitted (not including \0
for sprintf), or a negative value if an output error was encountered.

PRINTF 141

Each of these functions converts, formats, and prints its args under control
of the format. The format is a character string that contains two types of
objects: plain characters, which are simply copied into the output stream, and
conversion specifications, each of which results in fetching of zero or more args.
The results are undefined if there are insufficient args for the format. If the
format is exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the
following appear in sequence:

e An optional flag which modifies the meaning of the conversion specifica-
tion.

e An optional decimal digit string specifying a minimum field width. If
the converted value has fewer characters than the field width, it will be
padded on the left (or right, if the left-adjustment flag has been given),
with spaces, to the field width. A leading zero indicates zeros should be
used instead of spaces.

e A precision which gives the maximum number of characters to be printed
from a string, or the number of digits to be printed to the right of the
decimal point for float or double.

e An optional 1 specifying that a following d, o, u, or x conversion character
applies to a long integer arg.

e A character that indicates the type of conversion to be applied.

The only flag character is the minus sign (-). When used, the result of the
conversion will be left-justified within the field.

A field width or precision may be ‘*’ instead of a digit string. In this case an
extra integer argument provides the field width or precision.

The conversion characters and their meanings are:

d,o,u,x The integer arg is converted to signed decimal, unsigned ocf;al, decimal,
or hexadecimal notation respectively; the letters abcdef are used for x
conversion.

f The float or double arg is converted to decimal notation in the style:

[-](digits) . (digits)

142 PRINTF

e g

)

where the number of digits after the decimal point is equal to the precision
specification. If the precision is missing, six (6) digits are output; if the
precision is zero (0), no decimal point appears.

The float or double arg is converted to the style:
[-](digit).(digits)E(+|-)(digits)

where there is one digit before the decimal point and the number of digits
after it is equal to the precision; when the precision is missing, six (6)
digits are output; if the precision is zero (0), no decimal point appears.

The character arg is printed.

The arg is taken to be a string (character pointer) and characters from
the string are printed until a null character (\0) is encountered or the
number of characters indicated by the precision specification is reached.
If the precision is missing, it will be taken to be infinite, so all characters
up to the first null character are printed. A null arg will yield undefined
results.

Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field;
if the result of the conversion is wider than the field width, the field is simply
expanded to contain the conversion result. Characters generated by printf and
fprintf are printed as if putc had been called.

NOTE

_sprintf and _fprintf are not standard UNIX functions.

sprintf and _fprintf allow user defined functions to have the functionality of
printf. The following example demonstrates:

EXAMPLE

int dprintf(format, args) /* Debug printf */
char *args;
char *format;

it (DEBUG) {

}

printf ("+** DEBUG: ");
_fprintf(stdout, format, &args);

PUTC 143

NAME
putc, putchar, fputc, putw — put a character or word on a stream

SYNOPSIS

#include <stdio.h>

int putc(c, stream)
char c;
FILE *stream;

int putchar(c)
char c;

int fputc(c, stream)
char c;
FILE *stream;

int putw(w, stream)
int w;
FILE *stream;

DESCRIPTION

putc writes the character ¢ to the output stream at the current pointer position.
putchar(c) is defined as putc(c, stdout). putc and putchar are both
macros.

fputc is similar to putc but it is a true function. It is slower but takes less
space per invocation.

putw writes the word (integer) w to the output stream at the current pointer
position. putw does not force even alignment on the file.

DIAGNOSTICS
If successful, the value written is returned.

If unsuccessful, EOF is returned. This can occur if the file is not open for
writing or if the output file cannot be grown.

Because EOF is a valid integer, ferror should be used to check for error when
using putw.

144 PUTS

NAME

puts, fputs — put a string on a stream
SYNOPSIS

#include <stdio.h>

int puts(s)
char *s;

int fputs(s, stream)
char *s;
FILE *streanm;

DESCRIPTION

puts writes the null-terminated string, pointed to by s, to the standard output
stream stdout. The string is followed by a new-line character.

fputs writes the null-terminated string, pointed to by s, to stream. The string
is not followed by a new-line character.

Neither function writes out the terminating null character.
DIAGNOSTICS

EOF is returned if an error occurs. This will happen if output is attempted to
a file not open for writing.

QSORT 145

NAME
gsort — a quicker sort.
SYNOPSIS

gsort(base, nelem, width, compare)
char xbase;
int nelem, width;
int (*compare)();

DESCRIPTION

gsort is an implementation of the quicksort algorithm. The first parameter is a
pointer to the base of the data. The second parameter nelem is the number of
elements in the array. The third parameter width is the width of each element
in bytes. The last parameter compare is a pointer to the comparison routine to
be called. This user-defined function will be passed two arguments which are
pointers to the elements being compared. This routine must return an integer
less than, equal to, or greater than 0 accordingly as the first argument is to be
considered less than, equal to, or greater than the second.

NOTE

The quicksort algorithm used is recursive.
EXAMPLE
#include <stdio.h>

int test(a, b)
int *a, *b;

{
return *a - *b;
}
main()
{

int x[100], i;

for (i=0; i<100; i++) /* Create some random data */
x[i] = rand();

gsort(x, 100, sizeof(int), test);

for (i=0; i<100; i++) /* Display sorted result */
printz("%d ", x[il]);

puts("Press RETURN to continue"); getchar();

146 RAND

NAME
rand, srand — simple random-number generator
SYNOPSIS

#include <stdio.h>
int rand()

srand(seed)
long seed;

DESCRIPTION

rand uses a multiplicative congruential random-number generator.

srand can be called at any time to reset the random-number generator to a
new starting point. The generator is initially seeded with a value of 1.

NOTE

rand and srand are both macros defined in <stdio.h>.

READ 147

NAME
read — read from a file
SYNOPSIS
int read(fildes, buf, nbyte)
int fildes;

char *buf;
unsigned nbyte;

DESCRIPTION

read attempts to read nbytes bytes from the file associated with fildes into
the buffer pointed to by buf.

fildes is a file descriptor obtained by using an open or creat.
A value of 0 is returned when an EOF is reached.

read will fail if fildes is not a valid file descriptor open for reading or if an
operating system error occurs.

If the 0_BINARY flag is not set then line-feed/carriage return combinations are
translated to line-feeds (except from the keyboard).

DIAGNOSTICS

If successful, a non-negative integer is returned indicating the number of bytes
actually read.

If unsuccessful, a —1 is returned and errno is set appropriately.

148 RENAME

NAME
rename — change the name of a file.

SYNOPSIS

int rename(from, to)
char *from, *to;

DESCRIPTION

rename is used to change the existing name of a file on a disk to another name.
The from parameter is a pointer to the name of the current file on disk. The
to parameter is a pointer to the new name for the file.

DIAGNOSTICS

If unsuccesful, errno is set and —1 is returned.

SBRK 149

NAME
sbrk, Isbrk — change data segment space allocation

SYNOPSIS

char *sbrk(incr)
int incr;

char *1sbrk(incr)
long incr;

DESCRIPTION

sbrk requests incr bytes of additional memory from the operating system and
returns a pointer to the block. The request is limited to 32K since incr
is a signed integer.

Isbrk is like sbrk except a long value is passed allowing for far greater alloca-
tions.

Memory allocated by sbrk and Isbrk may not be returned to the system and
remains allocated until the program terminates.

NOTE

This is not compatible with UNIX. In particular, blocks returned by sequential
calls to sbrk or Isbrk are not guaranteed to be adjacent in memory. This is due
to the memory management scheme employed by the Atari operating system.

DIAGNOSTICS
If successful, sbrk returns a pointer to the additional memory.
If unsuccessful, a —1 is returned and errno is set appropriately.
SEE ALSO

malloc, Malloc

150 SCANF

NAME
scanf, fscanf, sscanf — convert formatted input

SYNOPSIS

#include <stdio.h>

int scanf(format [, pointer] . . .)
char *format;

int fscanf(stream, format [, pointer] . . .)
FILE *stream;

char *format;

int sscanf(s, format [, pointer] . . .)
char *s, *format;

DESCRIPTION

scanf reads from the standard input stream stdin.

fscanf reads from the named input stream.

sscanf reads from the character string s.

Each function reads characters, converts them according to a format, and stores
the results in its arguments. The arguments consist of a control string format
and a set of pointer arguments indicating where the converted input should be
stored.

The control string may contain:

e White-space characters (blanks, tabs, and new-lines) which cause input
to be read up to the next non white-space character.

e An ordinary character (not %), which must match the next character of
the input stream.

e Conversion specifications, consisting of the character %, an optional as-
signment suppressing character *, an optional numerical maximum field
width, an optional 1 indicating the size of the receiving variable, and a
conversion code.

SCANF 151

A conversion specification directs the conversion of the next input field; the
result is placed in the variable pointed to by the corresponding argument, unless
assignment suppression was indicated by *. The suppression of assignment
provides a way of describing an input field which is to be skipped. An input
field is defined as a string of non-white-space characters; it extends to the next
inappropriate character or until the field width, if specified, is exhausted.

The conversion code indicates the interpretation of the input field. For a sup-
pressed field, no pointer argument should be given. The following conversion
codes are legal:

% a single % is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an
integer pointer.

h a short decimal integer is expected, the corresponding argument should
be a short pointer.

o an octal integer is expected; the corresponding argument should be an
integer pointer.

x a hexadecimal integer is expected; the corresponding argument should be
an integer pointer.

e,f,g a floating point number is expected; the next field is converted accord-
ingly and stored through the corresponding argument, which should be
a pointer to a float. The input format for floating point numbers is an
optionally signed string of digits, possibly with a decimal point, followed
by an optional exponent field consisting of an e, or an E followed by an
optionally signed integer.

s a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to accept
the string and a terminating \O, which will be added automatically. The
input field is terminated by a white-space character.

c a character is expected; the corresponding argument should be a character
pointer. The normal skip over white space is suppressed in this case; to
read the next non-space character, use 1s. If a field width is given, the
corresponding argument should refer to a character array; the indicated
number of characters is read.

152 SCANF

The conversion characters d, o, and x may be preceded by 1 to indicate that
a pointer to long rather than int is in the argument list. Also, the conversion
characters e, £, and g may be preceded by 1 to indicate that a pointer to double
rather than to float is in the argument list.

scanf conversion terminates at EOF, at the end of the control string, or when

an input character conflicts with the control string. In, the latter case, the
offending character is left unread in the input stream.

scanf returns the number of successfully matched and assigned input items; this
number can be zero in the event of an early conflict between an input character
and the control string. If the input ends before the first conflict or conversion,
EOF is returned.

DIAGNOSTICS

These functions return EOF on end of input and a short count for missing or
illegal data items.
NOTE

Trailing white space (including a new-line) is left unread unless matched in the
control string.

SETBUF 153

setbuf, setbuffer, setlinebuf — assign buffering to a stream

SYNOPSIS

#include <stdio.h>

setbuf (stream, buf)
FILE *stream;
char *buf;

setbuffer(stream, buf, bufsize)
FILE *stream;
char *buf;
int bufsize;

setlinebuf (stream)
FILE #*stream;

DESCRIPTION

Three types of buffering are available: unbuffered, block buffered, and line
buffered. When an output stream is unbuffered, information appears on the
destination file or terminal as soon as written; when it is block buffered many
characters are saved up and written as a block; when it is line buffered characters
are saved up until a newline is encountered. Normally all files are block buffered.

setbuf is used after a stream has been opened but before it is read or written.
It causes the character array pointed to by buf to be used instead of an
automatically allocated buffer. If buf is a NULL character pointer then
input/output will be completely unbuffered. A constant BUFSIZ, defined
in the <stdio.h> header file, tells how big an array is needed.

char buf [BUFSIZE];

setbuffer is used to set up a user defined I/O buffer whose size is determined by
the parameter bufsize. If buf is NULL the I/O buffer will be completely
unbuffered. Note that this function should only be used after a stream
has been opened, but before it has be read or written.

setlinebuf is used to change stdout or stderr from block buffered or un-
buffered to line buffered. Unlike setbuf and setbuffer it can be used
at any time that the file descriptor is active.

154 SETBUF

NOTE

If the space passed as buf cannot be freed (ie. it was not allocated by malloc),
then the stream must be set to unbuffered before closing.

SETJMP 155

NAME
setjmp, longjmp — non-local goto
SYNOPSIS

#include <stdio.h>

int setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;
int val;

DESCRIPTION

These functions are useful for dealing with errors and interrupts encountered
in a low-level subroutine of a program.

setjmp saves its stack environment in env (whose type, jmp_buf, is defined in
the <stdio.h> header file), for later use by longjmp. It returns the value
0.

longjmp restores the environment saved by a call of setjmp with the same env
argument. After longjmp is called, program execution continues as if the
corresponding call of setjmp had just returned the value val. longjmp
cannot cause setjmp to return the value 0. If longjmp is invoked with
a second argument of O, setjmp will return 1. All accessible data have
values as of the time longjmp was called.

NOTE

If longjmp is called when env was never primed by a call to setjmp, or when
the last such call is in a function which has since returned, something bogus
will happen.

EXAMPLE

#include <stdio.h>
jmp_buf env;

deeply_nested_function()
{

156 SETJMP

i? ((p = malloc(30)) =

longjmp(env, 1);

}
main()
{
if (setjmp(env)) {
cleanup();
exit(1);

NULL)
/* 0ut of memory */

/* Come back here on fatal error */

STRING 157

NAME

strcat, strncat, xstrcat, strcmp, strncmp, strcpy, xstrcpy, strncpy, xstrncpy,
strlen, index, rindex — string operations

SYNOPSIS

#include <string.h>

char *strcat(sl, s2)
char *xtrcat(sl, s2)
char *strncat(s1l, s2, n)
int strcmp(sl, s2)
int strncmp(sl, s2, n)
char *strcpy(sl, s2)
char *xtrcpy(sl, s2)
char *strncpy (s1, s2, n)
char *xtrncpy(sl, s2, n)
char *s1, *s82;
int n;

int strlen(s)
char *s;

char *index(s, c)
char *rindex(s, c)
char *s, c;

DESCRIPTION

The arguments s1, 82, and s point to strings (arrays of characters terminated
by a null character). The functions strcat, xstrcat, strncat, strcpy, xstrcpy,
strncpy, and xstrncpy all alter s1. These functions do not check for overflow
of the array pointed to by s1.

strcat appends a copy of string s2 to the end of string s1 and returns s1.

xtrcat appends but returns a pointer to the end of s1 (pointing at the null
byte).

strncat appends at most n characters.

strcmp compares its arguments and returns an integer less than, equal to, or

greater than O according as sl is lexicographically less than, equal to, or
greater than s2.

158 STRING
strncmp makes the same comparison but looks at, at most, n characters.
strcpy copies string s2 to s1, stopping after the null character has been copied.
The result is s1.
xtrcpy copies but returns a pointer to the end of s1.
strncpy copies exactly n characters, truncating s2 or adding null characters to
sl if necessary. The result will not be null-terminated if the length of 52
is n or more.
xtrncpy copies like strncpy, but returns a pointer to the end of s1.
strlen returns the number of characters in s, not including the terminating null
character.
index (rindex) returns a pointer to the first (last) occurrence of ¢ in string s.
NULL is returned if c is not in s.
NOTE

All of the string functions are declared in the <string.h> header file.

STRTOL 159

NAME
strtol, atol, atoi — convert string to integer
SYNOPSIS
long strtol(str, ptr, base)
char xstr;

char **ptr;
int base;

long atol(str)
char *str;

int atoi(str)
char *str;

DESCRIPTION

strtol returns as a long integer the value represented by the character string
str. The string is scanned up to the first character inconsistent with the base.
Leading white-space characters are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character terminating
the scan is returned in *ptr: If no integer can be formed, *ptr is set to str,
and zero is returned.

If base is positive and not greater than 36, it is used as the base for conversion.
After an optional leading sign, leading zeros are ignored, and “Ox” or “0X” is
ignored if base is 16.

Truncation from long to int can take place upon assignment or by an explicit
cast.

atol takes the ASCII representation of a number and converts it into a long
integer.

atoi takes the ASCII representation of a number and converts it into an integer.
SEE ALSO
atof

160 UNGETC

NAME

ungetc — push a character back into the input stream
SYNOPSIS

#include <stdio.h>

int ungetc(c, stream)
char c;
FILE #*stream;

DESCRIPTION

ungetc inserts the character ¢ into the buffer associated with an input stream.
¢ will be returned by the next read from that stream. c¢ is returned and the
stream is left unchanged.

c can be read by getc, getchar, fread, gets, fgets, fgetc, fscanf, and scanf.

One character pushback is guaranteed provided that something has been read
from the stream.

If ¢ equals EOF, ungetc does nothing to the buffer and returns EOF.
fseek erases all memory of inserted characters.

DIAGNOSTICS
A read must be performed prior to the ungetc.

EOF is returned if ungetc cannot insert the character.

UNLINK 161

NAME
unlink — remove a directory entry
SYNOPSIS

int unlink(fname)
char *path;

DESCRIPTION
unlink removes the directory entry pointed to by fname.

The named file is unlinked unless the operating system returns an error (see
errno).

DIAGNOSTICS
If successful, a zero is returned.

If unsuccessful, a —1 is returned and errno is set to indicate the error.

162 WRITE

NAME
write — write on a file
SYNOPSIS
int write(fildes, buf, nbyte)
int fildes;

char *buf;
unsigned nbyte;

DESCRIPTION

write will write nbyte bytes from the buffer pointed to by buf to the file asso-
ciated with the fildes.

fildes is a file descriptor obtained from a creat or open.

Writing begins at the current pointer position and is incremented by the number
of bytes actually written after returning from write.

write will fail if an operating system error occurs. The pointer position will
remain unchanged in this event.

If the 0_BINARY flag is not set then line feeds are translated to carriage re-
turn/line feed combinations (except to the screen).

DIAGNOSTICS

If successful, the number of bytes actually written is returned.

If unsuccessful, —1 is returned and errno is set appropriately.

Chapter 16

GEM AES

Introduction

AES stands for “Application Environment Services”. It consists of a series of
subroutines that handle displaying, creating and maintaining windows, dialog
boxes, menu bars and other “high-level” objects. AES is composed of several

parts:
e subroutine libraries divided into various “managers”
e a kernel with limited multi-tasking support
e a desk accessory buffer

e a menu and alert buffer

The Screen Manager

The screen manager monitors the actions of the mouse outside the work area of
the active window and reports them as events to the process owning the active
(or top) window. The work area of a window is the area excluding the title,
information line, scroll bars, close box etc. The screen manager intercepts mouse
events and reports high-level events to the application (such as window redraw,
menu selected and window scroll). An application can get the raw mouse events
itself by calling wind_update with a value of BEG_ MCTRL. Unfortunately it cannot
then pass the mouse event on to the Screen Manager if the application decides
it really didn’t want the mouse event.

163

164

CHAPTER 16. GEM AES

The Kernel

The kernel allows a total of six desk accessories and one main application.

The dispatcher portion of the kernel controls the execution of processes
to ensure none monopolize the system. This is done by assigning each of the
processes — such as the Screen Manager, the primary application, or background
processes — to one of two lists.

The two lists are the ready and not-ready. If an application is waiting for an
event such as a keystroke, a mouse button press, mouse movement, a message,
or time passage, it is assigned to the not-ready list. If a process is presently
ready to run it is then assigned to the ready list. The ready list will execute in
order.

The process dispatcher runs non-preemptively: it is only executed when an
application makes a GEM call. Because of this, processes should make sure
some GEM routine is called periodically, even if it serves no other purpose than
to run the dispatcher.

Desk accessory buffer

The desk accessory buffer is just the section of memory that contains the desk
accessory programs. Desk accessories are executable files ending with the ex-
tension “.ACC”. They are loaded into memory and executed when the GEM
desktop program starts at boot time. A desk accessory starts by performing
any required initialization, including a menu_register call which places the ac-
cessory’s name in the desk menu, and then calling event_multi which waits for
an event. At this point GEM desktop takes over and loads the next desk ac-
cessory. A desk accessory will be re-started when the user selects its name in
the desk menu. This causes an AC_OPEN event to be sent to the accessory.

Menu/Alert buffer

The menu/alert buffer is just a section of RAM used to hold the part of the
screen bit map covered up by a pull-down menu or alert box so that the screen
can be restored when the menu or alert box goes away. The buffer can hold 1/4
of the screen’s bit map (which places a maximum size on a menu or alert box).

The area of the screen covered up by a window is not saved, so the screen
manager sends redraw events to applications when a window is moved or closed.
This is somewhat slower than the buffer method, but doesn’t require nearly as
much memory.

16.1 CREATING A GEM APPLICATION

165

GEM AES interface

GEM AES is implemented as a series of functions divided into “managers”.
The functions are defined in the standard C library; but the code that actually
performs the operation is in the ROM. The library functions merely translate
from the conventional C style function call to the somewhat unusual method
employed by the ROM. A C programmer normally need not concern himself
with the internal mechanisms, however it is sometimes necessary to know these
things.

All data passed to and received from the AES ROM routines are sent
through six global arrays. These arrays are defined in the standard C library
and are automatically included in any program using the AES functions. The
only parameter passed to the ROM is a pointer to a struct of pointers to these
six arrays. The arrays are defined as follows:

int control[C_SIZE+1], global[G_SIZE+1];
int int_in[I_SIZE+1], int_out[0_SIZE+1];
long addr_in[AI_SIZE+1], addr_out[AO_SIZE+1];

The constants are defined in “GEMBIND.H”.
The global array is used as follows:

globall[0] The version of GEM AES, pre-set.

[1] The largest number of applications the version of AES can

support concurrently.

[2] The application ID, set by AES upon invoking the application.
[3-4] A LONG value which can be set and used as the application
[56-6] iesll,lgls\'lG address which points to the array of tree addresses

initialized by rsrc_load
[7-15] Reserved for use by AES.

A program may open multiple resource files by saving and restoring global[5]
and [6]. This pointer is used by rsrc_gaddr.
The other arrays don’t have anything useful for the C programmer in them.

16.1 Creating a GEM Application

A GEM application must first call appl_init. This function sets up any appli-
cation specific data structures and returns an application ID ap_id. This ID
is placed in the global array and is used by AES to identify the application.
appl_exit must be called before the program exits.

166

CHAPTER 16. GEM AES

The example program developed in this section displays the dialog shown
in figure 16.1 when “About test...” is choosen in the Desk menu.

This is a Test!

Figure 16.1: Example Dialog

int ap_id; /* Application ID */

main()
{
ap_id = appl_init();

appl_exit();

Select the Application’s Resource File(s)

The specification of certain graphical/textual objects is kept on disk in a file
called a resource file instead of being hard coded within the program. Typically
the menu bar, dialog boxes, and icons are stored this way. A resource file will
have a “.RSC” extension.

Screen resolutions are 640 X 400 (monochrome), 640 x 200 (four color), and
320 x 200 (sixteen color). It may be necessary to maintain several resource
files for icons because of the difference in the screen’s aspect ratio; one file for
high-res (monochrome) mode and low-res, and one file for medium-res. The
aspect ratio for low and high resolution modes are the same.

If knowledge of the screen’s resolution is required prior to loading the proper
resource file, it may be obtained from the GEMDOS function Getrez.

Since the example has an icon, two “.RSC” files will be used. phys_handle
isn’t used in this example, but is typically needed in larger GEM programs.

#include <osbind.h>

int gr_hwchar, gr_hhchar; /* Size of a character cell (in pixels) */
int gr_hwbox, gr_hhbox; /* Size of box big enough to hold a character */
int resolution; /* 0=320x200, 1=640x200, 2=640x400 */

16.1 CREATING A GEM APPLICATION

int phys_handle;

phys_handle = graf_handle(&gr_hwchar, &gr_hhchar, &gr_hwbox, &gr_hhbox);
resolution = Getrez();

Load the Resource File(s)

To load the resource file, a call is made to rsrc_load. This causes the Resource
Manager to allocate memory for the resource file, load it, and set up internal
pointers.

if (resolution == 1)
rsrc_load("testmed.rsc"); /* Medium rez. */
else
rsrc_load("testhigh.rsc"); /* Used for both high and low */

Obtain Resource Addresses

After rsrc_load has been performed, a call to rsrc_gaddr is used to return the
address of any OBJECT contained in the resource file. Typically symbolic
names created by the Resource Construction Program (RCP) are used. These
names are defined in a “.H” file created by the RCP (called “test.h” in this

example).

#include <obdefs.h>
#include "test.h" /* Header file from RCP */

OBJECT *about; /* Out of paper dialog */
int x, y, v, h;

rsrc_gaddr(0, TEST, &about); /* Get address of dialog */
form_center(about, &x, &y, &w, &h); /* Center dialog on screen */
objc_drav(about, 0, 10, x, y, w, h); /* Draw the dialog */
form_do(about, 0); /* Wait for OK button */

Capturing an Event

After all initializations are complete, a GEM program goes into its main event
loop. This is just a do ... while loop that waits for an event, processes it
and loops back for the next event. Events are caused by user actions, such as
selecting a menu item, pressing a key or moving a window. The event driven

167

168 CHAPTER 16. GEM AES

method avoids “modes” because the user is always able to do anything (dialog
boxes are an exception though).

The function evnt_multi will wait for any type of event that can be created.
The example only deals with message events so evnt_mesag is used instead.

Example

Here is the complete example:

/*

* A simple GEM application
*/

#include <stdio.h>

#include <osbind.h>

#include <obdefs.h> /* Defines Object Manager symbols */
#include <gemdefs.h> /* Defines other GEM AES symbols */
#include "test.h" /* Header file from RCP */
/*
*# Some global variables
*/
int gr_hwchar, gr_hhchar; /* Size of a character cell (in pixels) */
int gr_hvwbox, gr_hhbox; /* Size of box big enough to hold a character */
int resolution; /* 0=320x200, 1=640x200, 2=640x400 */
int ap_id; /* Application ID */

int phys_handle;
OBJECT *menubar;

int quit; /* 1=exit from event loop */
about()
/*
* Displays the "About test...'' dialog box.
*/
{
OBJECT #*about;
int x,y,w,h; /* Location and size of dialog box on screen */
rsrc_gaddr(0, TEST, &about); /* Get address of dialog */
form_center(about, &x, &y, &w, &h); /* Center on screen */

form_dial (FMD_START, 0,0,0,0, x,y,w,h); /* Reserve screen space */

objc_draw(about, 0, 10, x,y,v,h); /* Drav it */
form_do(about 0); /* Waits for an exitable item (OK) */

/* De-hilite the OK button for the next time it is displayed */
objc_change(about, ABOUTOK, O, x,y,v,h, NORMAL, 0);

form_dial (FMD_FINISH, 0,0,0,0, x,y,v,h); /* Release screen space */

16.1 CREATING A GEM APPLICATION 169

}
main()
{
int message[8];
ap_id = appl_init();
phys_handle = graf_handle(&gr_hwchar, &gr_hhchar, &gr_hwbox, &gr_hhbox);
resolution = Getrez();
/* Load resource file */
if (resolution == 1)
rsrc_load("testmed.rsc"); /* Medium rez. */
else
rsrc_load("testhigh.rsc"); /* Used for both high and low */
/* Display the menu bar */
rsrc_gaddr(0, MENU, &menubar);
menu_bar(menubar, 1);
graf_mouse (ARROW, 1); /* Change to arrov from bumble bee */
do { /% Enter main event loop */
evnt_mesag(message) ;
switch (message[0]) {
case MN_SELECTED:
switch (message[3]) {
case MNDESK:
about();
break;
case MNFILE: /* Only "Quit" appears in the File menu so */
quit =1; /* I don’t have to look at the item no. */
break;
}
/* De-hilite the menu title */
menu_tnormal (menubar, message[3], 1);
break;
}
} while (!quit);
menu_bar(menubar, 0); /* Clear menu bar */
rsrc_free(); /* Release resource file’s memory */
appl_exit();
}

A more complete GEM example may be found in the EXAMPLES folder of
the WORK disk.

16.2 APPLICATIONS MANAGER 171

16.2 Applications Manager

appl_init returns application ID and initializes GEM for the
application.

appl_read reads a specific number of bytes from the event
managers buffer.

appl_write writes a specific number of bytes from the event
managers buffer.

appl_find finds another application’s ID.

appl_tplay plays back a series of AES recorded events.

appl_trecord records a series of user interactions with AES.

appl_exit exits a session with the application manager.

Introduction

The Applications Manager is a set of routines designed to communicate with
the operating system and other applications.

172 APPL_EXIT

NAME
appl_exit — GEM AES cleanup
SYNOPSIS

int appl_exit()

DESCRIPTION

appl_exit is used when an AES application is about to shut down. This function
cleans up the GEM environment freeing AES related data structures as well as
restoring the machine to its state before the start of the application.

NOTE
A call to this function does not terminate the execution of the program.
DIAGNOSTICS

The result of the function is O if an error occurs.

APPL_FIND 173

NAME
appl_find — find the ID of another application

SYNOPSIS

int appl_find(ap_fpname)
char *ap_fpname;

DESCRIPTION

appl_find allows an application to obtain the ID of another application in order
to communicate with it. This is done by passing an 8 character string which
contains the file name of the application being looked for in the parameter
ap_fpname. The string must be padded with blanks to make it 8 characters in
length. If the application is found, its application ID will be returned as the
result of the function.

DIAGNOSTICS

The result of the function is —1 if an error occurs.
SEE ALSO

appl_read, appl_write

174 APPL_INIT

NAME
appl.init — initialize the application
SYNOPSIS

int appl_init()

DESCRIPTION

appl_init initializes internal GEM AES arrays. If the application’s initialization
was successful a positive application ID is returned as the result of the function.

DIAGNOSTICS

The result of the function is —1 if an error occurs.
SEE ALSO

appl_exit

APPL_READ 175

NAME

appl.read — reads a number of bytes from a message pipe.
SYNOPSIS

int appl_read(appl_id, length, buff)
int appl_id;
int length;
char *buff;

DESCRIPTION

appl_read reads a message sent from another active application whose ID is
specified by the parameter appl_id. The parameter length indicates the num-
ber of bytes to be read from the message pipe and the pointer buff tells the
function where the data is to be placed.

DIAGNOSTICS

The result of the function is zero if an error occurs.
SEE ALSO

appl_init, appl_write

176 APPL_TPLAY

NAME
appl_tplay — replays a portion of a record of user actions
SYNOPSIS
int appl_tplay(ap_tpmem, ap_tpnum, ap_tpscale)
char *ap_tpmem;
int ap_tpnunm;
int ap_tpscale;
DESCRIPTION

appl_tplay replays user events that were recorded through a call to the AES
function appl_trecord. The parameter ap_tnum contains the number of user
events that are defined in the buffer pointed to by the parameter ap_tpmem.
The last parameter ap_tpscale is a speed factor which determines the rate at
which the user’s events will be played back. The values for this parameter range
from 1 to 10,000.

50 Half speed
100 Full speed
200 Twice speed
DIAGNOSTICS
The result of this function is always 1.

SEE ALSO
appl_trecord

APPL_TRECORD 177

NAME
appl_trecord — records user actions

SYNOPSIS

int appl_trecord(ap_trmem, ap_trcount)
char *ap_trmenm;
int ap_trcount;

DESCRIPTION

appl_trecord records up to ap_trcount user actions. These actions can later be
replayed by appl_tplay. The parameter ap_trmem is a pointer to a buffer where
the user event messages will be stored. Note that there should be approximately
6 times ap_trcount bytes available in the user event buffer. The last parameter
ap_trcount contains the number of events to record.

Each user action is stored in two parts: two bytes that define the action and
four bytes that describe the action. The result of the function is the number of
actions actually recorded.

Two byte code for the event:

0x0000 timer event
0x0001 button event
0x0002 mouse event
0x0003 keyboard event

The next four bytes store information dependent upon the event:

timer — the number of milliseconds elapsed

button event — The low word is the button state.

0 = button up
1 = button down

The high word is the number of clicks.

mouse event — low word = mouse x-coordinate
high word = mouse y-coordinate

keyboard event — the high word is the keyboard state, the low word is the
character.

SEE ALSO
appl_tplay

178 APPL_WRITE

NAME
appl_write — write a number of bytes to a message pipe
SYNOPSIS

int appl_write(appl_id_wid, length, buff)
int appl_id;
int length;
char *buff;

DESCRIPTION

appl_write sends a message event to another application whose ID is specified
by the parameter appl_id. The parameter length indicates the number of bytes
to be placed in the message pipe, and the pointer buff points to the data that
is to be placed in the message pipe.

NOTE
This routine is useful for posting message events to the application running. For
a complete description of message types refer to page 179. Also, this routine is
useful for creating application defined message events.

DIAGNOSTICS
The result of the function is zero if an error occurs.

SEE ALSO

appl_read, Event Manager Introduction (pg. 179)

16.3 EVENT MANAGER

179

16.3 Event Manager

evnt_keybd waits for keyboard event

evnt_button waits for a mouse button event

evnt_mesag waits for a message event

evnt_timer waits for a timer event

evnt_multi waits for any of multiple events

evnt_dclick sets and obtains the double clicking speed
Introduction

In an attempt to alleviate the need for time consuming polling of inputs, GEM
provides routines which allow the operating system to look for many inputs
(events), and to activate the application when an input occurs.

Mouse Button Event

The mouse button event occurs when the following equation is true:
(current_state AND mask) = desired state

The LSB is the left-most mouse button. The current state of 015 would indicate
the left mouse button is pressed. The mask sets the buttons the application
is interested in looking at. So, a mask of 10, would only look at the second
mouse button. The final variable (desired_state) is what is being looked for; a
value of 01,, would look for the left button being pressed.

It is also possible to look for such things as “double clicks” from the mouse.
This is done by specifying the number of clicks necessary in an interval.

Mouse Event

A mouse event occurs when the mouse is either inside or outside a rectangle.
This could be used to change the mouse form when the mouse enters a specified
rectangle on the screen. The application would be inactive as long as the
mouse is in the rectangle, and would be re-activated when the mouse leaves the
rectangle.

Message Event

GEM allows many applications to run at the same time. The application with
the top window has control of the keyboard and the menus which appear in the

180

CHAPTER 16. GEM AES

menu bar. For many reasons the user may wish to manipulate many items which
the application does not know about directly. Such as menu selection and user
interaction with the window border. The information from these interactions
are passed to the application through a message pipe, resulting in a Message
Event.

The messages are stored in the message pipe in first-in-first-out order. A
Message Event occurs when the application receives the message, and each
message is removed as it is read by the application.

There are several pre-defined types of messages. Each message has a maxi-
mum length of 8 words (16 bytes), and all of the pre-defined types use the first
three elements of ev_mgpbuff in the same manner:

ev_mgpbuff [0] message type, a number
ev_mgpbuff[1] the ap_id of the application originating the message.

ev_mgpbuff [2] the message length in excess of the predefined 16
bytes. The portion beyond 16 bytes can be read by
the appl_read call.

MN_SELECTED

This message notifies the application a user has selected a menu item.

ev_mgpbuff [0] 10
ev_mgpbuff [3] the object index of the menu title selected
ev_mgpbuff [4] the object index of the menu item selected

WM_REDRAW

This indicates part of the window work area must be redrawn due to user action.
This is the area of the window other than any border, title bar, or information
line.

ev_mgpbuff [0] 20

ev_mgpbuff [3] the window handle to be redrawn

ev_mgpbuff [4] the screen coordinate x position of the window area
to be redrawn
ev_mgpbuff[5] the screen coordinate y position of the window area

to be redrawn
ev_mgpbuff [6] screen coordinate width of the area

ev_mgpbuff[7] screen coordinate height of the area

16.3 EVENT MANAGER

181

WM_TOPPED

This tells the application it (the application) has requested its or another ap-
plication’s window to be moved to the top and made active.

ev_mgpbuff[0] 21
ev_mgpbuff [3] the handle of the window

WM_CLOSED
This indicates the user wishes the application’s window closed.

ev_mgpbuff [0] 22
ev_mgpbuff [3] the handle of the window

WM_FULLED

This informs the application that the user has clicked the window full box, thus
requesting the window be enlarged to its full size. If the window is at its full
size, this is interpreted to restore the window to its previous size.

ev_mgpbuff [0] 23
ev_mgpbuff [3] the handle of the window

WM_ARROWED

One of the arrows or scroll bars in the application’s window border area has
been clicked.

ev_mgpbuff [0] 24
ev_mgpbuff [3] the handle of the window

ev_mgpbuff[4] one of the following:
0 — page up
1 — page down
2 — row up
3 — row down
4 — page left
5 — page right
6 — column left
7 — column right

Page actions are from the scroll bars, row and column actions are from the
arrows.

182

CHAPTER 16. GEM AES

WM_HSLID

This informs the application of the new position requested for the horizontal
slider.

ev_mgpbuff [0] 25
ev_mgpbuff [3] the window handle

ev_mgpbuff[4] the requested slider position (0 left most — 1000
right most)

WM_VSLID

This informs the application of the new position requested for the vertical slider.

ev_mgpbuff [0] 26
ev_mgpbuff [3] the handle of the application window
ev_mgpbuff[4] the new position (0 top — 1000 bottom)

WM_SIZED

The user has requested a new window size. The new coordinates given by this
message include the following applicable title bar, information line and borders.

ev_mgpbuff [0] 27
ev_mgpbuff [3] the handle of the window

ev_mgpbuff [4] the requested X-coordinate, which is normally the
present one

ev_mgpbuff [5] the requested Y-coordinate, usually the present one
ev_mgpbuff[6] the requested width
ev_mgpbuff[7] the requested height

WM_MOVED

The user has moved a window. The new coordinates include the applicable of
the title bar, information line, and borders.

16.3 EVENT MANAGER 183

ev_mgpbuff [0O] 28

ev_mgpbuff [3] the window handle

ev_mgpbuff [4] the requested x coordinate

ev_mgpbuff [5] the requested y coordinate

ev_mgpbuff [6] the requested window width, should stay the same
ev_mgpbuff[7] the requested window height, should stay the same

WM_NEWTOP

This tells the application that its window has been placed on top and thus made
active.

ev_mgpbuff [0] 29
ev_mgpbuff [3] the handle of the window just placed on top

AC_OPEN

This is sent to a desk accessory when it has been selected from the Desk Menu.

ev_mgpbuff [0] 30

ev_mgpbuff [3] me_rmenuid — the desk accessory menu item iden-
tifier returned by the menu_register call.

AC_CLOSE

This is sent to a desk accessory when all of the following are true:
e the current application has just terminated
e the screen is about to be cleared
e window manager structures are about to be reinitialized.

The desk accessory should then zero any window owned by it.

ev_mgpbuff [0] 31

ev_mgpbuff [3] me_raccmenid — the desk accessory menu item
identifier returned by the menu_register call.

Timer Event

If the application desires to wait for a time, it can cause a timer event to be
generated after a requested number of milliseconds. The intent is to avoid
polling the system clock or other cumbersome methods for timing something.

184 CHAPTER 16. GEM AES

Example

The following example is a typical call to the event manager that is used in the
sample AES application supplied with Laser C.

#include <gemdefs.h>
#include <obdefs.h>

#include "globals.h" .

/*
Handle Application Events.
*/
TaskMaster()
{
int event; /* The event code.

int button = TRUE; /* desired Button state

int message[8]; /* Event message buffer.
int mousex, mousey; /* The current mouse position.
int mousebutton; /* The state of the mouse button
int keycode; /* The code for the key pressed. */
int keymods; /* The state of the keyboard modifiers.
(shift, ctrl, etc). */
int clicks; /* The number of mouse clicks that occurred in the

given time. */

do {
event = evnt_multi(
MU_MESAG | MU_BUTTON | MU_KEYBD, /# set messages to respond to. */

1, /* Time frame for events. */
1, /* Keyboard Event mask. */
button, /* desired key state */
0, 0, 0, 0, 0, /* rectangle one information (ignored) */
0, 0, 0, 0, 0, /* rectangle two information (ignored) */
message, /* The message buffer */
0, 0, /* Number of Ticks for Timer event. */
&mousex, /* The x-coordinate of the mouse at event. */
&mousey, /* The y-coordinate of the mouse at event. */
&mousebutton, /* The state of the mouse buttons at event. */
&keymods, /* The state of the keyboard modifiers. */
&tkeycode, /* The key code for the key pressed. */
&clicks /* The number of times the event occurred */

);

if (event & MU_MESAG) {
svitch (message[0]) {
/*

16.3 EVENT MANAGER

185

}

Windov Support
*/
case WM_REDRAW:
case WM_TOPPED:
case WM_FULLED:
case WM_ARROWED:
case WM_HSLID:
case WM_VSLID:
case WN_SIZED:
case WM_MOVED:
case WM_NEWTOP:
case WM_CLOSED:

do_window(message);
break;

Menu Support

case MN_SELECTED:
do_menu(message) ;
break;

Desk Accessory Support
case AC_OPEN:

case AC_CLOSE:
break;

if (event & MU_BUTTON)

button °“= TRUE;

if (event & MU_KEYBD)

do_update(message) ;
} while(1);

186 EVNT BUTTON

NAME

evnt_button — waits for a mousedown event

SYNOPSIS

int evnt_button(ev_bclicks, ev_bmask, ev_bstate, ev_bmx, ev_bmy,

ev_bbutton, ev_bkstate)

int ev_bclicks;
int ev_bmask;
int ev_bstate;
int *ev_bmx;

int *ev_bmy;

int *ev_bbutton;
int *ev_bkstate;

DESCRIPTION

evnt_button waits until a mouse down event occurs and then returns informa-
tion about the mouse through the parameters. It is possible to have this routine
respond only to certain mouse buttons and to wait until a certain number of
clicks have occurred. The result of the function is the number of times that the
button achieved the desired state.

ev_bclicks

ev_bmask

ev_bstate

ev_bmx
ev_bmy

ev_button

the number of times the mouse button needs to be clicked.

is a mask that allows the application to respond to only certain
button events.

0x0001 = Left mouse button
0x0002 = Right mouse button

The state of the mouse button to wait for (0 is up, 1 is down).
The state is indicated with a bit vector as in ev_bmask.

the x-coordinate of where the mousedown event occurred.
the y-coordinate of where the mousedown event occurred.

The state of the mouse buttons upon exit from the routine
(using the same bit vector as ev_bstate).

EVNT_BUTTON 187

ev_bkstate The keyboard’s state upon exit from the routine. If a bit is set
then that button has been pressed:
0x0001 = right shift
0x0002 = left shift
0x0004 = ctrl key
0x0008 = alt key
SEE ALSO

evnt_multi

188 EVNT_DCLICK

NAME

evnt_dclick — sets or reads the double-click speed
SYNOPSIS

int evnt_dclick(ev_dnew, ev_dgetset)
int ev_dnew;
int ev_dgetset;

DESCRIPTION

evnt_dclick is used to set or read the double click speed for the mouse. If
ev_dgetest is one, then a new double-click speed is set. The new double click
speed is contained in ev_dnew. The speeds range from 0 to 4 where 4 is the
fastest. If a read of the double click speed is requested the function returns the
current double click speed.

ev_dnew this parameter contains the new double click speed.

ev_dgetset determines whether the valuein ev_dnew is to be used in setting
the double click speed. If it is set to zero then the current
speed of the double click is returned through the function and
the value of ev_dnew ignored.

SEE ALSO

evnt_multi

EVNT_KEYBD 189

NAME
evnt_keybd — waits for a keyboard event
SYNOPSIS

int evnt_keybd()

DESCRIPTION

evnt_keybd function waits for a keyboard event (any keyboard input). The
result of this function is the keyboard code for the typed character (refer to
page 589).

SEE ALSO
evnt_multi, Keyboard Codes

190 EVNT_MESAG

NAME
evnt_mesag — waits for a message

SYNOPSIS

evnt_mesag(ev_mgpbuff)
int ev_mgpbuff[8];

DESCRIPTION

evnt_mesag is used to wait for message events from the system. The parameter
ev_mgpbuff is a pointer to a 8 word (16 byte) buffer in memory where the
message will be placed.

NOTE

The standard event messages are described in the event manager introductory
section.

DIAGNOSTICS
The result of the function is always 1.
SEE ALSO
evnt_multi, Event Manager Introduction (pg. 179)

EVNT_MOUSE 191

NAME
evnt_mouse — waits for a mouse event

SYNOPSIS

int evnt_mouse(ev_moflags, ev_mox, ev_moy, ev_mowidth, ev_moheight,
ev_momx, ev_momy, ev_mobutton, ev_mokstate)
int ev_moflags;
int ev_mox;
int ev_moy;
int ev_mowidth;
int ev_moheight;
int *ev_momx;
int *ev_momy;
int *ev_mobutton;
int *ev_mokstate;

DESCRIPTION

evnt_mouse waits for the mouse to enter or leave a specified rectangle. The func-
tion is passed the size and position of the rectangle in the parameters ev_mox,
ev_moy, ev_mowidth, and ev_moheight. The function returns the location and
button state of the mouse when the event occurred and stores the results at the
locations pointed to by their respective integer pointers.

ev_moflags If this flag is 1, a mouse event occurs when it exits the rect-
angle, otherwise the event occurs when the mouse enters the
rectangle.

ev_mox the x-position (in pixels) of the defined rectangle.

ev_moy the y-position (in pixels) of the defined rectangle.

ev_mowidth the width of the defined rectangle in pixels.

ev_moheight the height of the rectangle in pixels.

ev_momx the x-coordinate of the mouse when it entered or exited the
rectangle.
ev_momy the y-coordinate of the mouse when it entered or exited the

rectangle.

192 EVNT_MOUSE

ev_mobutton

ev_mokstate

SEE ALSO

evnt_multi

the state of the mouse button when it entered or exited the
rectangle. Each bit represents a mouse button 0-15 from lower
order to high. If the bit is set then the button has been pressed
(e.g. left button has value 0x0001).

the status of the keyboard special function keys. If the bit is
set then the button has been pressed. They are represented as
follows:

0x0001 right shift
0x0002 left shift
0x0004 Ctrl
0x0008 Alt

EVNT MULTI 193

NAME
evnt_multi — waits for several possible events
SYNOPSIS

int evnt_multi(ev_mflags, ev_mbclicks, ev_mbmask, ev_mbstate,
ev_mmiflags, ev_mmix, ev_mmly, ev_mmiwidth, ev_mmlheight,
ev_mm2flags, ev_mm2x, ev_mm2y, ev_mm2width, ev_mm2height,
ev_mmgpbuff, ev_mtlocount, ev_mthicount, ev_mmox, ev_mmoy,
ev_mmobutton, ev_mmokstate, ev_mkreturn, ev_mbreturn)

int ev_mmflags;

int ev_mbclicks;

int ev_mbmask;

int ev_mbstate;

int ev_mmiflags;

int ev_mmix, ev_mmly;

int ev_mmlheight, ev_mmiwidth;
int ev_mm2flags;

int ev_mm2x, ev_mm2y;

int ev_mm2height, ev_mm2width;
int ev_mtlocount;

int ev_mthicount;

int *ev_mmox, *ev_mmoy;

int *ev_mmobutton;

int *ev_mmokstate;

int *ev_mkreturn;

int *ev_mbreturn;

int ev_mmgpbuff[8];

DESCRIPTION

This simple function will wait for any of 6 possible events. Which events to
wait for are indicated by event mask ev_mflags by setting the appropriate bit
as below:

Bit Event

0 keyboard event
mouse button event
mouse event 1
mouse event 2
message event
timer event

T i WO N =

194 EVNT_MULTI

Any combination is legal which means to wait for any one of the events.

The event which actually occurred is returned (using the same bit representation
as above).

evmbclicks A mouse event occurs when the keys of interest, defined by
ev_mbmask are placed in a state defined by ev_mbstate, for a
count of ev_mbclicks in a time generally specified by the front
panel.

ev_mbask This sets the mouse button mask for a mouse event. The mask
is ANDed with the present state of the mouse keys and then
compared to the desired state. The LSB of this mask filters
the value of the leftmost mouse button. A value of 0x0001 in
this parameter would allow only the left button to be tested.

ev_mbstate This is the state of the mouse buttons of interest which cause
a mouse button event. The bits refer to the keys as above, 0
means mouse up, 1 means mouse down.

evmmiflags Thissets the mouse event for the first rectangle to be generated
upon entry or exit from the rectangle. A zero generates it on
entry, and a one generates the event on exit.

ev_mmix, The x and y coordinates of the first mouse event rectangle.
ev_mmly

ev_mmiwidth, The width and height of the first mouse event rectangle.
ev_mmiheight

ev.mm2flags, These are the parameters for the second mouse event rectangle,

ev_mm2x, and have the same meaning as the first — except they act on
ev_mm2y, the second rectangle.

ev_mm2width,

ev_mm2height

ev_mmgpbuff This is the 8 word message pipe buffer. Refer to page 179 for
a further description of the event messages.

ev_mtlocount, The low and high words used to set the timer.
ev_mthicount

EVNT_MULTI 195

ev_mmox, The x and y coordinates of the mouse when the mouse event
ev_mmoy occurred.

ev_mmobutton This contains the state of the mouse buttons when the user
event occurred. As above, 0x0002 would indicate the mouse
button second from the left was depressed.

ev_mmokstate This returns the state of the following keys when the event
occurred:
Bit (LSB = bit 0) Key
right shift
left shift
ctrl
alt

W N = O

ev_mkreturn The keyboard code for the key pressed.

ev_mbreturn This is the number of times the mouse key entered the desired
state, within the desired time.

SEE ALSO

evnt_keybd, evnt_button, evnt_mouse, evnt_mesag, evnt_timer, evnt_dclick

196 EVNT_TIMER

NAME
evnt_timer — waits for a specified time.

SYNOPSIS

evnt_timer(low_count, high_count)
int low_count, high_count;

DESCRIPTION

evnt_timer delays for a specified number of milliseconds. The number of mil-
liseconds is defined by a long word which is divided into two parts. The param-
eter low_count contains the low sixteen bits of the long word. The parameter
high_count contains the upper word of the delay count long word.

DIAGNOSTICS
The function result is always 1.
SEE ALSO

envt_multi

164 FORM MANAGER 197

16.4 Form Manager

form_do monitors user interaction with a form
form_dial allocates and de-allocates space for dialog boxes
form_alert makes a alert box, saves screen, redraws screen, etc
form_error makes an error box, saves screen, redraws screen,
etc
form_center centers a dialog box
Introduction

A form is a means of gathering information from the user. The application may
use any of the following methods for querying the user:

Radio buttons — for one response only. All but the selected response are
deselected.

Check boxes — all boxes checked are selected.
Editable text — for responses that require text reply.

The form must have at least one exit. Usually two are supplied: an OK
button and a CANCEL. The OK is traditionally used to record the informa-
tion obtained from the form, while CANCEL is pressed if the response is to
be ignored.

Editable Text Fields
The following keys may be used in the editable text fields:

Left and right arrows, down-arrow, delete, backspace, Tab — The Re-
turn and Enter keys end editing of the text field. This happens only if
one object in the form has been flagged as a DEFAULT object. If there
is no DEFAULT object, the Form Manager ignores any Return or Enter.

Escape — Clears the text edit field.

There are three parts to any text edit field. They are the template, the
validation string, and the text. The template is used to format text that appears
in the text field, the validation string specifies what may be typed into the field,
and the text is typed in by the user or may be a default value. These are created
in the Resource Construction Program.

198

CHAPTER 16. GEM AES

If a character is entered that is not valid according to the validation string,
it is ignored unless it is the next invalid character in the template. If this occurs
the curser moves to the position immediately following the invalid character.

An example of a field follows in which a period is not a valid character:

If the string “test.c” were entered,

test .C

would appear. Or, in the case of a date that is entered “1/3/86” into:
S

The result is:
1_/3_/86

Three special forms exist for interaction with the user. They are the dialog
box, alert box, and Error box.

Dialog Boxes

The dialog box is basically a generic form and thus, is used when the application
requires additional information from the user. It usually contains some text and
one or more exit buttons. It may fill the screen if desired and contain a large
number of buttons, boxes, and text fields. The dialog box appears on top of
the screen and may optionally be centered.

Dialog boxes are resources and are, therefore, created by the Resource Con-
struction Program.

To call a dialog box from an application, the following steps need to be
taken:

1. Call rsrc_gaddr to get the address of the dialog box object tree.

2. Call form_dial to reserve screen space for the dialog box. Call the routine
again with FMD_GROW set to draw an expanding box.

3. Call obj_draw to display the dialog box.
4. Call form_do to handle events of the dialog box.

5. Call form_dial to free the screen space and to redraw the screen. The
routine may be called twice, the first time with FMD_SHRINK set to show
a shrinking dialog box.

16.4 FORM MANAGER

199

Alert and Error Boxes

An alert box is used to convey a message to the user for an immediate response.
The alert is very easy to handle, you simply call form_alert and pass the three
required pieces of information. An example follows:

Smokey says,

Only you can prevent
Forest fires

0K Cancel

[3] [Smokey says,| |0nly you can prevent|forest fires] [0K|Cancel]

The three parts of an alert are:

[(icon#)] [(message text)] [(exit buttons)]

Alert box icons

OV D

(icon#) is a single character that identifies an icon (if any) that appears at the
left side of the alert.

0

1
2
3

no icon

NOTE icon
WAIT icon
STOP icon

(message text) is a string consisting of up to 5 lines of 32 characters per
line. In the string, the lines are separated by the logical OR symbol “|”.

200

CHAPTER 16. GEM AES

(exit buttons) one, two, or three exit buttons; each containing no more that
20 text characters.

In the string, the exit button text is separated by the logical OR symbol.

The area of the screen that is written over by the alert is saved in a buffer
and is automatically written back when the alert is exited. The buffer is limited
to 25% of the screen size, so this puts a limit on the alert box size.

An error box is just an alert box that receives its text string from the forms
manager after a system error occurs.

To display an alert from an application, the following step needs to be
performed:

e Call form_alert
To display an Error box, do the following:

e Call form_error. Pass an operating system error code. A retry or abandon
code is returned to the application.

Example

Below is shown a routine which follows the steps in displaying and handling
dialogs as described above.

#include <gemdefs.h>
#include <obdefs.h>

#include "resource.h"

do_dialog(dialog)
OBJECT *dialog;

{
int X, ¥y, ¥, h;
int itemhit;

Center the dialog box.
form_center(dialog, &x, &y, &w, &h);
Reserve screen memory for dialog.

*/
form_dial (FMD_START, 0, 0, 0, O, x, y, w, h);

16.4 FORM MANAGER 201

/*
Drav dialog
*/
objc_draw(dialog, 0, 10, x, y, v, h);

Handle Dialog Event.
itemhit = form_do(dialog, 0);
/*

Release reserved screen memory.
*/

form_dial (FMD_FINISH, O, O, O, O, x, y, w, h);

return itemhit;

202 FORM_ALERT

NAME
form_alert — is the routine that displays the alert dialog box.

SYNOPSIS

int form_alert(fo_adefbttn, fo_astring)
int fo_adefbttn;
char *fo_astring;

DESCRIPTION

form_alert displays the alert box, and returns with a number identifying the
exit button that was selected by the user. The sequence of steps the routine
goes through to display an alert box are as follows:

1. It creates an object tree based upon the alert string that it was given.

N

It saves the screen area that will be taken over by the alert.

3. It calls the objc_draw routine to display the alert.

b

It calls the form_do routine to let the user respond to the alert.

=

After return from the form_do routine the screen is restored, and the exit
button that was selected is returned to the application.

fo_adefbttn is the form’s DEFAULT exit button.

0 no DEFAULT exit button
1 first exit button

2 second exit button

3 third exit button

fo_astring the address of the string containing the alert box description.
The format of the string is discussed in the Introduction section
on Alert Boxes.

SEE ALSO
Form Manager Introduction (pg. 197)

FORM_CENTER 203

NAME

form_center — centers the dialog box on the screen.
SYNOPSIS

form_center(dlog_tree, new_x, new_y, new_w, new_h)

OBJECT *dlog_tree;
int *new_x, *new_y, *new_w, *new_h;

DESCRIPTION

form_center takes the OBJECT described by the parameter dlog_tree and
centers it in relation to the screen boundaries. The OBJECT data structure
will be modified to reflect the centering and the new position of the box will be
returned in the parameters new_x, new_y, new_w, newh.

dlog._tree The address of the object tree that describes the dialog.
new_x the centered x-coordinate of the dialog box.

new_y the centered y-coordinate of the dialog box.

new_w the width of the dialog box in pixels.

new_h the height of the dialog box in pixels.

NOTE

Once the dialog box is centered it is not necessary to call the form_center
function for the dialog again.

DIAGNOSTICS

The result of this function is always 1.

204 FORM_DIAL

NAME

form_dial — reserves or releases the portion of the screen used for dialog boxes.

SYNOPSIS

int form_dial(form_cmd, small_x, small_y, small_w, small_h,
big_x, big_y, big_w, big_h)

int form_cmd;
int small_x, small_y, small_w, small_h;
int big_x, big_y, big_w, big_h;

DESCRIPTION

form_dial performs the housekeeping functions required for dialog boxes. The
four dialog box housekeeping functions are as follows:

form_cmd the form_dial action being invoked by the current call.

O (FMD_START) reserves screen space for the dialog
box.

1 (FMD_GROW) calls graf_growbox to draw an ex-
panding box from small to the large
box specified by (big.)x, y, w and h.

2 (FMD_SHRINK) calls grafshrinkbox to draw a
shrinking box from the large box
to the small box specified by
(small)x, y, w and h.

3 (FMD_FINISH) Releases screen space reserved by
FMD_START, and causes the applica-
tion to redraw the screen.

The parameters small x, small_y, small_w, small_h and big x, big_y, big.w,
big_h are used with the form commands FMD_GROW and FMD_SHRINK. The grow
and shrink commands call the AES function graf_growbox and graf_shrinkbox
respectively, passing the appropriate set of parameters. The small rectangle for
the shrink operation is described by the small_ parameters. The large rectangle
for the grow operation is defined by the big_ parameters.

DIAGNOSTICS

If an error occurs the result of the function is 0.

FORM_DIAL 205

SEE ALSO

form_do, graf_growbox, graf_shrinkbox

206 FORM_DO

NAME

form_do — causes the Form Manager to monitor the user’s interaction with a
form.

SYNOPSIS

int form_do(dlog_tree, start_obj)
OBJECT *dlog_tree;
int start_obj;

DESCRIPTION

form_do handles the user’s interaction with a form (or dialog box). The result
of the function is the number of the object that caused the exit from the dialog

box.
dlog_tree The address of the form’s object tree definition.
start_obj The number of the object (which must be an editable text field)

that the application wants active when the form is displayed.
The application can pass in a value of O if the form does not
contain editable text fields.

FORM_ERROR 207

NAME

form_error — display the error dialog box specified by the DOS Error number
parameter.

SYNOPSIS

int form_error(error_code)
int error_code;

DESCRIPTION

form_error displays a pre-defined error dialog box specified by the error code
number. The result of the function is the number of the exit button. The error
dialog is specified by the parameter error_code. The pre-defined errors are as
follows:

2 File not Found Error

3 File not Found Error

4 Out of Memory Error

5 File Exists Error

8 Can’t Launch application, Out of Memory

10 Can’t Launch application, Out of Memory
11 Can’t Launch application, Out of Memory
15 Disk Drive does not Exist

16 Can’t delete Folder

18 File Not Found Error

Note that any error dialog that is undefined will default with the message “TOS
error #” and the number of the undefined error_code.

NOTE

All standard error dialogs have only one exit button. Any error_code greater
than 63 will return an error for the function and not display an error dialog.

16.5 FILE SELECTOR MANAGER 209

16.5 File Selector Manager

fsel_input displays the File Selector dialog box and controls
box activities

Introduction

The routine in the File Selector Manager creates a dialog box that displays the
current directory name and the list of its files. The directory files are placed
in a window on the File Selector box with a scroll bar on the right side of
the window. The box also contains a text editable field which contains a file
selection (when appropriate). CANCEL and OK buttons are also part of the
box.

Before selecting a file, the user may:

e scroll through files in the directory, or
e change directories.

To change file directories, the user clicks the mouse curser in the DIREC-
TORY text editable field and types in a new drive identifier, directory path
name, and file specification containing a wildcard. For example,

B: \GEMSTUFF*.GEM

Using the File Selector Manager
The fsel_input() routine returns the following information:
e the selected file name

e the current directory and wildcard specification

e which of the exit methods was used (CANCEL or OK)

Example

Below is shown an example of the fsel_input function.
#include <stdio.h>

#define OK 1
#define CANCEL O

210 CHAPTER 16. GEM AES

main()

{
char default_path[80];
char default_name[80];
int button;

appl_init();

strcpy(default_path, "A:\\#*.*");
strcpy(deiault_name. "Untitled");

fsel_input(default_path, default_nawe, &button);
if (button == OK)

printf("You have selected the file <%s>.\n", default_name);
else

printf("You have canceled the file selection.\n");

printf("Press RETURN to end.\n");
getchar();

appl_exit();

FSEL_INPUT 211

NAME
fsel_input — displays a file selector dialog box, and waits for input.

SYNOPSIS

int fsel_input(default_path, default_fname, button)
char *default_path;
char *default_fname;
int *button;

DESCRIPTION

fsel_input displays a dialog box which is used to select the name of a file on a
disk. The file selector displays the files that are in the directory specified by
default_path. There is a field on the file selector dialog box which contains
a default file name. This field is initialized by the parameter default_fname.
The results of the user interaction will be placed in the memory pointed to
by default_path and default_fname. The parameter button is a pointer to
an integer that contains the number of the exit button. The return values of
button are defined as follows:

0 = Cancel button
1 = OK button
DIAGNOSTICS

The result of the function is zero if an error occurs.
NOTE

Wildcard characters may be used in the parameter default_path. All files
ending in “.c” would be displayed by passing the string “A:*.C” as the default
path.

16.6 GRAPHICS MANAGER 213

16.6 Graphics Manager

graf_rubberbox draws an expanding box from a fixed point as the
mouse moves

graf_dragbox moves a box on the screen, keeping the mouse
pointer in the same position

graf_movebox draws a moving box

graf_growbox draws an expanding box outline

graf_shrinkbox draws a shrinking outline

graf_watchbox looks for a mouse-down inside a box

graf _slidebox keeps a sliding box inside the parent box

graf_handle returns a VDI handle for the opened screen work-
station that AES uses

graf_mouse changes the mouse form to another predefined or

application defined form

graf_mkstate returns the current mouse location, mouse button
state, and keyboard state

Introduction

The Graphics Manager routines are used to control boxes in the GEM envi-
ronment. A “box” is basically a rectangular outline drawn on the screen. For
example, the routine graf_growbox is the routine that draws the expanding box
when an application is executed by double-clicking an icon. Other Graphics
Manager routines perform functions like moving a box shape across the screen,
dragging a box on the screen keeping the mouse pointer fixed, and checking to
see if a mouse-down event has occurred in a box.

214

GRAF_DRAGBOX

NAME

graf_dragbox — moves a rectangle, keeping the mouse pointer in the same
position in the rectangle.

SYNOPSIS

int graf_dragbox(start_w. start_h, start_x, start_y,
bound_x, bound_y, bound_w, bound_h,
finish_x, finish_y) ‘

int start_w, start_h, start_x, start_y;
int bound_x, bound_y, bound_w, bound_h;
int *finish_x, *finish_y;

DESCRIPTION

NOTE

graf_ dragbox lets a user drag an outline of a rectangle within an application
defined boundary rectangle. When the user presses the mouse button to begin
dragging, GEM AES makes a call to VDI to get the mouse’s location. As the
user drags, this call keeps the mouse pointer in a fixed position relative to the
box’s upper left corner. The parameters start_w, start_h, start_x, start_y
define the outline of the rectangle to be drawn. The parameters bound_ x,
bound_y, bound_w, bound_h define a boundary rectangle that will contain the
rectangle being drawn. If an error occurs the result of the function is 0. The
final (z,y) position, when the mouse button is released, will be stored at the
locations pointed to by finish x and finish_y, respectively. Note that all
parameters are defined in pixels.

If a call to graf_dragbox is made while the mouse button is up the function will
return immediately.

SEE ALSO

graf slidebox

GRAF_GROWBOX 215

NAME
graf_growbox — draws an expanding box outline.

SYNOPSIS

int graf_growbox(small_x, small_y, small_w, small_h,
large_x, large_y, large_w, large_h)

int small_x, small_y, small_w, small_h;
int large_x, large_y, large_w, large_h;

DESCRIPTION

graf_growbox draws a box growing from a smaller rectangle to a larger rectangle.
The small rectangle is defined by the parameters small _x, small_y, small_w,
small_h. The large rectangle is defined by the parameters large x, large._y,
large_w, large_h. Note that both rectangles are defined in pixels.

DIAGNOSTICS
The result of the function is zero if an error occurs.
SEE ALSO

graf_shrinkbox

216 GRAF_HANDLE

NAME

graf_handle — is a routine that returns a handle to the opened screen worksta-
tion that the GEM AES routines use.

SYNOPSIS

int graf_handle(char_width, char_height, char_bwidth, char_bheight)
int *char_width, *char_height;
int *char_bwidth, *char_bheight; .

DESCRIPTION

graf_handle returns a handle to the current active workstation. Information
about the system font is returned through the parameters as follows:

char_width the width of a character cell in the system font in pixels.
char_ height the height of a character cell in the system font in pixels.

char bwidth the width of a square box large enough to hold a system font
character in pixels.

char bheight the width of a square box large enough to hold a system font
character in pixels.

SEE ALSO
vst_height

GRAF_MKSTATE 217

NAME

graf_mkstate — returns the location of the mouse, the state of the mouse button,
and the state of the keyboard.

SYNOPSIS

int graf_mkstate(mousex, mousey, mouse_state, keybd_state)
int *mousex, *mousey, *mouse_state, *keybd_state;

DESCRIPTION

graf_mkstate returns information about the mouse state. The mouse (z,y)
locations are stored in memory where the parameters mousex and mousey point.
The state of the mouse button and the state of the keyboard are stored at the
locations pointed to by the parameters mouse_state and keybd_state. The
integers returned are defined as follows:

mouse_state

keybd_state

DIAGNOSTICS

The current mouse button state. If the bit is set then the
button is currently down:

0x0001 button on left
0x0002 second button from the left
0x0004 third button from the left, etc.

The state of the keyboard’s modifier keys. If the bit is set
then the key is considered down, if it is zero then the key is
considered up:

0x0001 right-shift
0x0002 left-shift
0x0004 Ctrl
0x0008 Alt

The function always returns a 1.

218 GRAF_MOUSE

NAME

graf_mouse — lets an application change the mouse form to one of a predefined
set or to an application-defined form.

SYNOPSIS

int graf_mouse(form_num, form_def)
int form_num;
int form_def[37];

DESCRIPTION

graf_mouse changes the mouse form to one of a predefined set or to an appli-
cation defined form. The parameters are defined as follows:

form_num a code identifying a predefined mouse form:
0 arrow
1 hourglass
2 bumble bee
3 = hand with pointing finger
4 flat hand, extended fingers
5 thin cross hair
6 thick cross hair
7 outline cross hair
255 mouse form stored in form_def
256 = hide mouse form
257 show mouse form
form_def the address of a 37-word buffer that fits the mouse form defi-

nition. See the VDI function vsc_form (page 382).

GRAF_MOVEBOX 219

NAME
graf_movebox — Draw a moving outlined box

SYNOPSIS

int graf_movebox(gr_mwidth, gr_mheight, gr_msourcex,
gr_msourcey, gr_mdestx, gr_mdesty)

int gr_mwidth, gr_mheight;
int gr_msourcex, gr_msourcey;

int gr_mdestx, gr_mdesty;

DESCRIPTION

graf_movebox is a routine that draws an animated box moving from one position
to another without changing size.

gr_mwidth the rectangle’s width in pixels.
gr_mheight the rectangle’s height in pixels.

gr_msourcex the rectangle’s starting x-coordinate.

gr-msourcey the rectangle’s starting y-coordinate.

gr-mdestx the rectangle’s ending x-coordinate
gr-mdesty the rectangle’s ending y-coordinate
DIAGNOSTICS

A positive integer is returned on success, 0 on failure.

220 GRAF_RUBBERBOX

NAME

graf_rubberbox — draws a rectangle that expands and contracts from a fixed
point as the mouse moves.

SYNOPSIS

int graf_rubberbox(gr_rx, gr_ry, gr_rminwidth,
gr_rminheight, gr_lastwidth, gr_rlastheight)

int gr_rx, gr_ry;
int gr_minwidth, gr_minheight;
int *gr_rlastwidth, *gr_rlastheight;

DESCRIPTION

graf_rubberbox draws the outline of a rectangle that expands and contracts
with the movement of the mouse. The position of the rectangle’s upper left
corner is fixed, but by dragging the lower right corner with the mouse pointer,
the user can make the rectangle larger or smaller. When the mouse button is
released the width and height of the new rectangle is returned.

gr.rx the rectangle’s X-coordinate.
gr.ry the rectangle’s Y-coordinate.
gr_rminwidth the rectangle’s smallest possible width in pixels.

gr_rminheight the rectangle’s smallest possible height in pixels.
gr.rlastwidth the resulting width of the rectangle.

gr-rlastheight the resulting height of the rectangle.

DIAGNOSTICS

The result of the function is zero if an error occurs.

GRAF_SHRINKBOX 221

NAME
graf_shrinkbox — draws a shrinking rectangle outline.

SYNOPSIS

int graf_shrinkbox(start_x, start_y, start_w, start_h,
final_x, final_y, final_w, final_h)

int start_x, start_y, start_w, start_h;
int final_x, final_y, final_w, final_h;

DESCRIPTION

graf_shrinkbox that will draw a shrinking rectangle outline. The large rectangle
is defined by the start_ parameters. The small resulting rectangle is defined
by the final_ parameters. Note that no rectangle will be visible on the screen
when this function is finished.

start_x the rectangle’s starting x-coordinate.
start_y the rectangle’s starting y-coordinate.
start_w the rectangle’s starting width in pixels.
start_h the rectangle’s starting height in pixels.
final x the rectangle’s ending x-coordinate.
final_y the rectangle’s ending y-coordinate.
final_w the rectangle’s ending width in pixels.
final h the rectangle’s ending height in pixels.
DIAGNOSTICS

The result of the function is zero if an error occurs.

222 GRAF_SLIDEBOX
NAME
graf slidebox — keeps a sliding rectangle inside its parent rectangle.
SYNOPSIS
int graf_slidebox(objtree, parent, slider, direction)
OBJECT *objtree;
int parent;
int slider;
int direction;
DESCRIPTION

graf_slidebox tracks a sliding rectangle inside a parent rectangle. An example
of the use of this function are the scroll bars commonly seen on windows. The
mouse movement causes the sliding rectangle to move, and the parent rectangle
defines the sliding rectangle’s range of motion. An application calls this routine
when the mouse button is depressed and returns control to the application when
the user releases the mouse button. Both boxes (slider and parent) defined by
the object tree objtree.

The return value of the function is a number that indicates the slider position
relative to the inside of the parent rectangle. If direction is 0, then the
routine returns a value from 0 to 1000; left to right. If direction is 1, the
routine returns a value from 0 to 1000; top to bottom.

parent The index of the parent in the object tree.
slider The index of the the slider in the object tree.
direction The direction of the slider’s movement.

0 = horizontal

1 = vertical

objtree A pointer to the object tree containing the slider and parent.

GRAF_WATCHBOX 223

NAME
graf_watchbox — “watches” a rectangle to see if the user releases the mouse
button inside of a specified rectangle.

SYNOPSIS

int graf_watchbox(tree, object, instate, outstate)
OBJECT *tree;

int object;
int instate, outstate;
DESCRIPTION

graf_watchbox tracks the mouse pointer in and out of a predefined rectangle
while the mouse button is depressed, and returns a value based upon where the
mouse button is released. The state of the rectangle is changed according to
the instate and outstate parameters.

1 is returned if the mouse button was released inside the rectangle, otherwise 0
is returned.

tree is a pointer to the object tree that contains the defined rectan-
gular area.
object the index of the object in the tree.
instate the rectangle’s state when the depressed mouse button goes
inside the defined rectangle.
0x0000 normal
0x0001 selected
0x0002 crossed
0x0004 checked
0x0008 disabled
0x0010 outlined
0x0020 shadowed
outstate the rectangle’s state when the depressed mouse button goes

outside the defined rectangle.

o
At

16.7 MENU MANAGER

225

16.7 Menu Manager

menu_bar displays or erases the menu bar
menu_icheck displays or removes checks by menu items
menu_ienable enables or disables menu items
menu_tnormal displays the menu title in normal or reverse video
menu_text changes the text of a menu item
menu_register registers desk accessories

Introduction

Each GEM application defines its own menu, and the application’s menu is
displayed when the application is active. The menu’s title is selected by moving
the mouse onto the text of the title on the menu bar, this causes a drop-down
menu to be displayed.

The various selections displayed under a title be enabled or disabled by
the application. If disabled, a half-tone or gray title is drawn and the user is
prevented from selecting the item. Additionally the application may wish to
place a check mark to the left of one or more of the selections.

To display a menu, the application must make two calls. First, it calls
rsrc_load to load the menu data. Second, it calls menu_bar to display the menu
bar. The application will then receive a message from the Screen Manager when
an item in a drop down menu is selected.

The Screen Manager displays the drop down menu and highlights the menu
title when the mouse form touches a menu title. The manager then follows the
mouse over the menu. As the mouse passes enabled titles, the manger displays
them in reverse video. The user selects an enabled item from the menu by
clicking the mouse on one of the enabled items, resulting in in two actions by
the manager. First, the manager removes the drop down menu. Then, the
manager sends a message to the message pipe of the application.

If the user moves the mouse outside of a drop down menu, the drop down
menu remains, but nothing is selected or highlighted. If the user then clicks
the mouse, the drop down menu is removed and no messages are sent to the
application.

GEM also allows the application to change the text of the menu items. This
is useful for different states or modes of the application.

226

CHAPTER 16. GEM AES

Using the Menu Manager

The programmer creates a menu object tree with the Resource Construction
Program which then adds it to a resource file. Then the tree is loaded into
memory using the rsrc_load call from the application. Finally, menu_bar is
called to display the titles. Once this is done, the visible menu entries can be
accessed by the user.

After the user chooses a menu item, the Screen Manager sends a message to
the application, and then control is returned to the application. The application
must then read the message in the pipe. Reading the pipe tells the application
that the message is about a menu selection, the object index of the menu title
chosen, and the object index of the menu item chosen.

Example

The example below shows how to place a menu bar on the screen. The menu
bar object tree is created by the Resource Construction Program. The name of
the menu bar is MENUBAR is defined by the header file of the resource file. For
further information about resources refer to section 11. For further information
about handling menu trees refer to section 16.3.

#include <osbind.h>

#include <gemdefs.h>
#include <obdefs.h>

#include "resource.h" /+ header file created by RCP */
#include "globals.h" /* contains definition of menubar */
/*

init_menu - {find the address of the menubar and drawvw it.
*/
init_menu()
{

/*

MENUBAR is the name of the menu resource.
menubar is an (OBJECT #).

*/
rsrc_gaddr(0, MENUBAR, &menubar);
/*
Draw the menu Bar.
*/

menu_bar(menubar, 1);

The following example shows how to handle a menu event.

16.7 MENU MANAGER 227

#include <gemdefs.h>
#include <obdefs.h>

#include "resource.h" /* header file created by RCP */
#include "globals.h" /* contains definition of menubar */
/%

do_menu - determines which menu vas selected and calls the
appropriate routine to handle the item selected.
*/
do_menu(message)
int *message;
{

int menuid, itemid;

[

menuid = message[3];
itemid = message([4];

switch(menuid) {
case DESK:
handle_desk(itemid);
break;

case FILE:
handle_file(itemid);
break;

case EDIT:
handle_edit(itemid);
break;
}

menu_tnormal (menubar, menuid, 1);

[*
handle_desk - performs the appropriate action for the menu item selected.
*/
handle_desk(itemid)
int itemid;
{
switch(itemid) {
case ABOUT:
form_alert(1, "[0]J[A Sample Application | | rpt. 1[Ok 1");
break;

228 CHAPTER 16. GEM AES

/*
handle_file - performs the appropriate action for the menu item selected.
*/
handle_file(itemid)
int itemid;
{

int button;

switch(itemid) {
case FILENEW:
nev_vindow(SIZER | MOVER | FULLER | CLOSER | NAME);
break;

case FILECLOS:
{

windovptr thewin = frontwindow();

i? (thewin)
dispose_window(thewvin);

}
break;

case FILEQUIT:
button = form_alert(2, "[3][Are you sure?][Yes | No 1");

if (button == 1)
shutdown(0) ;
break;

handle_edit - performs the appropriate action for the menu item selected.

handle_edit(itemid)
int itemid;

{
char string[80];

switch(itemid) {

case UNDO:

sprintf(string, "Edit. Undo. itemid == %d.", itemid);
break;
case CUT:

sprintf(string, "Edit. Cut. itemid == %d.", itemid);
break;

case COPY:

16.7 MENU MANAGER

229

sprintf(string,
break;

case PASTE:
sprintf(string,
break;

case CLEAR:
sprintf(string,
break;

}

paramdlog(string) ;

"Edit.

"Edit.

"Edit.

Copy.

Paste.

Clear.

itemid =

itemid

itemid

= %d.", itemid);

== Y%d.", itemid);

== %d.", itemid) H

230 MENU_BAR

NAME
menu_bar — display or erase the menu bar.
SYNOPSIS

int menu_bar(menu_tree, show_menu)
OBJECT *menu_tree;
int show_menu;

DESCRIPTION

menu_bar draws or erases a menu object tree on the desktop. The parameter
menu_tree is a pointer to an OBJECT which describes a menu. The param-
eter show menu tells the function whether to draw or erase the menu bar. If
show_menu is 1, the menu bar is drawn, otherwise the menu is erased.

NOTE
The application should always erase the menu bar before exiting with appl_exit.
DIAGNOSTICS

The function result will be O if an error occurs.

MENU_ICHECK 231

NAME
menu._icheck — displays or erases a check mark next to a menu item

SYNOPSIS

int menu_icheck(menu_tree, menu_item, menu_check)
OBJECT *menu_tree;

int menu_item;
int menu_check;
DESCRIPTION

menu_icheck marks a menu item as checked. The parameter menu_tree is an
object pointer to the menu definition. The parameter menu_item is a integer
index into the menu tree which indicates the menu item to mark. The final
parameter menu_check is an flag which determines the state of the check. If
menu_check is 1, the menu is marked with a check. If it is zero then the menu
is not marked.

NOTE
The value of menu_item may be obtained from the resource header file if the
menu item has been “named.”

DIAGNOSTICS
The result of the function is zero if an error occurs.

SEE ALSO

Resource Construction Program (pg. 81)

232 MENU_ENABLE

NAME
menu_ienable — enable or disable a menu item

SYNOPSIS

int menu_ienable(menu_tree, menu_item, menu_enable)
OBJECT *menu_tree; ;

int menu_item;
int menu_enable;
DESCRIPTION

menu_ienable enables and disables menu items. When a menu item is disabled
it is drawn in half-tone grey and cannot be selected by the user. The parameter
menu_tree is a pointer to an obect that describes the menu bar. The parameter
menu_item is an index into the menu bar object tree that indicates the menu
to be enabled/disabled. The last parameter menu_enable is a flag which deter-
mines the operation. If menu_enable is O, the menu will be disabled, otherwise
the menu item will be enabled.

NOTE

The value of menu_item may be obtained from the resource header file if the
menu item has been “named.”

DIAGNOSTICS

The result of the function is zero if an error occurs.

MENU_REGISTER 233

NAME

menu_register — places a desk accessories menu on the Desk Menu.
SYNOPSIS

int menu_register(appl_id, acc_name)
int appl_id;
char *acc_name;

DESCRIPTION

menu_register is used to register the application to AES as a Desk Accessory.
The parameter appl_id is the application’s identifier that is obtained from
appl_init. The last parameter is a pointer to the name of the Accessory which
is placed in the Desk Menu. The result of the function is a menu identifier.

NOTE

The menu identifier is used during the message event ACC_OPEN to determine if
the Desk Accessory is active.

DIAGNOSTICS
If there are currently more than 6 accessories in the list then the result of the
function is —1.

SEE ALSO

appl_init, evnt_mesag, evnt_multi

234 MENU_TEXT

NAME
menu_text — changes the text of a menu item.
SYNOPSIS
int menu_text(menu_tree, menu_item, menu_text)
OBJECT *menu_tree;

int menu_item; '
char *menu_text;

DESCRIPTION

menu_text changes the text on a specified menu item. The menu is defined
by the OBJECT tree pointer menu_tree. The menu item that is changed is
specified by menu_item. The text that replace the existing menu item text is
pointed to by menu_text.

NOTE
The value of menu_item may be obtained from the resource header file if the
menu item has been “named.”

DIAGNOSTICS

The function result is zero if an error occurs.

MENU_TNORMAL 235

NAME

menu_tnormal — displays a menu title in either normal or reversed video.
SYNOPSIS

int menu_tnormal(menu_tree, menu_title, menu_normal)
OBJECT *menu_tree;

int menu_title;
int menu_normal;
DESCRIPTION

menu_tnormal hilites and de-hilites menu titles. The parameter menu_tree is
an OBJECT pointer to the menu bar tree. The parameter menu_tree is an
index into the menu tree that specifies the menu title that is affected. The last
parameter menu_normal specifies the state of the menu title. If it is zero the
menu title will be hilited, otherwise the menu title is de-hilited.

NOTE

The value of menu_title may be obtained from the resource header file if the
menu item has been “named.”

DIAGNOSTICS

The result of the function is zero if an error occurs.
SEE ALSO

Resource Construction Program (pg. 81)

16.8 OBJECT MANAGER 237

16.8 Object Manager

objc_add adds an object to an object tree
objc_delete deletes an object from an object tree
objc_draw draws an object or object tree
objc_find determines if the mouse is over an object
objc_offset computes an object’s location relative to the screen
objc_order changes the order of an object within its tree
objc_edit lets a user edit text in an object
objc_change changes an objects state

Introduction

Objects describe visual items, such as icons, characters, and boxes. The Object
Manager provides routines to manipulate them. An example of an object (in
this case a dialog box) follows:

This is a fun dialog box.

Figure 16.2: Example Dialog

An object tree is an array of OBJECT’s (see C typedef in <obdefs.h> and
shown below). The address of the array is the address of the tree (its type
is OBJECT *). Each object in the tree can be accessed as an index from the
address of the tree. For example the following C code de-hilites the OK button
in the above dialog box:

#include <obdefs.h>

/%
Note: The following values are supplied by the RCP.
*/
#define TREE 0 /* Get resource type Tree */

#define NAMEDLOG 10 /* eleventh tree in resource file */
#define OKBUTN 2 /* third object in above tree */

238 CHAPTER 16. GEM AES

dehilite_OK()

{
OBJECT *namedlog;
/*
Make OBJECT *namedlog point to dialog tree.
*/
rsrc_gaddr(TREE, NAMEDLOG, é&namedlog);
/=
Change the ob_state of the button object
to not selected.
*/
namedlog[0KBUTN] .ob_state &= ~SELECTED;
}

Normally the names NAMEDLOG and OKBUTN would come from a ‘.H file
created by RCP. The structure of the tree comes from the ob_next, ob_head
and ob_last fields of each OBJECT. These fields contain the index numbers of
the next sibling, first child and last child of each object in the tree. If there is
no such object (such as obhead for a leaf object) then the value is —1. The
ob_next field of the last child of an object points to that object. The first object
(index no. 0) is the root of the tree. The ob_next field of the root object is —1.
The tree structure for the dialog box is shown below:

Box =
ob_head|ob_next|ob_tail
-1 N
String OK button
ob_head|ob_nextlob_tail ob_head|ob_next|ob_tail
-1 \ = -1 1 -1
|

Figure 16.3: Object structure

Object Manager Data Structures

The following structures are used by the Object Manager:

OBJECT
TEDINFO

16.8 OBJECT MANAGER 239

ICONBLK
BITBLK
APPLBLK
PARMBLK

OBJECT

typedef struct object {
int ob_next; /* object’s next sibling */
int ob_head /* head of object’s children */
int ob_tail /* tail of object’s children */
unsigned ob_type; /* type of object, i.e. BOX, CHAR ...*/
unsigned ob_flags; /* flags */
unsigned ob_state; /*state, i.e. SELECTED, OPEN... */
char *ob_spec; /* see below */
int ob_x; /*upper left corner of object x/
int ob_y; /*upper left corner of object */
int ob_width; /*width of object x/
int ob_height; /* height of object */

} OBJECT;

The OBJECT structure’s values describe the object, its relative position in
the tree, and on screen. There is an 0BJECT structure for each object in a tree.

ob_next index of the object’s next sibling in the object tree array

ob_head index of the object’s first child: the head of the list of the
object’s children in the object tree array.

ob_tail index of the last child in the list of the object’s children in the
object tree array.

ob_type the object type (see object types paragraph)

ob_flags the object flags (see object flags paragraph)

ob_state the object state (see object state paragraph)

ob_spec Depending on the object’s type, this can be a pointer, or other

four byte value. All the values of this are described when the
object types are described below in Object Types.

240

CHAPTER 16. GEM AES

ob_x

ob_y

ob_width

ob height

TEDINFO

For the types G.BOX G_IBOX, and G_BOXCHAR the low word is
the object color. The high word is broken into two bytes. For
the type G_BOXCHAR, the high byte of this word is a character,
for all other types, this is zero.

The low byte of the high word is the thickness of the border of
the object, and can have the following values:

0 no thickness

1-128 these positive values are the inside
thickness, inward from the object’s
edge

—1—(—127) these negative values are outward
thickness, from the object edge.

For a child, the x coordinate of the object relative to the parent.
For the root, relative to the screen.

For a child, the y coordinate of the object relative to the parent.
For the root, relative to the screen.

the width of the object in pixels

the height of the object in pixels

The TEDINFO object is an editable field that is used to receive and check key-
board input from the user.

typedef struct text_edinfo {

char
char
char
int
int
int
int
int

te_ptext; / ptr to text (must be first) */
te_ptmplt; / ptr to template */
te_pvalid; / ptr to validation chrs. */
te_font; /* font */
te_junkl; /* junk word 1 */
te_just; /* justification, left or right ... */
te_color; /* color information word */
te_junk2 /* junk word */

16.8 OBJECT MANAGER

241

int te_thickness; /* border thickness

int te_txtlen; /*length of text string

int te_tmplen; /* length of template string
} TEDINFO;

This structure allows a user to edit formatted text. The object types G_TEXT,
G_BOXTEXT, G_FTEXT, and G_FBOXTEXT use their ob_spec pointers to point to
TEDINFO structures. te_ptext a pointer to the actual text. If the first character
is “@”, then the entire field is blanks, and all following characters are merely
place holders; i.e. “@abc” would be four spaces.

te_ptmplt a pointer to a text string template for any further data entry.

te_pvalid a pointer to a text string which validates entered text:
9 allow only digits 0-9

A allow only uppercase letters A—Z and space

a allow only letters, upper and lower case A—z and
space

N allow 0-9 and uppercase A-Z plus space

n allow 0-9 and upper and lowercase A-z, plus space

F allow all valid DOS file name characters, plus
? %

P allow all valid DOS file name characters, plus

\ : ? %

allow all valid DOS file name character, plus \ :

> g

allow anything

x allow anything and do uppercase conversion

te_font an integer identifying the font used to draw the text:
3 system font, used in menus, dialogs, etc.

5 small font, used in icons

te_junkl reserved for future use

te_just an integer identifying the type of text justification desired:
0 left justified
1 right justified

2 centered

242

CHAPTER 16. GEM AES

te_color an integer identifying the color and pattern of box-type objects
te_junk2 reserve for future use

te_thickness an integer defining the thickness in pixels of the text box
0 no thickness
1-128 positive values are the inside thickness
inward from the object’s edge
—1— (—127) negative values are the outside thick-
ness outward from the object’s edge

te_txtlen an integer which is the length of the text string pointed to by
te_ptext

te_tmplen an integer containing the length of the string pointed to be
te_ptmplt

Underscore characters in the te_ptmplt field indicate where characters typed
by the user will be displayed. Other characters are for display only and may not
be modified by the user. The te_ptext string will contain only the characters
the user typed in, and will not contain any of the extra characters from the
te_ptmplt field.

An example. An edit field for entering a file name would use the following
field values:

»

te_ptmplt “File name: ________.___

te_pvalid “FFFFFFFFFFF”

On return te_ptext will contain only the characters the user typed, for instance
if the user typed “FUN.TXT” then te_ptext will contain:

te_ptext “FUN TXT”

Note that the period typed by the user is not legal according to te_pvalid,
however it was in te_ptmplt so the cursor automatically jumped to the next
underscore after the period.

ICONBLK

The Object Manager uses this structure to hold the data that defines icons. The
object type G_ICON points with its ob_spec pointer to an ICONBLK structure.

16.8 OBJECT MANAGER 243

typedef struct icon_block {

int *ib_pmask;
int *ib_pdata;
char *ib_ptext;
int ib_char;
int ib_xchar;
int ib_ychar;
int ib_xicon;
int ib_yicon;
int ib_wicon;
int ib_hicon;
int ib_xtext;
int ib_ytext;
int ib_wtext;
int ib_htext;

} ICONBLK;

ib_pmask a pointer to an array of integers representing the mask bit-

image of the icon

ib_pdata a pointer to an array of integers representing the data bit-image
of the icon

ib_ptext a pointer to the icon’s text

ib_char an integer containing a character to be drawn in the icon. The
character color is defined in the high byte of the integer. The
foreground color is defined in the upper nybble and the back-
ground color is defined in the lower nybble.

ib_xchar an integer containing the x-coordinate of ib_char
ib_ychar an integer containing the y-coordinate of ib_char
ibxicon an integer containing the x-coordinate of the icon
ib_yicon an integer containing the y-coordinate of the icon
ib_wicon an integer containing the width of the icon in pixels, and must

be a multiple of 16.

244

CHAPTER 16. GEM AES

ib_hicon
ibxtext
ib_ytext
ib_wtext

ib_htext

BITBLK

an integer containing the height of the icon in pixels

an integer containing the x-coordinate of the icon’s text
an integer containing the y-coordinate of the icon’s text
an integer containing the width of the icon’s text in pixels

an integer containing the height of the icon’s text in pixels

The object type G_IMAGE uses the BITBLK structure to draw the bit images like
cursor forms or icons.

typedef struct bit_block {
int *bi_pdata; /* ptr to bit forms data */

int
int
int
int
int

} BITBLK;

bi_pdata

bi_wb

bi_hi

bix

bi_y

bi_color

bi_wb; /* width of forms in bytes */
bi_hl; /* height in lines */
bi_x; /* source x in bit form */
bi_y; /* source y in bit form */

bi_color; /* fore-ground color of bit */

a pointer to an array of ints containing the bit image

an integer containing the width of the bi_pbdata array in
bytes. Because the bi_pdata array is made of ints, this value
must be an even number.

an integer containing the height of the bit block in scan lines,
or pixels

an integer containing the source X in bit form, relative to the
bi_pdata array

an integer containing the source Y in bit form, relative to the
bi_pdata array

an integer containing the color GEM AES uses when displaying
the bit-image.

16.8 OBJECT MANAGER

APPLBLK

This structure is used to locate and call an application-defined routine that
will draw and/or change an object. The ob_spec pointer in the object type
G_PROGDEF points to an APPLBLK structure.

typedef struct appl_blk {

int (*¥ub_code) () ;

long ub_parm;
} APPLBLK;
ub_code a pointer to the routine for drawing and/or changing the object
ub_parm a long value, optionally provided by the application, passed as

a parameter when the Object Manager calls the application’s
object drawing/changing routine.

PARMBLK

This structure is used to store information relevant to the application’s drawing
or changing an object.

When it calls the application’s object drawing/changing routine(pointed to
by ab_code), the Object Manager provides a pointer to a PARMBLK.

typedef struct parm_blk {
OBJECT =*pb_tree;

int pb_obj;
int pb_prevstate;
int pb_currstate;
int pb_x, pb_x, pb_w, pb_h;
int pb_xc, pb_yc, pb_wc, pb_hc;
long pb_parm;
} PARMBLK;
pb_tree a pointer to the object tree that contains the application-

defined object

Pb_obj the object index of the application-defined object

245

246 CHAPTER 16. GEM AES

pb_prevstate the old state of an object to be changed
pbcurrstate the changed or new state of an object

If pb_prevstate = pb_currstate then the application is draw-
ing the object, not changing it.

pPbx, pb_y the x and y-coordinates of a rectangle that define the location
of the object on the physical screen

pb_w, pbh the width and height in pixels of a rectangle defining the size
of the object on the physical screen

pbxc, pb_yc an integer containing the x and y -coordinates of the current
clip rectangle on the physical screen

pb-wc, pb.hc an integer containing the width and height in pixels of the
current clip rectangle on the physical screen

pb_param identical to the ab_parm in the APPLBLK structure. The Object
Manager passes this value to the application when it is time
for the application to draw or change the object.

Predefined Values

The Object Manager routines use the following predefined values:

object types
object flags
object states
objects colors

The following sections define these values.

Object Types

#define G_BOX 20
#define G_TEXT 21
#define G_BOXTEXT 22
#define G_IMAGE 23

#define G_PROGDEF 24

16.8 OBJECT MANAGER

247

#define
#define
#define
#define
#define
#define
#define
#define

Object types

G_IBOX 25
G_BUTTON 26
G_BOXCHAR 27
G_STRING 28

G_FTEXT 29
G_FBOXTEXT 30
G_ICON 31
G_TITLE 32

are stored in the ob_type section of the OBJECT structure. All

object types are graphic or bitmap object types.

G_BOX

G_TEXT

G_BOXTEXT

G_IMAGE

G_PROGDEF

G_IBOX

G_BUTTON

G_BOXCHAR

G_STRING

A graphic box; ob_spec is the object’s color and thickness.

Graphic text; ob_spec is as pointer to a TEDINFO structure in
which the value of the te_ptext points to the displayed text
string.

A graphic box containing graphic text; ob_spec is a pointer
to a TEDINFO structure in which te_ptext points to the actual
text string.

A graphic bit-image; ob_spec is a pointer to a BITBLK struc-
ture.

A programmer-defined object; its ob_spec is a pointer to an
APPLBLK structure.

An “invisible” graphic box; its ob_spec value contains the ob-
ject’s color int and thickness. It has no fill pattern and no
internal color. Its border is the only visible part, and the bor-
der is only visible if it has thickness.

a graphic text object centered in a box; ob_spec is a pointer
to a null-terminated text string.

A graphic box containing a single text character; ob_spec con-
tains the character, plus the object’s color and thickness.

A graphic text object; its ob_spec value is a pointer to a null-
terminated text string.

248 CHAPTER 16. GEM AES

G_FTEXT Formatted graphic text; ob_spec is a pointer to a TEDINFO
structure in which te_ptext points to a text string. The text
string is merged with the template pointed to by te_ptmplt
before it is displayed.

G_FBOXTEXT A graphic box containing formatted graphic text; ob_spec is
a pointer to a TEDINFO structure in which te_ptext points to
a text string. The text string is merged with the template
pointed to by the te_ptmplt before it is displayed.

G_ICON An object that describes an icon; ob_spec is a pointer to an
ICONBLK structure.

G_TITLE A graphic text string used in menu titles; ob_spec is a pointer
to a null-terminated text string.

Object Flags

#define NONE 0X0000
#define SELECTABLE 0X0001
#define DEFAULT 0X0002
#define EXIT 0X0004
#define EDITABLE 0X0008
#define RBUTTON 0X0010
#define LASTOB 0X0020

#define TOUCHEXIT 0X0040
#define HIDETREE 0X0080
#define INDIRECT 0X0100

Object flags are stored as a bit vector in the ob_flags portion of the O0BJECT
structure. Each bit in the ob_flags word is significant. Undefined bits should
be set to zero.

SELECTABLE Indicates the user can select the object.

DEFAULT Indicates the the Form Manager will examine the object if the
user enters a carriage return. No more than one object in a
form can be flagged DEFAULT. This object is usually an exit
button, which lets the user enter a carriage return to exit the
form without using the mouse.

16.8 OBJECT MANAGER 249

EXIT Indicates that the Form Manager will return control to the
caller when the exit condition is satisfied, by the user selecting
the object.

EDITABLE The object is editable by the user in.

RBUTTON An object called a radio button.

Radio buttons appear in groups of two are more, only one of
which may be selected at a given time. When the user selects
a button, the currently selected button is automatically de-
selected.

All radio buttons in a group must have the same parent.
LASTOB Indicates that an object is the last object in the object tree.

TOUCHEXIT Indicates that the Form Manager will return control to the
caller after the exit condition is satisfied. The exit condition
is satisfied when the user presses the mouse button while the
pointer is over (“touching”) the object.

HIDETREE Makes a subtree invisible. It and its children cannot be drawn
by objc_draw or found by objc_find() calls.

INDIRECT Indicates that the value in ob_spec is a pointer to the actual
value of ob_spec.

Object States

#define NORMAL 0x0000
#define SELECTED 0x0001
#define CROSSED 0x0002
#define CHECKED 0x0004

#define DISABLED 0x0008
#define OUTLINED 0x0010
#define SHADOWED 0x0020

Object states determine how the objc_draw routine draws objects. Object states
are stored as a bit vector in the ob_state portion of the OBJECT structure.

250

CHAPTER 16. GEM AES

NORMAL Indicates that the object is drawn in normal foreground and
background colors.

SELECTED Indicates that the object is highlighted by reversing the fore-
ground and background colors.

CROSSED Indicates that an “X” is drawn in the object. The object must
be a box.

CHECKED Indicates that the object is drawn with a check mark.

DISABLED Indicates that the object is drawn faintly.

OUTLINED Indicates that an outline appears around a box object. This
state is used for dialog boxes.

SHADOWED Indicates that the object (usually a box) is drawn with a drop
shadow.

Object Colors

Object colors are stored in the ob_spec portion of the OBJECT structure and the
te_color portion of the TEDINFO structure. An L preceding the name of the
color, as in LRED, indicates a light shade of the color.

The color descriptor integer has five portions as indicated below, each por-
tion’s bits represented by a letter:

aaaabbbbcdddeeee
The high four bits “aaaa” are the border color, with values ranging from O to

15. The next four bits, “bbbb” are the text color, also with values from 0 to 15.

Bit “c” indicates whether text is written in transparent mode (¢ = 0) or replace
mode (¢ = 1). The next three bits “ddd” indicate the object’s fill pattern, with
values O to 7:

0 = hollow fill
7 = solid fill
1—-6 = other pattern of increasing darkness

The low four bits “eeee” are the object’s inside color, with values from 0 to 15.
NOTE: A tree is an array of objects, and thus each object is referred to by
its index based at the address of the tree. In the Object Manager routine
descriptions, references to an object number or ID refer to this index.

OBJC_ADD 251

NAME
objc.add — adds an object to an object tree.
SYNOPSIS

int objc_add(obj_tree, obj_parent, obj_child)
OBJECT *obj_tree;

int obj_parent;
int obj_child;
DESCRIPTION

objc_add associates two OBJECT trees. The parameter obj_parent is an index
into the object tree obj _tree. This object is considered the parent object. The
last parameter obj_child is an index into the object tree obj _tree. This object
is the OBJECT which will be made the child object of obj _parent.

In other words the OBJECT that is indexed by obj _child will be made the
actual child of the OBJECT specified by the parameter obj_parent.

DIAGNOSTICS
The function result is zero if an error occurs.
SEE ALSO

Resource Construction Program (pg. 81)

252 OBJC_CHANGE

NAME

objc_change — changes an object’s ob_state value.

SYNOPSIS

int objc_change(obj_tree, obj_object, obj_resvd, obj_xclip,
obj_yclip, obj_wclip, obj_hclip, obj_newstate, obj_redraw)

OBJECT *obj_tree;

int
int
int
int
int
int
int
int

DESCRIPTION

obj_object;
obj_resvd;
obj_xclip;
obj_yclip;
obj_wclip;
obj_hclip;
obj_newstate;
obj_redraw;

objc_change changes the ob_state field of an OBJECT. The parameter obj_tree
defines the object tree. The parameter obj _object is an index into the object

tree obj_tree

. The ob_state field of the object obj_object will be changed

to the value of the parameter obj newstate. If the obj_redraw flag is 1, then
the object will be drawn with the new state obj _newstate using the clipping
rectangle defined by obj *clip.

obj_tree
obj_object
obj_resvd

obj xclip,
obj_yclip

obj_wclip,
obj_hclip

obj newstate

obj _redraw

the address of the object tree containing the object
the object to be changed
reserved; the value must be zero

the x and y-coordinate of the clip rectangle

the width and height of the clip rectangle in pixels.

the ob_state value of the object

if 1, then redraw the object, if zero then don’t redraw

OBJC_CHANGE 253

DIAGNOSTICS

The result of the function is zero if an error occurs.

254 OBJC_DELETE

NAME

objc_delete — removes an object from its parent object.
SYNOPSIS

int objc_delete(obj_tree, obj_object)

OBJECT *obj_tree;
int obj_object;

DESCRIPTION

objc_delete disassociates an OBJECT from it’s parent OBJECT. The object
tree is defined by the parameter obj_tree. The parameter obj_object is an
index into the object tree obj._tree. The object obj_object will be deleted
from the tree list obj_tree.

DIAGNOSTICS

The result of the function is zero if an error occurs.

OBJC_DRAW 255

NAME

objc_draw — draws objects, or object trees

SYNOPSIS

int objc_draw(obj_tree, obj_startobj, obj_depth,

obj_xclip, obj_yclip, obj_wclip, obj_hclip)

OBJECT *obj_tree;

int
int
int
int
int
int

DESCRIPTION

obj_startobj;
obj_depth;
obj_xclip;
obj_yclip;
obj_wclip;
obj_hclip;

objc_draw draws an object tree. The parameter obj_tree defines the OBJECT
tree being drawn. The parameter obj startobj is an index into the object tree.
This index indicates the initial object to be drawn. The parameter obj_depth
determines how many levels of the tree, from obj_startobj, are drawn. When
the object are drawn the clipping rectangle obj _*c1lip is used. This means that
only the objects defined within the clipping rectangle will be drawn.

obj_tree
obj_startob

obj_depth

obj_xclip,
obj_yclip

obj_wclip,
obj_hclip

DIAGNOSTICS

the address of the object tree containing the object
the starting object on the tree ob_drtree.

how many levels in the object tree to draw, starting from
ob_drstartob:

0 = starting object only

n = n level children of starting object

the x and y-coordinates of the clip rectangle in pixels

the width and height of the clip rectangle in pixels

The result of the function is zero if an error occurs.

256 OBJC_EDIT
NAME
objc_edit — allows the user to edit the text in an object.
SYNOPSIS
int objc_edit(obj_tree, obj_object, obj_char, obj_idx,
obj_kind, obj_newidx)
OBJECT *obj_tree;
int obj_object;
int obj_char;
int obj_idx;
int obj_kind;
int *obj_newidx;
DESCRIPTION
objc_edit is used to handle user interaction with a text object tree. The object
tree being edited is defined by the parameter obj_tree. The actual edit object
is defined by the index obj_object into the object tree obj_tree. This object
must be of type G_TEXT or G_BOXTEXT. The parameter obj _char is the character
that is to be inserted at position obj_idx in the input box string. The type of
edit to be performed is controlled by obj _kind. Its values are defined as follows:
1 = combine the values in te_ptext and te_ptmplt into a format-
ted string; turn on text cursor
2 = validate typed characters against te_pvalid, update
te_ptext, and display string
3 = turn off text cursor
After the edit is performed the function returns. The index of the next character
in the raw text string is stored at obj newidx.
NOTE

objc_edit does not query the keyboard for the user input. It is strictly a function
which performs an edit operation on the editable object and displays the changes
specified by the parameters. It is suggested the form_do function be used for
obtaining user input.

OBJC_EDIT 257

DIAGNOSTICS

The result of the function is zero if an error occurs.
SEE ALSO

Object Introduction (pg. 237, form_do)

258 OBJC_FIND

NAME
objc_find — finds an object under the mouse form.

SYNOPSIS

int objc_find(obj_tree, obj_startobj, obj_depth, mousex, mousey)
OBJECT *obj_tree;

int obj_startobj; ‘
int obj_depth;
int mousex;
int mousey;
DESCRIPTION

objc_find locates an object which is drawn under a defined point on the screen.
The point where the object is searched for is defined by the parameters mousex
and mousey. The object tree that is searched is defined by the parameter
obj_tree. The object where the search begins is defined by the parameter
obj _startobj. This number is an index into the object tree obj _tree. The
number of levels down the object tree that are searched is defined by the pa-
rameter obj _depth. The result of the function will be the number of the object
found under the point. If no object was found the result of the function is —1.

If obj_depth is zero then only the object specified by obj_startobj will be
searched.

OBJC_OFFSET 259

NAME
objc_offset — computes an object’s location relative to the screen

SYNOPSIS

int objc_offset(obj_tree, obj_object, obj_xoffset, obj_yoffset)
OBJECT *obj_tree;
int obj_object;
int *obj_xoffset;
int *obj_yoffset;

DESCRIPTION

objc_offset returns the position of the specified object on the screen. The object
tree is defined by the parameter obj_tree. The parameter obj _object is an
index into the object tree obj _tree which defines the object. The coordinates
of the object, relative to the upper-left corner of the screen, are stored at the
locations pointed to by obj _xoffset and obj_yoffset.

DIAGNOSTICS

The result of the function is zero if an error occurs.

260 OBJC_ORDER

NAME
objc_order — moves an object to a new position in its parent’s list of children.

SYNOPSIS

int objc_order(obj_tree, obj_object, obj_newpos)
OBJECT *obj_tree;

int obj_object;
int obj_newpos;
DESCRIPTION

objc_order moves an object in the object tree to a new position in the object
list. The object tree is defined by the parameter obj_tree. The object to be
moved is defined by the parameter obj_object. This number is an index into
the object tree obj _tree. The parameter obj _newpos defines the new position
of the object obj object. The new position is defined relative to the bottom
of the object list as follows:

0 = on the bottom

1 = one from the bottom

2 = two from the bottom [etc.]

—1 = on the top
DIAGNOSTICS

The result of the function is zero if an error occurs.

16.9 RESOURCE MANAGER 261

16.9 Resource Manager

rsrc_load loads entire resource file into RAM

rsrc_free frees the memory allocated during rsrc_load
rsrc_gaddr gets the address of a data structure in memory
rsrc_saddr stores an index to a data structure

rsrc_obfix - converts an object’s (x, y) coordinates from char-

acter to pixel coordinates

Introduction

A resource is an application independent interface between the user, or a device,
and the application. Its purpose is to allow easy change to the application’s
interface without changing the application. A common use for this would be
localizing an application for a language other than the one for which it was
originally written. For example, if an application was originally written for an
English literate market and the authors wished to sell it in France, a simple
change in the resources using the Resource Construction Program hopefully
would be all that is required.

Using the Resource Manager

The rsrc_load routine is used to load the resource file into RAM. It also makes
any necessary updates to the file. These updates include building the array of
tree pointers, storing the tree array address in the application’s global array,
and making the file device specific to the screen’s resolution.

Example

The example below illustrates how to load a resource into memory.

#include <osbind.h>
#include <gemdefs.h>
#include <obdefs.h>

#include "resource.h" /* header file created by RCP */
#include "globals.h" /* contains definition of menubar */
/#*

init_resources - attempts to load the applications resources into
memory. Note that if the file is not found in the current

262

CHAPTER 16.

directory the ROM will search the A:\ drive automatically.

*/
init_resources()
{
if (!rsrc_load("resource.rsc")) {
form_alert(1, "[0] [Cannot find resource.rsc file|Terminating
exit(2);
}
}
/*
Put up simple dialog to show hov resources wvork.
*/
main()
{
OBJECT *dialog;
int X, ¥, ¥, h;
/%
Initiailize the ROMs.
*/
appl_init();
/*
Load resources.
*/

init_resources();

Get address of dialog definition in memory.

rsrc_gaddr(0, PARMDLOG, &dialog);

This next set of functions display a dialog and handle
the dialogs events. For a in depth description of
vhat is begin done refer to the Form Manager.

*/

form_center (dialog, &x, &y, &w, &h);

form_dial (FMD_START, O, 0, 0, O, x, y, v, h);
objc_drav (dialog, 0, 10, x, y, v, h);

form_do (dialog, 0);

form_dial (FMD_FINISH, O, O, O, O, x, y, w, h);

/*

Shut down the application.
*/
appl_exit();

GEM AES

...J[0K1");

RSRC_FREE 263

NAME

rsrc_free — frees the memory allocated during rsrc_load.
SYNOPSIS

int rsrc_free()

DESCRIPTION

rsrc_free release the memory allocated for resourced defined during the rsrc_load
function.

DIAGNOSTICS

The result of the function is zero if an error occurs.

264 RSRC_GADDR

NAME
rsrc_gaddr — gets the address of a data structure in memory.
SYNOPSIS
int rsrc_gaddr(re_gtype, re_gindex, re_gaddr)
int re_gtype;
int re_gindex;

struct **re_gaddr;

DESCRIPTION

rsrc_gaddr returns the address of a specified OBJECT in the resource list.
The type of the object is defined by the parameter re_gtype. The parameter
re_gindex is an index into the object list specifying the object whose address
is required. The address of the object is stored at the pointer whose address
is defined in re_gaddr. The different types of objects whose address may be
obtained is as follows:

re_gtype the type of data structure:
0 = tree
= O0BJECT
TEDINFO
ICONBLK
BITBLK
string

imagedata

obspec

te_ptext

© 00 T O T
Il

te_ptmplt
te_pvalid

—
- O
Il

ib_pmask

et
w
Il

ib_pdata

[y
>
Il

ib_ptext

[y
(S,
I

ad_frstr — the address of a pointer to a free
string
16 = ad_frimg — the address of a pointer to a free
image

re_gindex the index of the data structure.

RSRC_GADDR 265

re_gaddr the address of the data structure specified by re_gtype and
re_gindex.

DIAGNOSTICS

The result of the function is zero if an error occurs.

266 RSRC_LOAD

NAME

rsrc_load — loads an entire resource file into memory.
SYNOPSIS

int rsrc_load(res_fname)
char *res_fname;

DESCRIPTION

rsrc_load loads a resource file into memory and changes all offset values into
specific addresses. The resource file that is loaded is specified by the path name
res_fname. This routine searches for the file and finds its total size in bytes.
Using the DOS allocate call, it allocates the memory space for the resource file.
It then opens it and reads the resource into memory, and closes the file. It then
makes the required updates to the file:

1. make the file device-specific to the screen’s resolution.

2. link up all the OBJECT pointers, TEDINFO pointers, ICONBLK pointers and
BITBLK pointers.

3. build the array of tree pointers.
4. store the address of the tree array in the application’s Global Array.

DIAGNOSTICS

The result of the function is zero if an error occurs.

RSRC_OBFIX 267

NAME

rsrc_obfix — Changes a resource object’s coordinate system.
SYNOPSIS

int rsrc_obfix(res_tree, res_object)

OBJECT *res_tree;
int res_object;

DESCRIPTION

rsrc_obfix converts an objects position and size from a character coordinate
system to a pixel coordinate system. The object tree is defined by the parameter
res_tree. The object to be converted is defined by the parameter res_object
which is an index into the object tree res_tree.

DIAGNOSTICS

The result of the function is zero if an error occurs.

268 RSRC_SADDR

NAME
rsrc_saddr — stores an index to a data structure.
SYNOPSIS
int rsrc_saddr(res_type, res_index, res_addr)
int res_type;
int res_index;

struct *res_addr;

DESCRIPTION

rsrc_saddr stores the address res_addr into the resource list. The rsrc_gaddr
function returns the address of a specified type of object at a certain index in
the resource list. If it becomes necessary to redefine the object in the resource
list the rsrc_saddr function is used. The type of the resource to be changed is
defined by the parameter res_type. The index into the resource type list is
defined by the parameter res_index. The address to which the resource will
now point for the specified object is defined by res_addr. The types of resources
are:

re_stype the type of data structure.
0 = tree
OBJECT
TEDINFO
ICONBLK
BITBLK
string

imagedata
= obspec
= te_ptext

© ® T O UA W -
Il

= te_ptmplt

o
o
Il

te_pvalid

[y
[a—
Il

ib_pmask

et
w
il

ib_pdata

(=Y
S
Il

ib_ptext

[y
o
I

ad_frstr — the address of a pointer to a free
string
ad_frimg — the address of a pointer to a free
image

[a—y
(2}
Il

RSRC_SADDR 269

DIAGNOSTICS

The result of the function is zero if an error occurs.
SEE ALSO

rsrc_gaddr

16.10 SCRAP MANAGER 271

16.10 Scrap Manager

scrp_read reads the scrap directory currently stored in the
clipboard
scrp_write writes the scrap directory to the clipboard
Introduction

The Scrap Manager provides a means for applications to share information.

There are two ways to gather data to be transmitted to another application.
First, the data may be extracted from the source file leaving the only version of
the data in the clipboard or, second, the data may be copied into the clipboard
leaving the source file unaffected by the operation.

The target for a scrap_write procedure is the clipboard. It is also the source
for a read.

The clipboard only keeps one element at the time. If two scrap_write oper-
ations are performed, one immediately following the other, the data from the
scrap_write is overwritten by the data from the second.

The “clipboard” is merely AES keeping track of a directory where a scrap
file may be stored. It is up to the application to conform to the standard
conventions of creating the scrap file.

The convention states that the file name must be SCRAP and the filetype
must convey the type of data.

The following types are defined by GEM:

Data Type File Extension
Text strings .TXT
Spreadsheet data .DIF
Metafile .GEM

Bit-images . IMG

272 SCRP_READ

NAME
scrp.read — reads the scrap directory currently stored on the clipboard.
SYNOPSIS

int scrp_read(scrap_buf)
char *scrap_buf;

DESCRIPTION

scrp_read reads the name of the scrap file from the “clipboard.” The path name
of this scrap file is stored at scrap_buf. The function result is zero if an error
occurs.

NOTE

It is up to the application to create the space and read the data in from the
scrap file. The “clipboard” is strictly a static piece of memory that may be
used to communicate the path of the scrap file between applications.

SEE ALSO

scrp_write

NAME

SCRP_WRITE 273

scrp_write — writes the scrap directory to the clipboard.

SYNOPSIS

int scrp_write(scrap_fname)
char *scrap_fname;

DESCRIPTION

NOTE

scrp_write writes the path name of the scrap directory into an area called the
clipboard. scrap_fname is the path name of the scrap file.

It is up to the application to write the scrap data to the path name that is
specified by the scrp_write function. The “clipboard” is strictly a static piece
of memory used to pass path name information about the scrap file between
applications.

16.11 SHELL MANAGER 275

16.11 Shell Manager

shel_envrn Get an environment variable value
shel_find Find an application pathname through DOS search
path
shel_read Get command line variables
shel_write Launch another application
Introduction

The Shell Manager is a set of functions that may be used by an application
to communicate with the outside environment. These functions include the
manipulation of the application’s command line and environment variables.
They can also find and invoke other applications.

276 SHEL_ENVRN

NAME
shel_envrn — get address of environment variable table.

SYNOPSIS

int shel_envrn(value, name)
char **value, *name;

DESCRIPTION L

shel_envrn searches the GEMDOS environment variable list for the name value.
The form of an environment variable is name=value. If the variable name is
not in the environment list a NULL pointer is returned.

value a pointer to 4 byte area where the address of the environment
variable value is located.

name a character pointer to the name of the environment variable to
be searched for. Note that the string should have an =’ sign
at the end.

NOTE

This function will return a pointer to the byte following the first pattern that
was matched with name.

DIAGNOSTICS

The result of the function is always 1.
SEE ALSO

getenv

SHEL_FIND 277

NAME
shel_find — find the full pathname of an application.
SYNOPSIS

int shel_find(filename)
char *filename;

DESCRIPTION

shel_find searches for the filename specified by the parameter filename using
the DOS search path. The full pathname of the file, if found, will be stored at
the memory pointed to by the parameter filename.

NOTE

The buffer must be large enough to hold the resulting pathname.
DIAGNOSTICS

The result of the function is O if an error ocurrs.
SEE ALSO

shel_write

278 SHEL_READ

NAME

shel read — tells an application its name and parameters.
SYNOPSIS

int shel_read(programname, commandline)
char *programname;
char *commandline;

DESCRIPTION

shel_read is used to obtain the application’s name and command line parameters
when the application was launched.

programname points to a buffer where the program name will be stored.
commandline points to a buffer where the parameters to the program will be
stored.

NOTE

The full pathname of the programname will be returned if the application does
not reside in the current working directory.

DIAGNOSTICS

The result of the function is 0 if an error occurs.
SEE ALSO

shel_write, Progam Parameters (pg. 107)

SHEL_WRITE 279

NAME
shel_write — launch a new application.

SYNOPSIS

int shel_write(execcode, graftype, progtype, progname, cmdline)
int execcode, graftype, progtype;
char *progname, *cmdline;
DESCRIPTION

shel_write exit GEM or launch new application.

execcode execution code. (0 = Exit GEM, 1 = run new program)

graftype program type. (0 = non graphic, 1 = graphic)

progtype program type. (0 = non GEM, 1 = GEM)

progname character pointer to name of program to launch.

cmdline character pointer to new programs parameters.
DIAGNOSTICS

The result of the function is O if an error ocurrs.
SEE ALSO
shel_read, Pexec, Shell Introduction (pg. 275)

16.12 WINDOW MANAGER

281

16.12 Window Manager

wind_calc Calculate the window size

wind_close Close a window

wind_create Create a window

wind_delete Remove a window ID from the window list

wind_find Find a window under a point

wind_get Get information about a window

wind_open Open a created window

wind_set Set values for display fields

wind_update Tell GEM that a window has been updated
Introduction

The following picture shows the various components of a window:

Close box Title bar & Move bar \

“Test'WNindow

Information
line

Work Area

Alrow

|
Slider Scroll bar Size box

Figure 16.4: Sample Window

The window library supports the creation, deletion and updating of an ap-
plication’s windows. The <gemdefs.h> header file should be included in appli-
cations using the window library. An application can have up to eight windows
simultaneously open. Each window is refered to by an integer known as a
window handle.

The only components required for all windows are the title bar and work

282

CHAPTER 16. GEM AES

area. The optional components are called window control areas. The work
area is maintained by the application, all other components are handled by
the window library routines. The window library communicates information
about user actions back to the application through message events. These
events occur when a user mouse operation changes the window in some way.
For example, by moving the window to a new location or pressing in a scroll
bar. The application is notified about the event after the fact; the window
library traps the mouse event and generates an appropriate window event for
the application. The application can turn off the mouse event trapping and
receive all mouse events itself by calling wind_update with the value BEG_MCTRL
(see the manual page for more information). See the event library for a list of
the ‘WM_’ messages generated by the window library.

Slider Usage

The ratio of the size of the slider to the size of the scroll bar should be the
same as the size of the work area to the size of the object being displayed in
the window. This allows the user to see at a glance exactly where in (by the
position of the slider) and how much of (by the size) the complete object the
window is. The size of the slider is specified as a percentage of the scroll bar’s
size to make this easy to do.

Move Bar

The move bar is overlaied on top of the title bar. It just enables mouse tracking
and moving of the window when the user presses the mouse over the title bar.
There is no visual clue that the move bar exists, the user will discover whether
it exists or not when he tries to move the window.

Desktop Window

The menu bar and gray background is called the desktop window (although it
doesn’t look or work like a normal window). The window library automatically
redraws the desktop whenever part of it becomes uncovered. The size of the
gray region can be obtained by calling wind_get with a value of WF_WORKXYWH for
window 0. wind_get is used to get information about windows, WF_WORKXYWH
asks for the work area’s (x,y) location and width and height. Application
windows should be initially created to fit inside the desktop work area.

The gray background area can be replaced by an application defined object
tree by calling wind_set with a value of WF_NEWDESK for window 0. This is the

16.12 WINDOW MANAGER

283

way most applications place icons on the desktop.

Creating a Window

A window is created by a sequence of calls that specify the initial size, the
largest size, the location, and the type of window controls the window will
have. These values may be changed later with wind_set.

The routine that creates the window wants the size of the perimeter of the
window. This size is not nearly as important to the application as the size of
the work area. The function wind_calc is used to calculate the perimeter (or
border) size from the work area size and vice versa. The program should call
wind_calc to determine the border area size for both the initial and largest sizes
of the window.

The application calls wind_create after determining the size of the border
area. wind_create reserves one of the eight windows and returns the handle
number for it. It does not draw the window.

Next the application calls wind_open with the initial size. The window is
drawn at this point. A WM_REDRAW event is also generated which will cause the
application to draw the interior of the window in the normal course of event
processing. The example below is used by the sample application to create a
new window.

#include <gemdefs.h>
#include "globals.h"

/*
nev_window - create & drav a nev windov.
1) create the windov.
2) drawv the window with the wind_open()
3) create and setup the window record.
*/
windowptr nev_vindow(thekind)
int thekind;
{
int handle;
int xdesk, ydesk, wdesk, hdesk;
vindowptr thevwin;
static vindov_count = 1;
/%

Get the desktop coordinates.
*/
vind_get(0, WF_WORKXYWH, &xdesk, &ydesk, &wdesk, &hdesk);

284

GEM AES

CHAPTER 16.

/*

Create the information for the windovw.

Max size is the desktop.

*/
handle = wind_create(thekind, xdesk, ydesk, wdesk, hdesk);
[+

Check for error.
*/ !

if (handle < 0) {
paramdlog("Sorry! No more windows available.");

return NULL;
}
/*
Allocate space for window record.
+/
thewin = (windowptr) malloc(sizeof(windowrec));
/*

Set the title for the windovw.
*/

sprintf(thewin -> title, " Untitled %d ", window_count++);
vind_set(handle, WF_NAME, thewin -> title, 0, 0);

/*
A little flim-flammery.
*/
graf_growbox(0, 0, 0, O, xdesk, ydesk, wdesk/2, hdesk/2);

/*
Draw the windovw.
*/
vind_open(handle, xdesk, ydesk, wdesk/2, hdesk/2);

/*
Initialize windovw data structure.
*/
thevin -> next NULL;
thewin -> handle handle;
thewin -> kind thekind;
thewin -> fullsize FALSE;
thevin -> graf.handle open_vwork(&thevin -> graf.mfdb);
thevin -> updateproc nullproc;

vind_get(handle, WF_WORKXYWH, &xdesk, &ydesk, &wdesk, &hdesk) ;
setrect(&thevwin -> work, xdesk, ydesk, wdesk, hdesk);

wind_get(handle, WF_CURRXYWH, &xdesk, &ydesk, &wdesk, &hdesk);

16.12 WINDOW MANAGER

285

setrect(&thevin -> box, xdesk, ydesk, wdesk, hdesk);

/*
Insert into windowlist.

*/
register windowptr winptr = (windowptr) &firstwindow;

vhile(winptr -> next)
vinptr = winptr -> next;

vinptr -> next = thevin;

}
make_frontwin(thewin);

return thevin;

Closing a Window

A window can be removed from the screen by calling wind_close with the win-
dow handle. The window is still allocated however and may be redrawn by call-
ing wind_open again. If the window is not needed any longer then wind_delete
should be called to return the window to the window library so it may be used
by another application (a desk accessory for instance). The example below is
used in the sample application to close and delete a window.

[*
dispose_window - Closes the vwindov and disposes the storage for
the windovw record.
*/
dispose_window(thewin)
vindowptr thevin;
{
int x, y, v, h;
int handle;

handle = thewvin -> handle;

vind_close(handle);

vind_get(handle, WF_CURRXYWH, &x, &y, &w, &h);
graf_shrinkbox(0, 0, 0, O, x, y, w, h);

vind_delete(handle);

286 CHAPTER 16. GEM AES

{
/*
Remove window record from window list.
*/
register windowptr winptr = (windowptr) &firstwindov;
vhile(winptr -> next) ,
if (winptr -> next == thewvin)
break;
else
vinptr = winptr -> next;
if (winptr -> next)
vinptr -> next = winptr -> next -> next;
else {
paramdlog("Internal Error: Window pointer not in list.");
shutdown(2);
}
/*
Update the front window pointer.
*/
if (!firstwindov)
thefrontvin = NULL;
else
if (winptr == (windowptr) &firstwindow)
make_frontwin(winptr -> next);
else
make_frontwin(winptr);
/*
Close workstation associated with windov.
*/
v_clsvvk(thevin -> graf.handle);
Release windov data structure storage.
free(thevin);
}

Drawing and Updating a Window

The window library maintains a rectangle list of non-intersecting rectangles
which together cover all visible parts of each opened window. This list is ac-
cessed by calling wind_get with WF_FIRSTXYWH to retrieve the first one, and
WF_NEXTXYWH to retrieve the rest. The last rectangle is indicated by a width

16.12 WINDOW MANAGER

287

and height of zero.

The application must redraw a window when it receives a WI_REDRAW event.
First it should call wind_update, passing a “1” to tell the window library not
to change any rectangle lists while the window is redrawn.

A window handle and a rectangle to be redrawn is passed in the message
buffer. The application should step through the window’s rectangle list inter-
secting each rectangle with the rectangle passed in the message buffer and then
redraw the window with clipping set to the resultant rectangle (see the VDI
function vs_clip). When the entire window has been redrawn, the application
should call wind_update again, but pass 0 to let the window library change
the rectangle lists again. The clipping rectangle should be reset to the desktop
work area also.

Any rectangular area of the screen can be invalidated by calling form_dial
with a value of FMD_ FINISH. The rectangle will be redrawn by a series of
events for all windows covered by it. The example below is used by the sample
application to update all the windows when a redraw event is received.

/*
do_update - Update all of the windows affected by the
update event.
*/
do_update(message)
int *message;
{

int thevindov;
rect r1, therect;

thevindov = message[3];
setrect(&therect, message[4], message[b], message[6], message[7]);
vind_get(thevindow, WF_FIRSTXYWH, &ri.x, &rl.y, &rl.w, &rl1.h);

/*

Cycle through rectangle list.
*/
vhile (r1.v && r1.h) {

if (rc_intersect(&therect, &rl)) {

/*
Set clipping so that drawving will only change
the changed area.

setclip(thevindovw, &r1);

Call the function to redraw the windov.

s/

288

CHAPTER 16. GEM AES

update_window(thewindow) ;

}
vind_get(thevindow, WF_NEXTXYWH, &rl.x, &rl.y, &ri.w, &ri.h);
}
{
int x, y, v, h;
Restore clip rectangle to desktop rectangle.
vind_get(0, WF_WORKXYWH, &x, &y, &w, &h);
setrect(&rl, x, y, x+v, y+h);
vs_clip(phys_handle, 1, &rl);
}
}
Examples

The following example functions illustrate common functions that are used in
a AES application for handling window events. These functions are used in a
complete sample application that is supplied as part of an Laser Development
System. The next example shows a method for resizing a window.

#define WIND_MINW 80
#define WIND_MINH 80

do_resize - redraws the windov at it’s nev position and updates all
of the window’s position records.

do_resize(message)
int *message;

{
int x, y, v, h;
int handle;

handle = messagel[3];
x = message[4];

y = message[b];
v = message[6];
h = message[7];
/%
Make sure that the window doesn’t become too small.
*/

if (w < WIND_MINW) w = WIND_MINW;

16.12 WINDOW MANAGER 289

if (h < WIND_MINH) h = WIND_MINH;

/*
Redrav the window at it’s newv size.
*/
wind_set(handle, WF_CURRXYWH, x, y, w, h);
vind_get(handle, WF_WORKXYWH, &x, &y, &v, &h);

{
/*
Set the Windowv record data.
*/

vindowptr thevin;
thewin = findvwindowptr(handle);

setrect(&thewin -> work, x, y, v, h);
setrect(&thevin -> box, x, y, w, h);

thevin -> fullsize = FALSE;

This example illustrates the method for making the window become it’s full
size.

/*
do_fullsize - draws the wvindow at it’s fully defined size. If
the vindow is at it’s full size then this routines restores
the window to it’s previous size.
*/
do_fullsize(handle)
int handle;
{

register vindowptr thevin;

int x, y, v, h;
int d;

thewin = findwindowptr(handle);

if (thewin -> fullsize) {
/*
Back to normal size
*/
wind_calc (WC_WORK, thewin -> kind,
thevin -> box.x, thewin -> box.y,
thevin -> box.w, thewin -> box.h,

&thewin -> work.x, &thewin -> work.y,

290 CHAPTER 16. GEM AES

&thewin -> work.w, &thewin -> work.h);

wvind_set(handle, WF_CURRXYWH,
thewin -> box.x, thewin -> box.y,
thewin -> box.w, thewin -> box.h);

thewin -> fullsize = FALSE;
} else {

/*
Drav windov at full size; .

*/

vind_get(handle, WF_FULLXYWH, &x, &y, &w, &h);

vind_set(handle, WF_CURRXYWH, x, y, w, h);

wind_calc(WC_WORK, thewin -> kind, x, Yy, v, h,
&thevin -> work.x, &thewin -> wvork.y,
&thevin -> work.w, &thewin -> work.h);

thevin -> fullsize = TRUE;

The next example shows a method for decoding and handling window events.

do_windov - determines the type of windov event and then calls
the appropriate function to handle the event.

do_wvindow(message)
int *message;
{
int handle;

handle = message[3];

set_mouse (OFF) ;
vind_update (BEG_UPDATE) ;

switch (message[0]) {
case WM_REDRAVW:
do_update(message) ;
break;

case WM_NEWTOP:

case WM_TOPPED:
make_frontvin(findvindowptr(handle));

break;

case WM_MOVED:
case WM_SIZED:
do_resize(message);

16.12 WINDOW MANAGER 201

break;

case WM_FULLED:
do_fullsize(handle);
break;

case WM_CLOSED:
dispose_window(findwindowvptr(handle));

break;
}

vind_update (END_UPDATE) ;
set_mouse (ON);

292 WIND_CALC

NAME

wind_calc — calculates the X- and Y-coordinates and the width and height of
a window’s work area or border area.

SYNOPSIS

int wind_calc (wi_ctype, wi_ckind,
wi_cinx, wi_ciny, wi_cinw, wi_cinh,
wi_coutx, wi_couty, wi_coutw, wi_couth)

int wi_ctype, wi_ckind;
int wi_cinx, wi_ciny, wi_cinw, wi_cinh;
int *wi_coutx, *wi_couty, *wi_coutw, *wi_couth;

DESCRIPTION

wind_calc calculates the X- and Y-coordinates and the width and height of a
window’s border area or work area. The parameter wi_ctype indicates the
type of calculation that is to be performed. If wi_ctype contains the value
0 the function assumes that the input rectangle, wi_cin*, describes the size
of the work area. The output rectangle will be the dimensions of the total
window. If wi_ctype contains the value 1 the function assumes that the input
rectangle describes the size of the entire window. The output rectangle will be
the dimensions of the work area of the window.

wi_ctype the type of calculation to perform:

0 = return border area X, Y, width, and height.

1 = return work area X, Y, width, and height.
wi_crkind A bit vector of the window components used for the window

in question.

The following bits represent the components:

0x0001 (NAME) title bar with name
0x0002 (CLOSE) close box

0x0004 (FULL) full box

0x0008 (MOVE) move box

0x0010 (INFO) information line
0x0020 (SIZE) size box

0x0040 (UPARROW) up-arrow

WIND_CALC 293

wi_cinx

wi_ciny

wi_cinw

wi_cinh

wi_coutx

wi_couty

wi_coutw

wi_couth

DIAGNOSTICS

0x0080 (DNARROW) down-arrow
0x0100 (VSLIDE) vertical slider
0x0200 (LFARROW) left-arrow
0x0400 (RTARROW) right-arrow

This call uses the following bit settings for each component:

0 = does not have component.
1 = has the component.

the input X-coordinate of the work area (if wi_ctype = 0) or
border area (if wi_ctype = 1).

the input X-coordinate of the work area (if wi_ctype = 0) or
border area (if wi_ctype = 1).

the input width of the work area (wi_ctype = 0) or border
area (if wi_ctype = 1).

the input height of the work area (wi_ctype = 0) or border
area (if wi_ctype = 1).

the output X-coordinate of the work area (if wi_ctype = 1) or
border area (if wi_ctype = 1).

the output Y-coordinate of thework area (if wi_ctype = 1) or
border area (if wi_ctype = 0).

the output width of the work area (if wi_ctype = 1) or border
area (if wi_ctype = 0).

the output height of the work area (if wi_ctype = 1) or border
area (if wi_ctype = 0).

The result of the function will be zero if an error occurs.

294 WIND_CLOSE

NAME
wind_close — closes an open window.

SYNOPSIS

int wind_close(wi_clhandle)
int wi_clhandle;

DESCRIPTION

wind_close closes an open window. The window to be closed is defined by the
window handle wi_clhandle. Although the window is closed it’s data structures
remain in memory. The application can re-open the window by calling the
wind_open function again.

DIAGNOSTICS
The result of the function will be zero if an error occurs.
SEE ALSO

wind_open

WIND_CREATE 295

NAME

wind_create — allocates the application’s full-size window and returns a handle.

SYNOPSIS

int wind_create(wi_crkind, wi_crwx, wi_crwy, wi_crww, wi_crwh)
int wi_crkind;
int wi_crwx;
int wi_crwy;
int wi_crww;
int wi_crwh;

DESCRIPTION

wind_create creates a window definition in memory. A call to this routine
allocates the application’s full-size window and returns the window’s handle (a
integer value). The window’s full size rectangle is defined by the parameters
wi_crwx, wi_crwy, wi_crww, and wi_crwh. The result of the function will be the
handle of the new created window.

wi_crkind A bit vector of the window components to include in the new
window.

The following bits represent the components:

0x0001 (NAME) title bar with name
0x0002 (CLOSE) close box
0x0004 (FULL) full box

0x0008 (MOVE) move box
0x0010 (INFO) information line
0x0020 (SIZE) size box
0x0040 (UPARROW) up-arrow
0x0080 (DNARROW) down-arrow
0x0100 (VSLIDE) vertical slider
0x0200 (LFARROW) left-arrow
0x0400 (RTARROW) right-arrow
0x0800 (HSLIDE) horizontal slider

This call uses the following bit settings for each component:

0 = does not have component.
1 = has the component.

296 WIND_CREATE

wi_crwx the X-coordinate of the full-size window.
wi_crwy the Y-coordinate of the full-size window.
wi_crww the width (in pixels) of the full-size window.
wi_crwh the height (in pixels) of the full-size window.

NOTE
The window’s initial size is determined by the wind_open function.

DIAGNOSTICS

If a negative value is returned an error occurred during the creation of the
window.

SEE ALSO

wind_open

WIND _DELETE 297

NAME
wind_delete — de-allocates the application’s window and handle.

SYNOPSIS

int wind_delete(wind_handle)
int wind_handle;

DESCRIPTION

wind_delete release the memory allocated by the window and removes the win-
dow handle from the active window list. The window that is to be deleted is
defined by the window handle wind_handle.

DIAGNOSTICS

The result of the function is zero if an error occurs.
SEE ALSO

wind_create

298 WIND_FIND

NAME
wind_find — find a window under a point on the screen.

SYNOPSIS

int wind_find(wi_fmx, wi_£fmy)
int wi_£fmx;
int wi_fmy;
DESCRIPTION

wind_find returns the handle of the frontmost window under the pixel posi-
tion (wi_fms,wi_fmy). A value of zero will be returned if only the desktop or
background is visible at that location.

wi_fmx the X-coordinate of the position.

wi_fmy the Y-coordinate of the position.

WIND_GET 299

NAME
wind_get — gets the information on the window specified by wi_ghandle.
SYNOPSIS

int wind_get(wi_ghandle, wi_gfield,
wi_gwl, wi_gw2, wi_gw3, wi_gw4)

int wi_ghandle;
int wi_gfield;
int *wi_gwl, *wi_gw2, *wi_gw3, *wi_gw4;

DESCRIPTION

wind_get returns information about the window with handle wi_ghandle. This
routine can request information about the windows (x,y) position and size,
the active window handle, the slider location and size, the window’s current
location and size, or the window’s previous location and size.

wi_ghandle The handle of the window that the application wants informa-
tion about.
wi_gfield An integer that tells the routine which information to pass

back to the application program. The value of wi_gfield de-
termines which of wi_gwl, wi_gw2, wi_gw3, and wi_gw4 is re-
turned.

4 (WF_WORKXYWH) — request the coordinates of the window

work area.
wi_gwl X-coordinate
wi_gw2 Y-coordinate
wi_gw3 width
wi_gw4 height

5 (WF_CURRXYWH) — request the coordinates of the entire
current window.

wi_gwl X-coordinate
wi_gw2 = Y-coordinate
wi_gw3 width

we_gwd height

300

WIND_GET

10

11

12

(WF_PREVXYWH) — request the coordinates of the previous
window.

wi_gwl X-coordinate
wi_gw2 Y-coordinate
wi_gw3 width
wi_gwd height

(WF _FULLXYWH) — request the coordinates of the fullsize
window.

wi_gwl X-coordinate
wi_gw2 Y-coordinate
wi_gw3 width
wi_gwd height

(WF_HSLIDE) — request the relative position of the hor-
izontal slider. It returns a number between 1 and 1000
which is the relative position of the slider. (1 = leftmost
position; 1000 = rightmost position).

wi_gwl = Slider position

(WF_VSLIDE) — request the relative position of the verti-
cal slider. It returns a number between 1 and 1000, giving
the relative position of the vertical slider. (1 = topmost
position; 1000 = bottom position).

wi_gwl = Slider position

(WF_TOP) — request the handle of the active window.
wi_gwl = Window Handle

(WF_FIRSTXYWH) — request the coordinates of the first
rectangle in the window’s rectangle list.

wi_gwl X-coordinate
wi_gw2 Y-coordinate
wi_gw3 width
wi_gwd height

(WF_NEXTXYWH) — request the coordinates of the next
rectangle in the window’s rectangle list.

WIND_GET 301

wi_gwl,
wi_gw2,
wi_gw3,
wi_gw4d

DIAGNOSTICS

13

15

16

wi_gwl X-coordinate
wi_gw2 Y-coordinate
wi_gw3 width
wi_gwd height

(WF_RESVD) — [Reserved].

(WF_HSLSIZE) — request the size of the horizontal slider.
—1 = default minimum size (a square box).
1 — 1000 = the slider’s relative size compared to the hor-

izontal scroll bar))
wi_gwl = Slider size

(WF_VSLSIZE) — request the size of the vertical slider.
—1 = default minimum size (a square box).
1 — 1000 = the slider’s relative size compared to the ver-

tical scroll bar
wi_gwl = Slider size

The return values. The meaning of each is determined by
wi_gfield above.

Returns O if an error occurs.

302 WIND_OPEN

NAME

wind_open — opens the created window to a specified size and location.
SYNOPSIS

int wind_open(wi_ohandle, wi_owx, wi_owy, wi_oww, wi_owh)

int wi_ohandle;
int wi_owx, wi_owy, wi_oww, wi_owh;

DESCRIPTION

wind_open draws a window onto the screen. This window’s size is defined by
wi_oww and wi_owh at the location (wi_owx,wi_owy).

wi_ohandle the handle of the window to be opened (returned by
wind_create).

wi_owx the initial X-coordinate of the window.
wi_owy the initial Y-coordinate of the window.
wi_oww the initial width (in pixels) of the window.
wi_owh the initial height (in pixels) of the window.
NOTE
It is necessary to obtain a window handle from the wind_create function before
opening the window.
DIAGNOSTICS
The result of the function is zero if an error occurs.
SEE ALSO

wind_create

WIND_SET 303

NAME
wind_set — sets new values for the display fields for a window.

SYNOPSIS

int wind_set(wi_shandle, wi_sfield, wi_swl, wi_sw2,
wi_sw3, wi_sw4)

int wi_shandle;
int wi_sfield;
int wi_swl, wi_sw2, wi_sw3, wi_sw4;

DESCRIPTION

wind_set is used to change window attributes. The parameter wi_shandle de-
fines the window whose attributes are to be changed. The attribute to be
changed is defined in the parameter wi_sfield.

wi_shandle The handle of the window whose fields are to be changed.

wi_sfield A numerical value identifying the field to change:
1 (WFXIND) — the components of the window (see
wi_crkind, the wind_create routine).
wi_swl = New wi_crkind

2 (WF_NAME) — a string containing the name of the window.
wi_swl = High word of char *
wi_sw2 = Low word of char *

3 (WF_INFO) — a string containing the information line.
wi_swl = High word of char *
wisw2 = Low word of char *

5 (WF_CURRXYWH) — defined under wind_get.

8 (WF_HSLIDE) — defined under wind_get.

9 (WF_VSLIDE) — defined under wind_get.

10 (WF_TOP) — defined under wind_get.

304 WIND_SET

14 (WF_NEWDESK) — the address of a new default desktop for
GEM AES to draw. Takes a tree (OBJECT *) and index
of subtree to draw.

wi_swl High word of OBJECT *
wi_sw2 Low word of OBJECT *
wi_sw3 Subtree index

15 (WF_HSLSIZE) — defined under 'wind_get.
16 (WF_VSLSIZE) — defined under wind_get.

wi_swl, The value depends on the field named wi_sfield above.
wi_sw2,
wi_sw3,
wi_sw4d

DIAGNOSTICS

The result of the function is zero if an error occurs.
EXAMPLE
make_frontwvin - Force a windov to the front.

make_frontwin(thewin)
vindovptr thevin;

{
wvind_set(thewin -> handle, WF_TOP, 0, O, 0, 0);
thefrontwin = thevin;
}
SEE ALSO

wind_get

WIND_UPDATE 305

NAME

wind_update — notify GEM that a window update is in progress.

SYNOPSIS

int wind_update(wind_op)
int wind_op;

DESCRIPTION

NOTE

wind_update performs several functions that facilitate window updating. The
parameter wind_op functions that are used during the update of a window’s
work area. If wind_op contains the code BEGIN_UPDATE GEM knows that the
application is updating the screen and no further drawing will be done by GEM,
(e.g. menus, mouse, etc.). When the update is completed the wind_update
function is called again with the control code END_UPDATE.

This routine can also take control of the mouse functions, relieving the screen
manager of its control over the mouse, menus, and window control points until it
tells GEM AES that it again has control. This is done by passing wind_update
a control code of BEG MCTRL. When the application is finished with the mouse,
control may be returned to GEM by calling wind_update with a control code
of END_MCTRL.

The udpate control codes are defined in the gemdefs.h header file.

DIAGNOSTICS

The result of the function is zero if an error occurs.

Chapter 17

VDI

Introduction

GEM VDI (Virtual device interface) handles all drawing and graphic I/O for
GEM. VDI attempts to provide a program interface which is device and machine
independent. VDI is designed to be able to drive a large variety of graphics
hardware devices for both input and output. This is accomplished by using
normalized values rather than device dependent values. The problem with
normalized values is that they are slow (since everything must be converted to
the actual device specific value) and suffer from round off errors which can make
a program’s output look trashy. For these reasons, most programs by-pass the
normalizing mechanism and use device specific values.

A VDI drawing environment is called a workstation. It is referenced in a
program by a number called a handle which is returned when the workstation is
opened. A workstation specifies the output device, any input devices, the cur-
rently selected color, pattern, line width and many other attributes (it doesn’t
include a coordinate origin, however). All drawing is done in the absolute co-
ordinate system of the output device. A program can choose to use normalized
coordinates (NDC) or device specific raster coordinates (RC) when it opens a
workstation. The GEM desktop program opens a workstation for the screen
using raster coordinates. GEM can only have one workstation open for a par-
ticular device at a time, and since the desktop program is always run before
user applications, there is no way for an application program to open a work-
station on the ST. It can however open a virtual workstation that inherits the
device specific information from the currently open workstation. Nevertheless,
a program on the ST must use raster coordinates (which are probably prefered

anT

308

CHAPTER 17. VDI

anyway).

The origin (location (0, 0)) for raster coordinates is the upper left corner of
the screen. Positive coordinates extend to the right and down from the origin.
The range of values that appear on the screen is dependent upon the device
resolution. Information about a raster (the term used for the memory where
the pixels are stored) is passed in a structure called a Memory Form Definition

Block:

0

typedef struct fbdstr {

char *fd_addr; /* address of raster memory *x/
int fd_w; /* width of raster in pixels */
int £d_h; /* height of raster in pixels */
int fd_wdwidth; /* fd_w / 16 */
int fd_stand; /* 1=normalized, O=raster coord. */
int fd_nplanes; /* number of bits / pixel */
int fd_r[3]; /* reserved */
} MFDB;

An fd_addr value of —1 indicates the device doesn’t have a bitmap. Al-
though some VDI routines use MFDBs, the only way to get one is to create it
yourself with the information returned after opening a virtual workstation.

Raster functions that operate on pixels combine a source (S) and destination
(D) pixel according to a mode flag. The bitwise logical operation performed for
a particular mode flag value is as follows:

Mode Operation | Mode Operation
0 set to 0 8 “(S 1 D)
1 S&D 9 “(s - D)
2 S& "D 10 "D
3 S 11 S1°D
4 “S&D 12 =S
5 D 13 S| D
6 S*D 14 “(S & D)
7 SID 15 set to 1

Parameters passed to (and results returned) from VDI routines are placed
into five global arrays which must be defined in the application program:

int contrl[12], intin[128], ptsin[128], intout[128], ptsout[128];

These arrays are referenced by the GEM library interface routines, the appli-
cation doesn’t have to worry about them beyond just defining them.

309

Color numbers used in VDI routines refer to the ST color palette which

provides three bits per color gun.

The palette will have to be initialized if

specific colors are required by an application since the palette is not reset each
time a program is run.

VDI angles are integer values ten times the angle desired in degrees (i.e.
0 — 3600). Angles are measured counterclockwise from the positive x-axis.

v_opnwk
vclrwk

v_opnvwk

v_gtext
v_pline
v fillarea
vr_recfl
v_rbox

v_bar
v_circle
v_ellarc
v_ellipse

vswr_mode
vsl_type
vsl_width
vsl_ends
vsm_height
vst_height

vst_rotation
vst_color

vst_load font
vst_alignment

vsf_style
vsf_perimeter

vro_cpyfm
vr_trnfm

Workstation Functions

open workstation
clear workstation

open virtual workstation

Output
text output
polyline
filled area
fill rectangle
rounded corner rectangle

bar

circle
elliptical arc
ellipse

v_clswk
v_updwk

v_clsvwk

Functions
v_justified
v_pmarker

v_contourfill
v_cellarray

vrfbox

varc
v_pieslice

v_ellpie
vs_clip

Attribute Functions

set writing mode

set polyline line pattern
set polyline line width
set polyline end styles
set polymarker height

set character height, absolute
mode

set character baseline vector
set graphic text color

load extended fonts
set graphic text alignment

set fill pattern
set fill perimeter visibility

vs_color
vsl_udsty
vsl_color
vsm_type
vsm_color
vst_point

vst_font
vst_effects

vsf_interior
vsf_color

vsf_udpat

Raster Functions

copy raster, opaque
transform form

vrt_cpyfm

v_get_pixel

close workstation
update workstation
close virtual workstation

justified text

polymarker

contour fill

cell array

filled rounded corner rectan-
gle

arc

pie

elliptical pie

set clipping rectangle

set color palette entry

set user-defined line pattern
set polyline color

set polymarker type

set polymarker color

set character cell
points mode

height,

set text font
set graphic text special effects

vst_unload font unload extended fonts

set fill interior style
set fill color
set user defined fill pattern

copy raster, transparent

get pixel

310

CHAPTER 17. VDI

vsc_form

v_hide_c

vex_timv
vex_motv

vq key_s

vq_extnd
vaql_attributes
vqf_attributes

vqt_extent
vqt_name
vqt_fontinfo

vq-chcells

v_enter_cur
v_curdown

v_curleft
v_eeos
vs_curaddress

vrvon

Input Functions

set mouse form

hide cursor

exchange timer interrupt vec-
tor

exchange mouse movement
vector

sample keyboard state infor-
mation

v_show_c
vq._mouse
vex_butv

vex_curv

Inquire Functions

extended inquire function
inquire polyline attributes
inquire fill area attributes

inquire text extent
inquire face name and index

inquire current face informa-
tion

vq-color
vqm _attributes
vqt_attributes

vqt_width

vq-cellarray

Escapes

inquire addressable character
cells

enter alpha mode

cursor down

cursor left

erase to end of screen

direct cursor address

reverse video on

17.1 VDI Examples

Included with most of the function descriptions is a small example that illus-
trates the usage of the particular example. However, due to space constraints
in the documentation it was necessary to omit the repetetive portion of the
example which initialized the operating system. For each of the examples in
the VDI it is necessary to add the example source to the file vmain.c. This file
contains the code that initializes GEM, VDI, and calls the example function.

/*

v_exit_cur

v_curup
v_curright

v_curhome
v_eeol
v_curtext

v_rvoff

show cursor

sample mouse button state
exchange button change vec-
tor

exchange cursor change vec-
tor

inquire color representation
inquire polymarker attributes
inquire graphic text
attributes

inquire character cell width

inquire cell array

exit alpha mode

cursor up
cursor right

cursor home

erase to end of line

output cursor addressable
text

reverse video off

main() - This is the main function for the example VDI functions.

*/

#include <gemdefs.h>

/*

Define VDI Global Variables

*/

17.1 VDI EXAMPLES

311

int contrl[12];
int intin[266], ptsin[266];
int intout[266], ptsout[256];

main()

{
MFDB theMFDB; /* Screen definition structure
int handle; /* Virtual Workstation Handle
/*

Start up ROM.
*/
appl_init();
handle = open_workstation(&theMFDB);

*/
*/

/*

Call example function here.
*/
sample_function();
/*

Wait for a Carriage Return.
*/
vait(handle);
/#*

Close the virtual workstation, and shutdown application.
*/

v_clsvvk(handle);
appl_exit();

The file “GRAFSTUF.C” contains functions that some of the examples
depend on. If an example calls a function defined in this source file then compile

“GRAFSTUF.C” and link the example file with “GRAFSTUF.O”.

312 V_ARC

NAME
v_arc — Arc; draw an arc

SYNOPSIS

int v_arc(handle, x, y, radius, start_angle, end_angle)
int handle;
int x, y; ;
int radius;
int start_angle, end_angle;

DESCRIPTION

This function draws a hollow arc centered on the point (x,y). The beginning
and ending angles are in start_angle and end_angle. The angles are expressed
in tenths of degrees (0 — 3600), clockwise, with the positive x-axis as 0. The
radius is in radius, which is expressed in pixels. The arc is drawn with the
current line attributes.

EXAMPLE
/*

drav_arcs - shov hov to use the v_arc() vdi function.
The handle that is passed as a parameter is the
vdi workstation handle. For further information
refer to the vdi function v_opnvvwk().

*/
drav_arcs(handle)
int handle;
{
int px = 60;
int py = 70;
int start_angle = 0;
int end_angle = 3600 - 900;

int radius;

for (radius = 10; radius < 40; radius += 10) {
/*
drav an arc.
*/

v_arc(handle, px, py, radius, start_angle, end_angle);

Make the arc larger vhile moving the start angle.

end_angle += 300;
start_angle += 300;

V_ARC 313

SEE ALSO

vswr_mode, vsl_color, vsl_type, vsl_width, vsl_ends

314 V_BAR

NAME

v_bar — Draw a filled bar.

SYNOPSIS

int v_bar(handle, rect)
int handle;
int rect[4]; :

DESCRIPTION

The bar is drawn by placing the lower lefthand and the upper righthand corners
into the array rect. The lower lefthand corner and the upper righthand corner
are defined in the array as [zy, y;, 2, y2] respectively. The bar is drawn with

the current fill area attributes.

drav_bars - An example of hovw to use the v_bar() function to

drav solid rectangles. The parameter handle is the vdi
workstation handle that is returned from the function
v_opnvvk().

drav_bars(handle)

EXAMPLE
/*
+/
int
{
int
int
int
int
int
for
}
}
SEE ALSO

handle;

rect[4];

px = 200;

py = 100;

y = 90;

X,

(x=0; x < 100; x += 2b, px += 26, y -= 10) {

rect_set(rect, px, py, px+20, py-y);

v_bar(handle, rect);

vswr_mode, vsf_interior, vsf_style, vsf_color, vsf_perimeter

V_CIRCLE 315

NAME
v_circle — Draw a Circle.
SYNOPSIS
int v_circle(handle, x, Y, radius)
int handle;
int x, y;
int radius;
DESCRIPTION
This function draws a solid circle with center (x,y) and with a radius in pixels
defined by the parameter radius. The current fill area attributes will be used
to fill the circle when it is drawn.
EXAMPLE
/%
drav_circles - An example of how to use the v_circle()
function to drawv circles. In this case a circle
within a circle, ... The parameter handle is the
vdi workstation handle that is returned from the
function v_opnvwk().
*/
drav_circles(handle)
int handle;
{
int radius;
int px = 1560;
int py = 70;
for (radius = 10; radius < 40; radius += 10)
v_circle(handle, px, py, radius);
}
SEE ALSO

vswr_mode, vsf_interior, vsf_style, vsf_color, vsf_perimeter

316 V_CLRWK

NAME
v_clrwk — clear the workstation.

SYNOPSIS

int v_clrwk(handle)
int handle;

DESCRIPTION

This function sets the defined workstation to its initial state. If the workstation
is defined as the screen it is cleared to the background color (index 0). If the
device is a printer a form feed is given to the device, and it’s buffer is cleared.
If the device is a plotter with manual paper load, the operator is prompted to
load a new sheet. Finally, if the device is a metafile the opcode is flushed to
the output file.

V_CLSVWK 317

NAME
v_clsvwk — close virtual workstation

SYNOPSIS

int v_clsvwk(handle)
int handle;

DESCRIPTION

This function closes a virtual workstation, preventing furthur output through
the handle. All virtual workstations opened by a program should be closed
before the program exits.

SEE ALSO

v_clswk, v_opnvwk

318 V_CLSWK

NAME
v_clswk — close the workstation defined by handle.
SYNOPSIS

int v_clswk(handle)
int handle;

DESCRIPTION ‘

v_clswk closes the workstation device and prevents any further output to be
received by the device. If the device was a printer, then an update results
unless one occurred previously. For screens, the graphics device is released, and
the alpha device is selected. For metafiles, the buffer is flushed and the metafile
closed.

NOTE
You should close virtual work stations before closing the workstation.
SEE ALSO

v_clsvwk, v_opnwk

V_CONTOURFILL 319

NAME

v_contourfill — Contour Fill; flood or seed fil], fill an area to the edge or a color.

SYNOPSIS

int v_contourfill(handle, x, y, color)
int handle;
int x,y;
int color;

DESCRIPTION

This fills an area to either the edge of the display surface, or a specified color.

Also called flood or seed fill, the algorithm starts coloring at a seed (x,y) and

colors the area until it reaches the color specified by the parameter color. This

parameter is an index into the workstation’s color table. If color is negative,

the function will fill the area until any color other than the color at the seed.

The area is filled using the current fill area attributes other than fill perimeter.
EXAMPLE

do_2ill(handle)
int handle;
{
int x
int y
int color

300;
70;
1;

/*
Drav an empty circle

*/

v_arc(handle, x, y, 70, 0, 3600);
Fill the circle

v_contourfill(handle, x, y, color);

SEE ALSO

vswr_mode, vsf_interior, vsf_style, vsf_color, vq_extnd

320 V_CURSOR MOVEMENT

NAME

v_curdown, v_curhome, v_curleft, v_curright, v_curup — Cursor movement op-
erations.

SYNOPSIS
int v_curdown(handle)

int handle;

int v_curhome (handle)
int handle;

int v_curleft(handle)
int handle;

int v_curright(handle)
int handle;

int v_curup(handle)
int handle

DESCRIPTION

v_curdown moves the cursor down one row; unless the cursor is on the bottom,
in which case, the cursor stays put.

v_curhome moves the cursor to the home position, generally the upper left
corner cell.

v_curleft moves the cursor left one column, but not past the left margin.

v_curright moves the cursor right one column. It will not move the cursor past
the right margin.

v_curup moves the cursor up one row; unless the cursor is at the top, in which
case the cursor is not moved.

EXAMPLE

An example of the VDI cursor movement routines is shown on the examples
disk vcursor.c.

SEE ALSO

v_enter_cur

V_CURTEXT 321

NAME
v_curtext — Output Cursor Addressable Alpha Text
SYNOPSIS
int v_curtext(handle, string)
int handle;
char *string;
DESCRIPTION
This prints string starting at the current cursor location. The current alpha
text attributes are used for the text attributes (reverse or standard video).
EXAMPLE
print_hello(handle)
int handle;
{
char *string = "Hello world ...";
v_curtext(handle, string);
}
SEE ALSO

v_enter_cur, v_cursor movement, v_rvon, v._rvoff

322 V_EEOL

NAME
v_eeol — Erase to End of Alpha Text Line
SYNOPSIS

int v_eeol(handle)
int handle;

DESCRIPTION :

This erases the text from the present cursor location to the end of the line. The
cursor location remains the same.

SEE ALSO

v_enter_cur, v_cursor movement

V_EEOS 323

NAME
v_eeos — Erase to End of Alpha Screen

SYNOPSIS

int v_eeos(handle)
int handle;

DESCRIPTION

The v_eeos function erases the text from the current cursor position to end of
screen. The cursor location is not changed.

EXAMPLE
clear_screen(handle)
int handle;
{
int rov = 1;
int col =1;
/*
Place the cursor at the top left part of screen.
*/
vs_curaddress(row, col);
/*
Clear to the end of the screen.
*/
v_eeos (handle) ;
}
SEE ALSO

v_enter_cur, v_cursor movement

324 V_ELLARC

NAME
v_ellarc — Elliptical Arc
SYNOPSIS
int v_ellarc(handle, x, y, xradius, yradius, start_angle,
end_angle)
int handle;
int x,y;
int xradius, yradius;
int start_angle, end_angle;
DESCRIPTION
v_ellarc draws a hollow elliptical arc with the center at (x,y) and the beginning
and ending angles in start_angle and end_angle. The x and y radius, defined
in pixels, are in xradius and yradius. The arc is drawn using the current line
attributes.
EXAMPLE
/*
drav_ellarc - An example of how to use the v_ellarc()

function to drawv elliptical hollowv arcs.

Note: circular draving functions use tenth’s of degress
for angles.

+/
drav_ellarc (handle)

int handle;
{

int x = bO;

int y = 130;

int xradius = 10;

int yradius = 30;

int start_angle = 0;

int end_angle = 3600;

/*

Draw the elliptical arc.

*/

v_ellarc(handle, x, y. xradius, yradius, start_angle, end_angle);
}

SEE ALSO

vswr_mode, vsl_type, vsl_width, vsl_color, vsl_ends

V_ELLIPSE 325

NAME
v_ellipse — draw an ellipse.
SYNOPSIS
int v_ellipse(handle, x, y, xradius, yradius)
int handle;
int x,y;

int xradius, yradius;

DESCRIPTION

This routine draws a filled ellipse with the center at (x,y). The x-radius and
the y-radius are defined by xradius and yradius in pixels. This function uses
the current fill area attributes.
EXAMPLE
/*
drav_ellipse - An example of how to use the function v_ellipse().
This example will draw a solid ellipse at the point x, y.

*/

drav_ellipse(handle)
int handle;

{
int x = 180;
int y = 130;
int xradius = 40;
int yradius = 10;
v_ellipse(handle, x, y, xradius, yradius);

}

SEE ALSO

vswr_mode, vsf_interior, vsf_style, vsf_color, vsf_perimeter

326 V_ELLPIE

NAME
v_ellpie — draw an elliptical Pie Slice
SYNOPSIS
int v_ellpie(handle, x, y, xradius, yradius, start_angle,
end_angle)
int handle;
int x,y;
int xradius, yradius;
int start_angle, end_angle;
DESCRIPTION
v_ellpie draws a filled elliptical pie slice with its center at (x,y) and the begin-
ning and ending angles in start_angle and end_angle. The x and y radius,
defined in pixels, are in xradius and yradius. This function uses the current
fill area attributes.
EXAMPLE
drav_ellpie - An example of hovw to use the function v_ellpie() to
drav and elliptical pie slice. This function will use the
current fill attributes vwhen draving the slice of pie.
drav_ellpie(handle)
int handle;
{
int x = 260;
int y = 130;
int xradius = 30;
int yradius = 10;
int start_angle = 0;
int end_angle = 1200;
v_ellpie(handle, x, y, xradius, yradius, start_angle, end_angle);
}
NOTE

All angles are expressed in tenths of degrees.
SEE ALSO

vswr_mode, vsf_interior, vsf_style, vsf_color, vsf_perimeter

V_ENTER_CUR 327

NAME
v_enter_cur — Enter Alpha Mode
SYNOPSIS

int v_enter_cur(handle)
int handle;

DESCRIPTION

This switches from graphics mode to alpha mode, or cursor addressing mode
(text). The function will clear the screen and leave the cursor in the upper left
character cell.

SEE ALSO

v_cursor movement, v_exit_cur

328 VEX_BUTV
NAME
vex_butv — Exchange Button Change Vector.
SYNOPSIS
int vex_butv(handle, user_code_ptr, save_area_ptr)
int handle;
void (*user_code_ptr)();
long *save_area_ptr;
DESCRIPTION
vex_butv will change the interrupt vector for the mouse button handler to
point to a user defined interrupt handler. This allows the user to write a
routine which will be executed each time a mouse button changes state. The
parameter user_code_ptr is the address of the function to be executed during
the interrupt. The parameter save_area_ptr points to a 4 byte area where the
address of the old interrupt handler will be stored.
The new interrupt routine will be executed from a JSR instruction with the
interrupts disabled and should exit by an RTS instruction. The state of the
mouse keys will be passed in the lower 16 bits of the 68000’s DO register. The
least significant bit of the word will contain the state of the leftmost mouse
button with a 1 indicating that the button has been depressed.
The user routine receives control after the buttons are decoded, but prior to
the driver, so any changes made to the DO register before exiting will affect the
driver’s knowledge of the button states.
NOTE
Preserve the states of any registers that are used during the interrupt, and do
not enable the interrupts.
EXAMPLE

int leftbutton, rightbutton;
long oldmouse;

set_mymouse (handle)

int handle;
{

extern mymouse();

vex_butv(handle, mymouse, &oldmouse);
}

restore_mouse (handle)

VEX_ BUTV

329

int handle;
{
long dummy;
vex_butv(handle, oldmouse, &dummy);
}
mymouse ()
{
unsigned buttonstate;
/%
Save registers used by compiler and
move button state into local var.
*/
asm {
movem.l AO-A1/D1-D2, -(A7)
move DO, buttonstate(A6)
}
/%
Handle the button event
*/
leftbutton = buttonstate & 1;
rightbutton = buttonstate & 2;
/*
Restore the registers used and put the
nev button state into DO.
*/
asm {
movem.l (A7)+, AO-A1/D1-D2
move buttonstate(A6), DO
}
}
SEE ALSO

Available Registers (pg. 24)

330 VEX_CURV
NAME
vex_curv — Exchange Cursor Change Vector.
SYNOPSIS
int vex_curv(handle, user_code_ptr, save_area_ptr)
int handle;
void (*user_code_ptr)();
long *save_area_ptr;
DESCRIPTION
vex_curv will change the vector for the mouse cursor drawing routine to a user
defined drawing routine. This allows the user to write a function which will be
executed each time the mouse cursor is drawn. The parameter user_code_ptr is
the address of the function that will be executed. The parameter save_area_ptr
points to a 4 byte area where the address of the old drawing routine will be
stored.
The new drawing routine will be receive control from a JSR instruction with
the interrupts disabled and should exit by an RTS instruction. The z location
of the new cursor is passed in lower 16 bits of the 68000’s DO register, and the
new y is passed in the lower 16 bits of the D1 register.
NOTE
Preserve the states of any registers that are used during the interrupt, and do
not enable the interrupts.
EXAMPLE

long old_mouse_drav;

set_mouse_drav(handle)

int handle;
{
extern my_mouse_draw();
vex_curv(handle, my_mouse_drav, &old_mouse_dravw) ;
}
restore_mouse_draw(handle)
int handle;
{
long dummy;

vex_curv(handle, old_mouse_draw, &dummy);

}

VEX CURV

331

my_mouse_draw()

{

unsigned mousex, mousey;

/*
Save registers used by compiler and move mouse position
into local variables.

*/
asm {
movem.l AO-A1/D0O-D2, -(A7)
move DO, mousex(A6)
move D1, mousey(A6)
}
/*
Draw the mouse cursor.
*/
a_fillrect(mousex, mousey, mousex+16, mousey+16);
[+
Restore the registers used.
*/
asm {
movem.1l (A7)+, AO-A1/DO-D2
}

332 V_EXIT_CUR

NAME
v_exit_cur — Exit Alpha Mode
SYNOPSIS
int v_exit_cur(handle)
int handle;
DESCRIPTION
This function is used to exit cursor addressing mode, and to enter graphics
mode.
SEE ALSO

v_enter_cur, v_cursor movement

VEX_MOTV 333

NAME

vex_motv — Exchange mouse movement vector.

SYNOPSIS

int vex_motv(handle, user_code_ptr, save_area_ptr)
int handle;
void (*user_code_ptr)();
long *save_area_ptr;

DESCRIPTION

vex_motv will change the interrupt vector for the mouse handler to point to a
user defined interrupt handler. This allows the user to write a routine which will
be executed each time the mouse is moved. The parameter user_code_ptr is
the address of the function to be executed during the interrupt. The parameter
save_area_ptr points to a 4 byte area where the address of the old interrupt
routine will be stored.

The new interrupt routine will be executed from a JSR instruction with the
interrupts disabled and should exit by an RTS instruction. The z location of
the mouse is passed in lower 16 bits of the 68000’s DO register, and the new y
is passed in the lower 16 bits of the D1 register.

The user routine receives control after the new (z,y) position is computed, but
prior to the driver receiving the information. This means that any changes
that are made to the DO or D1 registers will affect the driver’s knowledge of the
mouse’s position.

NOTE
Preserve the states of any registers that are used during the interrupt, and do
not enable the interrupts.

EXAMPLE

long old_mousexy;

set_mousexy(handle)

int handle;
{

extern mousexy();

vex_motv(handle, mousexy, &old_mousexy);
}

restore_mousexy(handle)
int handle;

334 VEX_MOTV

{
long dummy;
vex_motv(handle, old_mousexy, &dummy);
}
mousexy()
{

/#*
Save registers used in interrupt function and set up local
variables to use in function.

*/
asm {
movem.1l AO-A1/D0-D2, -(A7)
move DO, mousex
move D1, mousey
}
[*
Work with the nev (x,y) position of the mouse.
*/
if (mousex > 300)
mousex = 300;
if (mousey > 150)
mousey = 1560;
/*

Restore registers changed during interrupt and reset DO & D1
to contain the modified mouse (x, y) coordinates.

*/

asm {
movem.1l (A7)+, AO-A1/D0O-D2
move mousex, DO
move mousey, D1

}

VEX_TIMV 335

NAME

vex_timv — Exchange Timer Interrupt Vector.

SYNOPSIS

int vex_timv(handle, user_code_ptr, save_area_ptr, mils_per_tick)
int handle;
void (*user_code_ptr)();
long *save_area_ptr;
int *mils_per_tick;

DESCRIPTION

vex_timv will change the interrupt vector for the timer interrupt handler to
point to a user defined interrupt handler. This allows the user to write a rou-
tine which will be executed each time the timer clock ticks. The parameter
user_code_ptr is the address of the function to be executed during the inter-
rupt. The parameter save_area_ptr points to a 4 byte area where the address
of the old interrupt routine will be stored. The last parameter mils_per_tick
is a pointer to a 2 byte area where the number of milliseconds per tick will be
stored.

The new interrupt routine will be executed from a JSR instruction with the
interrupts disabled and should exit by an RTS instruction.

NOTE
Preserve the states of any registers that are used during the interrupt, and do
not enable the interrupts.

EXAMPLE

long tickcount, old_timer;

set_timer(handle)

int handle;
{
extern mytimer();
int mils_per_tick;
vex_timv(handle, mytimer, &old_timer, &mils_per_tick);
}
restore_timer(handle)
int handle;
{
long dummy;

vex_timv(handle, old_timer, &dummy, &dummy);

336

VEX_TIMV

}

mytimer()

{

Preserve register states

asm {
movem.l AO-A1/D0-D2, -(A7)
}
/*
Handle the tick event.
*/
tickcount++;
[*
Restore register states.
*/
asm {
movem.l (A7)+, AO-A1/DO-D2
}

V_FILLARFEA 337

NAME
v_fillarea — fill a complex polygon.
SYNOPSIS

int v_fillarea(handle, count, points)
int handle;
int count;
int points[][2];

DESCRIPTION
v_fillarea fills a complex polygon defined in the parameter points.
points contains a series of points which define the lines in the polygon.

count contains the number of points in the polygon array. The lines are drawn
begining at points[0] and continuing through points[count-1]. The current
fill area attributes are used when drawing the polygon.

EXAMPLE
do_fillarea(handle)
{
int cx = 100;
int cy = 100;
int count =65;

int points([6][2];

/*
Create a diamond.

*/

pt_set(points[0], cx , ¢y - 60);
pt_set(points[1], ex + 60, cy);
pt_set(points[2], cx , €y + 60);
pt_set(points[3], cx - 60, cy);
pt_set(points[4], ex , ¢y - 60);

Now £ill the diamond.

v_fillarea(handle, count, points);

SEE ALSO

vsf_perimeter, vsf_interior, vsf_color, vswr_mode, vsf_style

338 V_GET_PIXEL

NAME
v_get_pixel — Get Pixel
SYNOPSIS

int v_get_pixel(handle, x, y, state, color)
int handle
int x, y;
int *state;
int *color;

DESCRIPTION
v_get_pixel returns the color and state of the pixel at then point (x,y).

The parameters x and y represent the point where the pixel to be checked is
present. The variable state is a pointer to a two byte location where the state
of the pixel is to be stored. A one will be stored if the the pixel is set and a
zero will be stored if the pixel is not set. The last parameter color is a pointer
to a two byte area where the color index of the pixel is stored.

EXAMPLE
#define ON 1

check_pixel(handle)
int handle;

{
int x = 100;
int y = 100;
int state;
int color;

v_get_pixel(handle, x, y, &state, &color);
printf("The Pixel at (%d, %d) is ", x, y);
if (state == ON)

puts("on");

else
puts("off");

SEE ALSO

v_opnwk, vqg_extnd

V_.GTEXT 339

NAME
v_gtext — text; write text to the display
SYNOPSIS
int v_gtext(handle, x, y, text)
int handle;
int X;
int vy,
char *text;
DESCRIPTION
v_gtext writes the string, defined by the character pointer text, to the display
device. The string is written at the reference position: (x,y). The relationship
between the reference position and the actual location of the text on the display
is determined by the Set-Graphic-Text-Alignment function, vst_alignment. By
default the alignment of the string is the left baseline position.
If a character is not defined by the character set, an undefined character symbol
is displayed.
EXAMPLE
dravtext(handle)
int handle;
{
int x = 100;
int y = 100;
char *text = "Hello, World ...";
v_gtext(handle, x, y, text);
}
SEE ALSO

vst_alignment, vst_height, vst_rotation, vst_font, vst_color, vst_effects

340 V_HIDE_C

NAME
v_hide_c — Hide Cursor
SYNOPSIS

int v_hide_c(handle)
int handle;

DESCRIPTION

v_hide_c makes the mouse cursor invisible. The cursor visibility may be “nested”
to any depth. Every call to v_hide_c must be balanced with a call to v_show_c.
The cursor may be shown at any time with a call to v_show_c with the reset
parameter set to zero.

The parameter handle is the virtual device handle obtained from the v_opnvwk
call.

SEE ALSO

v_show_c

V_JUSTIFIED 341

NAME
v_justified — Justify Graphics Text; write justified text to the device.
SYNOPSIS

int v_justified(handle. X, y, string, length, word_space,
char_space)
int handle;
int x, y;
int length;
int word_space;
int char_space;
char *string;

DESCRIPTION

The v_justified outputs left and right justified text to the device, starting at
the alignment point (x,y). Extra spacing may be inserted or deleted between
words and/or characters so that the string is the expected length. The inter-
word spacing modification is determined by the value of word_space. If it is
set to TRUE, then the inter-word spacing modification is used. If the value of
char_space is set to TRUE, then the inter-character spacing is used.

The desired output length of the string, in x-coordinate units, is the value of
length. The string is in string.

This function uses the current text attributes.
EXAMPLE
justtext(handle)

int handle;

{
int x = 100;
int y = 160;
char *text = "Hello, World";

v_justified(handle, x, y, text, 160, 0, 1);

SEE ALSO

vst_height, vst_rotation, vst_font, vst_color, vst_effects

342 V_OPNVWK

NAME
v_opnvwk — open virtual workstation
SYNOPSIS

v_opnvwk(work_in, handleptr, work_out)
int work_in[11];
int *handleptr;
int work_out[57];

DESCRIPTION

This function creates a virtual workstation from an existing physical work-
station for a device. A workstation is a drawing environment; it defines all
attributes used by VDI functions. Only one physical workstation is allowed
per device. The screen’s workstation is opened by GEM Desktop, so virtual
workstations must be used by all applications running under GEM Desktop.

The parameters work_in and work_out are described in the function description
of v_opnwk. The difference between the call to v_opnwk and v_opnvwk is that
the function v_opnvwk requires the parameter handleptr to point to a handle
of an open physical workstation.

EXAMPLE
/%
open_vworkstation - Open a VDI virtual workstation.
Note:
information about the workstation is returned in the
parameter ‘form’. appl_init() must be called previously.
+/

int open_workstation(form)
register MFDB *form;

{
register int x;
int work_in[11];
int work_out[67];
int handle;
int dummy;
int GDOS = 0;
/*
Does GDOS exist?
*/
asm {

move.vw #-2, DO

trap #2

V_OPNVWK

343

cmp.v #-2, DO

beq gdos_not_installed

move.w #1, GDOS(A6)
gdos_not_installed:

}
/*
Initialize workstation variables.
*/
it (GDOS)
work_in[0] = Getrez() + 2;
else

work_in[0] = 1;

for(x=1; x<10; x++)
work_in[x] = 1;

/%
Set for Raster Coordinate System.
*/
vork_in[10] = 2;
/*
Open Virtual Workstation
*/

handle = graf_handle(&dummy, &dummy, &dummy, &dummy);
v_opnvvwk(work_in, &handle, work_out);

/%
Check for error.
*/
i? ('handle) {
Cconws ("\033E Error: Cannot open Virtual Device");

Bconin(2);
exit(1);
}
Set up the Memory Form Definition Block (MFDB). This
structure is defined in <gemdefs.h>.
/*
The Base address of the drawving screen.
*/

form -> fd_addr = Logbase();

/%

The width of the screen in pixels.

344 V_.OPNVWK

*/
form -> fd_vw = work_out[0] + 1;
/*
The height of the screen in pixels.
*/
form -> fd_h = work_out[1] + 1;
/* '
The number of words in the width of the screen.
*/
form -> fd_wdwidth = form -> fd_wv / 16;
/*
Working in a raster coordinate system.
*/
form -> fd_stand = 0;
/%
The number of drawing planes.
*/

switch(work_out[13]) {
case 16: form -> fd_nplanes = 4; break;
case 08: form -> fd_nplanes = 3; break;
case 04: form -> fd_nplanes = 2; break;
default: form -> fd_nplanes = 1; break;

}
/*

Return the workstation handle.
*/

return handle;

NOTE
Not all input devices associated with the virtual workstation will work.
SEE ALSO

v_opnwk

V_OPNWK 345

NAME
v_opnwk — initialize a workstation.

SYNOPSIS

v_opnwk(work_in, handle, work_out)
int work_in[11];
int *handle;
int work_out([57];

DESCRIPTION

This function prepares a workstation for use. It initializes the workstation to
the parameters in work_in, and places information about the workstation in
handle and work_out. The display of the workstation is cleared and set to
graphics mode.

A failure to open or initialize the device returns a zero as the device handle.

work_in[0] Device id number. The drivers loaded are determined by the
file “assign.sys”
1 Screen 11 Plotter
21 Printer 31 Metafile
41 Camera 51 Tablet

[1] Linetype

1 solid 5 short dashes

2 long dashes 6 dash, dot, dot

3 dots 7 user defined

4 dashes plus dots > 7 device dependent

[2] Polyline color index. See page 349.
[3] Marker type

1 dot 5 diagonal cross

2 plus sign 6 diamond

3 asterisk 7 device dependent
4 square

[4] Polymarker color index. See page 349.
[5] Text face; refer to vqt_font_info description
[6] Text color index. See page 349.

346

V_OPNWK

[7]

[8]
[9]
[10]

Fill interior style

0 holow

1 solid

2 patterned

3 cross-hatched
4 user defined.

Fill style index; refer to vsf_interior
Fill color index. See page 349.
NDC to RC transformation flag

0 Map the full NDC space to the full RC space
1 Reserved
2 Use the RC system

The following data is returned by v_opnwk:

work_out [0]

[1]
[2]

[31]
[4]
(5]

(6]
[7]

(8]
(9]

[10]

[11]
[12]
[13]

Addressable width of device in rasters or steps. A value of 512

means one could address from 0 — 512.
Height of device in rasters or steps.

Device Coordinate units flag; tells if the image can be precisely
scaled as on a printer, or only close as on a a film recorder.

0 = precise scaling.

1 = no precise scaling.

Micron width of one addressable unit for the device.

Micron height of one addressable unit of the device.

Number of character heights, or zero if the device has contin-
uous scaling.

Number of line types

Number of line widths, or zero if the device has continuous
scaling.

Number of marker types

Number of marker sizes, or zero if the device has continuous
scaling.

Number of type faces supported by the device, not the highest

numbered face.
Number of patterns

Number of hatch styles
Number of available, predefined colors the device can display
at one time.

V_OPNWK 347

[14]
[16 - 24]

[256 - 34]

[35]
[36]
[37]
[38]
[39]

[40]

[41]
[42]
[43]
[44]

Number of Generalized Drawing Primitives (GDP).
The GDPs supported by the device. If the device supports less
than 10, the list will be terminated be a —1. The 10 GEM VDI
GDPs will be represented by the following numbers:

1 = Bar

= Arc

= Pie slice
= Circle
Ellipse
Elliptical arc
Elliptical pie
Rounded rectangle
Filled rounded rectangle
Justified graphics text

© ® T DU AW
I

et
o
I

a list of attributes available for each GDP above:

0 = Polyline

1 = Polymarker
2 = Text

3 = Fill area

4 = None

Color; 1 if capable, O if not

Text rotation; 1 if capable, O if not

Fill area; 1 if capable, O if not

Cell array operations; 1 if capable, 0 if not

Number of available colors. Zero indicates the device has more

than 32767, while 2 indicates black and white.
Locator devices: 1 — keyboard only, 2 — keyboard and some-

thing else.

Valuator device: 1 — keyboard only, 2 — another available
Keypads: 1 - function keys on keyboard, 2 — another available
String devices: 1 — keyboard

Workstation type:

0 output only

1 input only

2 input/output

3 reserved

4 metafile output

348 V_OPNWK

The following dimensions are all in the current coordinate system.

[45]
[46]
[47]
[48]
[49]

[50]
[51]
[562]
(53]
[54]
[55]
[56]

Minimum character width

Minimum character height, excluding extends.

Maximum character width

Maximum character height, excluding extends

Minimum line width (x-axis). Line widths of 1 device unit may

not display.
0

Maximum line width

0

Minimum marker width

Minimum marker height
Maximum marker width
Maximum marker height

The default values for certain VDI attributes are listed in the following table.

Defaults
Attribute Default Value
Character Height Nominal character height
Character baseline rotation 0 degrees
Text alignment Left baseline
Text Style Normal intensity
Line width Nominal line width
Marker height Nominal marker height
Polyline end styles Squared
Writing mode Replace
Input mode Request for all input classes
Fill area perimeter visibility Visible
User-defined line style Solid
User-defined fill pattern Solid
Cursor Hidden
Clipping Disabled

The default assignment of colors to color indices is shown in the table on the

next page:

V_OPNWK

Default Color Index Values

White
Black
Red
Green
Blue
Cyan
Yellow
Magenta

OO W= O

8

9

10
11
12
13
14
15

White

Black

Light Red
Light Green
Light Blue
Light Cyan
Light Yellow
Light Magenta

Color numbers 16 and greater are device dependent.

SEE ALSO

vq_extnd

349

350 V_PIESLICE

NAME
v_pieslice — Pie slice; draw a pie slice
SYNOPSIS
int v_pieslice(handle, x, y, radius, start_angle, end_angle)
int handle;
int x, y;

int radius;
int start_angle, end_angle;

DESCRIPTION

v_pleslice draws a filled pie slice with its center at (x,y). The beginning and
ending angles are defined in tenths of degrees in the parameters start_angle
and end_angle. The radius is set by the parameter radius and is defined in
pixels. This function uses the current fill area attributes when filling the pie
slice.

EXAMPLE

drav_pieslice - This is an example of hov to use the vdi
function v_pieslice().

drav_pieslice(handle)

int handle;
{
int x = 320;
int y = 130;
int radius = 30;
int start_angle = 0;
int end_angle = 1200;
v_pieslice(handle, x, y, radius, start_angle, end_angle);
}
SEE ALSO

vswr_mode, vsf_interior, vsf_style, vsf_color, vsf_perimeter

V_PLINE 351

NAME
v_pline — polyline; connects n vertices
SYNOPSIS

int v_pline(handle, count, points)
int handle;
int count;
int points[][2];

DESCRIPTION
v_pline draws a complex polygon defined in the parameter points.

The array points contains a series of points which define the lines in the poly-
gon. The parameter count contains the number of points in the polygon array.
The lines drawn begin at the point points[0] and connect the points in the
array until points[count]. All points are represented in pixels. The current
line attributes are used to draw the polygon.

NOTE
The line must have at least two coordinate pairs, though they may be coincident.

EXAMPLE
do_polyline(handle)

int ex = 400;
int cy = 70;
int count =65b;

int points[6]1[2];

/*
Create a diamond.
*/
pt_set(points[0], cx , ¢y - 60);
pt_set(points[1], cx + 60, cy);
pt_set(points[2], cx , ¢y + 60);
pt_set(points[3], ¢x - 60, cy);
pt_set(points[4], ex , €y - 60);
/%
Now dravw the diamond.
*/
v_pline(handle, count, points);
}
SEE ALSO

vsl_type, vsl_width, vsl_color, vsl_ends, vswr_mode

352 V_PMARKER

NAME
v_pmarker — polymarker; draws count number of markers in pxyarray
SYNOPSIS
int v_pmarker(handle, count, points)
int handle;
int count;

int points[][2];

DESCRIPTION

v_pmarker draws a hollow complex polygon defined in the parameter points.
At each of the points the function will draw a mark to highlight the point using
the current-marker attributes.

The array points contains a series of points which define the lines in the poly-
gon. The parameter count contains the number of points in the polygon array.
The lines drawn begin at the point points[0] and connect the points in the
array until points[count]. All points are represented in pixels. The current
polymarker attributes are used when drawing the polygon.

EXAMPLE
/*

do_polymarker - This function draws a diamond with a marker at
each of the points of the diamond.

*/
do_polymarker(handle)
{

int cx 400;
int cy 130;
int count 5;
int points([6]1[2];

/*

Create a diamond.
*/
pt_set(points[0], cx , ¢y - 60);
pt_set(points[1], cx + b0, cy);
pt_set(points[2], cx , ¢y + 60);
pt_set(points[3], ex - 60, cy);
pt_set(points[4], cx , ¢y - b0);
/*

Nov draw the diamond.
*/
vam_type (handle, 3); /* Asterisks */

vem_height(handle, 30); /* Make that BIG asterisks */

V_PMARKER 353

v_pmarker(handle, count, points);

SEE ALSO

vsm_type, vsm_height, vsm_color, vswr_mode

354 VQ_CHCELLS

NAME
vq_chcells — Inquire Addressable Character Cells
SYNOPSIS
int vq_chcells(handle, rows, columns)
int handle;
int *rows;

int *columns;

DESCRIPTION

vq_chcells returns the maximum number of rows and columns that are used by
the text mode screen. The number of rows is stored at the location pointed
to by rows. The number of columns is stored at the location pointed to by
columns. If such addressing is not possible, the returned values will be —1.

EXAMPLE

shov_dimensions(handle)

int handle;
{
int rows;
int cols;
vq_chcells(handle, &rows, &cols);
printf("The screen has %d addressable rows.\n", rows);
printf("The screen has %d addressable columns.\n", cols);
}
SEE ALSO

v_enter_cur, v_cursor movement

VQ_-COLOR 355

NAME
vq_color — Inquire Color Representation

SYNOPSIS

int vq_color(handle, color, set_flag, rgb)
int handle;
int color;
int set_flag;
int rgb[3];

DESCRIPTION

vq_color returns the red, green and blue settings for the color index specified
by color (see page 349 for the default values). The values are returned in the
rgb array as integer values from 0 to 1000.

The ST only allows 8 levels per color which are mapped into the 0 — 1000 range.
These numbers are called the actual levels and are returned when set_flag is
1. The values used to set the color index on the last vs_color call are returned
when set_flag is 0.

EXAMPLE

#define SET 1
#define ACTUAL 1

#define RED O
#define GREEN 1
#define BLUE 2

fade_to_black(handle)

int handle;

{
int rgb[3];
int color;
/%

For each color

*/

for (color=0; color<i6; color++) {
vq_color(handle, color, ACTUAL, rgb);

/%
Fade each color gun value

*/

vhile(rgb[RED] | rgb[GREEN] | rgb[BLUE]) {
if (rgb[RED]) rgb[RED]--;
it (rgb[GREEN]) rgb[GREEN]--;

356 VQ_-COLOR

if (rgb[BLUE]) rgb[BLUE]--;

ve_color(handle, color, rgb);

NOTE
If the index color is out of range a random value will be returned.
SEE ALSO

vs_color, v_opnwk

VQ_-CURADDRESS 357

NAME

vq_curaddress — returns the current position of the text cursor.
SYNOPSIS

int vq_curaddress(handle, row, column)

int handle;
int *row, *column;

DESCRIPTION

vq_curaddress returns the current row and column position of the text cursor.
The row position is stored at the location pointed to by the parameter row.
The column position is stored at the location pointed to by column.

EXAMPLE

show_cursor_position(handle)

int handle;
{
int row, col;
vq_curaddress(handle, &row, &col);
printf("The cursor is at (%d, %d).\n", col, row);
}
SEE ALSO

v_enter_cur, v_cursor movement

358 VQ_-EXTND

NAME
vq_extnd — Extended Inquire Function
SYNOPSIS
int vq_extnd(handle, owflag, work_out)
int handle;
int owflag;

int work_out[57];

DESCRIPTION

This function allows access to information not returned in the open workstation
call, v_.opnwk. If owflag is 1 the extended inquire values are returned, if it is a
0, the open workstation values are returned.

work_out [0]

[1]

[2]
(3]
[4]
(5]
(6]
[7]
(8]

[9]
[10]

Screen Type:

1 = Separate alpha, graphic controllers; separate
video screens.

2 = Separate alpha, graphic controllers; common
video screen.

3 = Common alpha, graphic controller; separate

image memory.

4 = Common alpha, graphic controller; common
image memory.

Number of available background colors. This may not equal

the number returned from v_opnwk.
Number of graphic special effects. See vst_effects.

If 1 then scaling possible, if O then not possible.

Number of planes.

If 0 then look-up table supported, if 1 it is not supported.
Number of 16 by 16 pixel raster operations per second.
Contour fill capability.

Character rotation:

0 None
1 in 90 degree increments (only)
2 arbitrary angles

Number of writing modes available.
Input modes available:

0 none

1 request only

2 sample and request

VQEXTND 359

[11] 0 - No text alignment; 1 — available
[12] O - device cannot ink; 1 — device can
[13] Rubberbanding:

0 none
1 rubberband lines
2 rubberband lines and rectangles

[14] Maximum number of vertices for polylines, polymarkers, or

filled areas; or —1 if there is no limit.
[156] Maximum intin size, —1 if no maximum

[16] Number of available mouse keys
[17] O - no styles for wide lines; 1 — there are
[18] Writing modes for wide lines

[19-56] Reserved, all 0’s

SEE ALSO

v_opnwk

360 VQF_ATTRIBUTES

NAME
vqf_attributes — Inquire Fill Area Attributes.
SYNOPSIS

int vqf_attributes(handle, attrib)
int handle;
int attrib[5];

DESCRIPTION

vqf_attributes returns the current fill area attributes. The current settings of
the fill area attributes are returned in attrib:

attrib[0] fill interior style
[1] fill area color index
[2] fill area style index
[3] writing style
[4] fill perimeter status
SEE ALSO

vswr_mode, vsf_interior, vsf_style, vsf_color, vsf_perimeter

VQKEY.S 361

NAME
vq_key_s — Sample Keyboard State Information
SYNOPSIS

int vq_key_s(handle, status)
int handle;
int *status;

DESCRIPTION

The vq_key_s function returns the status of the keyboard modifier keys. The
parameter status is a pointer to a two-byte area of memory where the status
of the keyboard modifiers will be stored.

The low byte of the status word contains the status of the four keys with a
1 indicating the key that has been depressed. The bits representations are as

follows:
Bit Key
0 Left Shift key
1 Right Shift key
2 Control key
3 Alternate key
EXAMPLE

#define LSHIFT 0x001
#define RSHIFT 0x002
#define CTRL 0x004
#define ALT 0x008

check_key_status(handle)
int handle;

{
int status;

vq_key_s(handle, &status);

if (status & RSHIFT)
puts("The Left Shift key is down. ");

if (status & LSHIFT)
puts("The Right Shift key is down. ");

if (status & CTRL)
puts("The Control key is down. ");

362 VQKEY_S

if (status & ALT)
puts("The Alternate key is down. ");

VQL_ATTRIBUTES 363

NAME
vqgl_attributes — Inquire Polyline Attributes
SYNOPSIS

int vql_attributes(handle, attrib)
int handle;
int attribl[6];

DESCRIPTION

vql_attributes returns the current line drawing attributes. These attributes are
returned in the array attrib as follows:

attrib[0] Polyline type
[1] Polyline color index
[2] Current writing mode
[3] Start point style
[4] End Point style

[5] Line width

The start and end point styles may be one of the following:

0 squared
1 arrow
2 rounded

SEE ALSO

vsl_type, vsl_width, vsl_color, vsl_ends, vswr_mode

364 VQM_ATTRIBUTES

NAME
vqm_attributes — Inquire Polymarker Attributes

SYNOPSIS

int vgm_attributes(handle, attrib)
int handle;
int attrib[5];

DESCRIPTION

vqgm_attributes returns the current attributes for the line marker. The at-
tributes are returned in the array attrib as follows:

attrib[0] type
[1] color index
[2] writing mode
[3] width
[4] height
SEE ALSO

vsm_type, vsm_height, vsm_color, vswr_mode

VQMOUSE 365

NAME
vq_mouse — Sample Mouse Button State

SYNOPSIS

int vq_mouse(handle, status, x, y)
int handle;
int *status;
int *x, *y;

DESCRIPTION

vqg_mouse returns the current state of the mouse as well as it’s current position.
The parameter status points to a location where the status of the mouse
buttons can be stored. The bits in the status word represent the state of the
mouse buttons. The LSB, least significant bit, represents the leftmost button,
and a 1 indicates the button has been depressed. The mouse’s current z position
will be stored at the location pointed to by the parameter x. The mouse’s
current y position will be stored at the location pointed to by the parameter y.

EXAMPLE

#define LBUTTON Oxi
#define RBUTTON 0x2

int check_mouse (handle)
int handle;

{

int status, x, y;
vq_mouse (handle, &status, &x, &y);
print2("The mouse is at (%d, %d) and \n", x, y);

i? (status & LBUTTON)
printf("the left button is down.\n");

i? (status & RBUTTON)
printf("the right button is down.\n");

if (!status)
printf("no buttons are down.\n");

return status;

366 VQT_ATTRIBUTES

NAME
vqt_attributes — Inquire Graphic Text Attributes
SYNOPSIS

int vqt_attributes(handle, attrib)
int handle;
int attrib[10];

DESCRIPTION

vqt_attributes returns the current text attributes. The attributes are returned
in the array attrib as follows:

attrib[0] graphic text face
[1] graphic text color
[2] angle of text baseline rotation
[3] horizontal alignment
[4] vertical alignment
[5] writing mode
[6] character width
[7] character height
[8] character cell width
[9] character cell height

SEE ALSO

vst_height, vst_font, vst_color, vst_alignment, vswr_mode, vst_rotation

VQT_EXTENT 367

NAME
vqt_extent — Inquire Text Extent
SYNOPSIS
int vqt_extent(handle, string, extent)
int handle;
int extent[8];
char *string;
DESCRIPTION

vqt_extent returns an array of points which defines a rectangle that surrounds
the text specified in the parameter string. The box corners returned in extent
are in a coordinate system where the lower left corner (point number 1) is on
the X-axis, and the last point is on the Y-axis. The points are enumerated as
follows:

Y-Axis 4 3
Something
| X-Axis

Figure 17.1: Text Box Extent

They are returned in extent in the following order: [z;,y1,Z2,¥2,Z3, Y3, T4, Y4]-

If the text baseline were to be rotated, the coordinate system would still have
the Y-axis vertical and the X-axis horizontal, but the box would be rotated and
the values of the points would reflect this.

The size of the box is affected by all current text attributes.
SEE ALSO

vst_height, vst_rotation, vst_font, vst_color, vst_effects, vst_alignment

368 VQT_FONTINFO

NAME

vqt_fontinfo — Inquire Current Face Information
SYNOPSIS

int vqt_fontinfo(handle. firstchar, lastchar, distances,
maxwidth, effects)
int handle;
int *firstchar, *lastchar;
int distances[5];
int *maxwidth;
int effects[3];

DESCRIPTION

vqt_fontinfo obtains sizing information on the current face at the current height,
taking account of the current special effects.

firstchar The ASCII equivalent of the first and last characters in the
lastchar current font.

distances[0] the bottom line distance, relative to the baseline.
[1] the descent line distance, relative to the baseline.
[2] half height distance, relative to the baseline.
[3] ascent distance relative to the baseline.
[4] top distance relative to the baseline.

Top Line
Ascent Line
Half Line

Base Line

Descent Line

Bottom Line, Top Line
Ascent Line

Half Line

Base Line
Descent Line
Botom Line

maxwidth the maximum cell width, not including the left and right off-
sets.

VQT_FONTINFO 369

Character | Cell Width

Left Offset Right Offset

effects[0] the increase in character width due to special effects such as

italics.
[1] left offset.

[2] right offset.

SEE ALSO
vqt_width, vst_font, vst_effects

370 VQT_NAME

NAME
vqt_name — Inquire Face Name and Index
SYNOPSIS

int vqt_name(handle, face_num, font_name)
int handle;
int face_num;
char *font_name;

DESCRIPTION

vqt_name will derive the name and font ID from a type face number. The
parameter face num is the face number of the font whose name is required.
The number of faces available may be obtained through v_extnd with owflag
set to 0 by looking at output parameter work out[10]. The last parameter
font_name is a pointer to an array of 32 characters where the name of the
font will be stored. The first sixteen characters are the font name, and the
next sixteen are the style. The function result is the ID number of the current
typeface.

EXAMPLE

shov_font_info(handle, face_num)
int handle;
int face_num;

struct {
char font_name[16];
char font_style[16];
int font_id;

} fontinto;

fontinfo.font_id = vqt_name(handle, face_num, &fontinfo);
<%8>\n", fontinfo.font_name);

<%s>\n", fontinfo.font_style);
<%d>\n", fontinfo.font_id);

printf("Font name
printf ("Font style
printf ("Font ID

SEE ALSO

vst_font, v_extnd

VQT.WIDTH 371

NAME
vqt_width — Inquire Character Cell Width

SYNOPSIS

int vqt_width(handle, character, cell_width, left_delta,
right_delta)
int handle;
char character;
int *cell_width;
int *left_delta, *right_delta;

DESCRIPTION

vqt_width returns the width of a graphics character. The character to be mea-
sured is passed in the parameter character. The total width of the graphical
representation of the characater is stored at a location pointed to by the
parameter cell_width. The unused space on the left and right side of the char-
acter will be stored at the locations pointed to by the parameter’s left_delta
and right_delta, respectively. The special effects and rotation of the character
do not affect the size.

Left and Right Character Alignment Delta

Baseline ﬁz:rﬁ:ter _—
\ 1 Height
~_—
Character
Width
Cell Width
EXAMPLE
show_char_info(handle, thechar)
int handle;

char thechar;
int cell_width, left, right;

vqt_width(handle, thechar, &cell_width, &left, &right);

372 VQT.WIDTH

printf ("The character [%c] is %d pixels wide.\n",
thechar, cell_width - (left + right));

DIAGNOSTICS

The function will return a —1 if the character cannot be measured.
SEE ALSO
vst_height, vst_font

V_RBOX 373

NAME
v_rbox — Rounded Rectangle

SYNOPSIS

int v_rbox(handle, rect)
int handle;
int rect[4];

DESCRIPTION

v_rbox draws a hollow rectangle with rounded edges. rect is an array of integers
which define the corners of the box to be drawn. The first two elements define
the lower left corner and the last two elements define the upper right corner of
the box. This function uses the current line attributes.

EXAMPLE
/*
drav_bars - An example of how to use the v_rbox() function to
drav hollow rounded edge boxes.
*/
drav_bars(handle)
int handle;
{

int rect[4];
int px = 200, py
int x .y

100;
90;

for (x=0; x < 100; x += 26, px += 26, y -= 10) {
rect_set(rect, px, py, px+20, py-y);
v_rbox(handle, rect);

SEE ALSO

vswr_mode, vsl_type, vsl_width, vsl_color, vsl_ends

374 V_RFBOX

NAME
v_rfbox — Rounded and Filled Rectangle
SYNOPSIS

int v_rfbox(handle, rect)
int handle;
int rect([4];)

DESCRIPTION

v_rfbox draws a filled rectangle with rounded edges. rect is an array of integers
which define the corners of the box to be drawn. The first two elements define
the lower left corner and the last two elements define the upper right corner of
the box. This function uses the current fill area attributes.

EXAMPLE

drav_filled_bars - An example of hov to use the v_rfbox()
function to drav filled rounded edge boxes.

drav_filled_bars(handle)

int handle;
{
int rect[4];
int px = 200, py = 100;
int x vy = 90;
for (x=0; x < 100; x += 26, px += 26, y -= 10) {
rect_set(rect, px, py, px+20, py-y);
v_rfbox(handle, rect);
}
}
SEE ALSO

vswr_mode, vsf_interior, vsf_style, vsf_color, vsf_perimeter

VRO_CPYFM 375

NAME

vro_cpyfm — Copy Raster, Opaque

SYNOPSIS

#include <gemdefs.h>

int vro_cpyfm(handle, write_mode, pxyarray, source_MFDB,
destin_MFDB)
int handle;
int write_mode;
int pxyarrayl[8];
MFDB *source_MFDB:
MFDB *destin_MFDB;

DESCRIPTION

vro_cpyfm copies a source rectangle (defined by source_MFDB) to a destination
rectangle (defined by destin_MFDB) using the logical transfer operation passed
in write_mode (see the VDI introduction, pg. 307, for the writing modes avail-
able for raster functions).

The two rectangles are each specified by two diagonally opposite corners. The
corners (zs1,ys1), (zs2,ys2) [source corners| and (zd1,yd1), (zdz, yd2) [destina-
tion] are passed in pxyaray in the order: [zsy,ysy,zs2,ys2, zd1,yd1,zds, yd2].

If the “from” and “to” rectangles overlap, a copy is made of the original infor-
mation before any modification of the overlap area is performed.

No rotation results from this function. The data will be scaled if the rectangles
are of different sizes and work_out [3] as obtained from vq_extend is a 1.

The source and destination must be in device-specific form (see vr_trnfm).

The pointers source MFDB and destin_MFDB point to the source Memory Form
Definition Block and destination Memory Form Definition Block, respectively.
Refer to the VDI Introduction, pg. 307 for more information.

EXAMPLE

#include <gemdefs.h>
#include <osbind.h>
#include <obdefs.h>

/*

Declare VDI globals
*/
int contrl[12];

376 VRO_CPYFM

int intin[266], ptsin[266];
int intout[266], ptsout[266];

main()
{
int handle;
int pxyarray[8];
MFDB source, destin;
/* ‘
Initialize AES & VDI.
*/

appl_init();
handle = open_workstation(&source);
destin = source;

v_gtext(handle, 80, 60, "Moving the Menu Bar...");

/*
Set the source and destination rectangles.
*/
rect_set(&pxyarray[0], O, O, source.fd_w, 40);
rect_set(&pxyarray[d4], 0, 100, source.fd_w, 140);

Do the Copy.

vro_cpyfm(handle, S_ONLY, pxyarray, &source, &destin);

v_gtext(handle, 80, 80, "Press RETURN to end.");
Beconin(2);

appl_exit();

SEE ALSO
VDI introduction (pg. 307), vg_extnd, vr_trnfm

VR_RECFL 377

NAME
vr_recfl — Fill Rectangle
SYNOPSIS

int vr_recfl(handle, rect)
int handle;
int rect[4];

DESCRIPTION

vr_recfl draws a filled rectangle without a perimeter. The rectangle is defined
by the parameter rect. The first two elements define the lower left corner and
the last two elements define the upper right corner of the box. This function
uses the current fill area attributes, but since it does not draw a perimeter it
does not use the fill perimeter setting.

EXAMPLE
/*
drav_recfl - An example of howv to use the vr_recfl() function to
draw filled rectangles.
*/
drav_recfl(handle)
int handle;
{
int rect[4];
int px = 300, py = 100;
int x , Yy = 90;
for (x=0; x < 100; x += 26, px += 26, y -= 10) {
rect_set(rect, px, py, px+20, py-y):
vr_recfl(handle, rect);
}
}
SEE ALSO

vsf_interior, vsf_style, vsf_color, vswr_mode

378

VRT_CPYFM

NAME

vrt_cpyfm — Copy Raster, Transparent

SYNOPSIS

#include <gemdefs.h>

int vrt_cpyfm(handle, write_mode, pxyarray, source_MFDB,
destin_MFDB, color) !
int handle;
int write_mode;
int pxyarray[8];
MFDB *source_MFDB;
MFDB *destin_MFDB;
int color[2];

DESCRIPTION

vrt_cpyfm copies a source rectangle (defined by source MFDB) to a destination
rectangle (defined by destin MFDB). The function is similar to vro_cpyfm, ex-
cept that it copies a single color raster to a color raster.

The two rectangles are each specified by two diagonally opposite corners. The
corners (zs1,ys1), (zs2, ysz) [source corners| and (zdy, yd;), (zds, yds) [destina-
tion] are passed in pxyaray in the order: [zsy,ys1,zs2,ys2,zd1, yd1, zd2,yds].

If the “from” and “to” rectangles overlap, a copy is made of the original infor-
mation before any modification of the overlap area is performed.

No rotation results from this function. The data will be scaled if the rectangles
are of different sizes and work_out [3] as obtained from vq_extend is a 1.

The source and destination must be in device-specific form (see vr_trnfm).

The pointers source MFDB and destin MFDB point to the source Memory Form
Definition Block and destination Memory Form Definition Block, respectively.
Refer to the VDI introduction, pg. 307, for more information.

The writing mode in write_mode can be:

Replace Mode (1) — All source pixels are transfered; source pixels with a
1 will have color[0] in the destination, all those with a O will have
color[1].

Transparent Mode (2) — Only the source pixels with a value of 1 will write
over the destination pixels. color[0] contains the color index to use for
writing.

VRT_ CPYFM 379

XOR (3) — The source monochrome raster area is logically XOR’d (Exclusive
OR’d) with each destination plane. The values in color are ignored.

Reverse Transparent Mode (4) — This is the reverse of mode 2, only the
destination pixels with associated source pixels of O are affected. Those
with a value of O are mapped to color[1].

SEE ALSO
vro_cpyfm, vswr_mode, vq_extnd, VDI Introduction (pg. 307)

380 VR_ TRNFM

NAME
vr_trnfm — Transform Form

SYNOPSIS

#include <gemdefs.h>

int vr_trnfm(handle, source_MFDB, destin_MFDB)
int handle;
MFDB *source_MFDB;
MFDB *destin_MFDB;

DESCRIPTION

vr_trnfm transforms the raster image from device-specific raster coordinates to
standard normalized coordinates and vice-versa.

The number of planes transformed is determined by the source MFDB, the
address of which is passed in source MFDB. The format flag (fd_stand) from
the source is toggled and placed in the destination MFDB, who’s address is

passed in destin MFDB.

The user must ensure all the other parameters in the destination MFDB are
correct.

SEE ALSO
VDI Introduction (pg. 307)

V_RVOFF & ON 381

NAME
v_rvoff, v_rvon — Video switches.
SYNOPSIS
int v_rvoff(handle)
int handle;

int v_rvon(handle)
int handle;

DESCRIPTION

These functions set flags which determine where the alpha text will be displayed
in normal or reverse video. The parameter handle is a handle to the device’s
virtual workstation.

v_rvon turns reverse video on for text

v_rvoff turns reverse video off for text

SEE ALSO

v_enter_cur, v_cursor movement

382 VSC_FORM

NAME
vsc_form — Set Mouse Form; Change the cursor pattern
SYNOPSIS
int vsc_form(handle, pcur_form)
int handle;
int pcur_form[37];
DESCRIPTION

vsc_form allows the user to set his own form for the mouse cursor. The array
pcur_form contains the cursor definition information in the following positions:

pcur_form[0,1]the x and y locations, relative to the upper left corner of the
cursor, of the “center” of the cursor. The location of the pixel
in the center is defined as the location of the cursor.

[2]For future use, must be 1.

[3]1This is the color index the 1’s in the cursor background will
have.

[4]1This the color index the 1’s in the cursor foreground will have.

[6-20]The (16 x 16) array of background bits. The MSB (most sig-
nificant bit) of the first word (index 5) is the upper left corner,
and the LSB of the last word (index 20) is the lower right.

[21-36]The foreground data, organized as above.

EXAMPLE
[+

set_mouse - redefine the current mouse cursor using vsc_form().

Note: stuffbits() is a routine that converts ascii 0’s & 1’s to
real binary and stores the result at the location pointed to
by the first parameter. It is defined in grafstuf.c

*/

set_mouse(handle)
int handle;

{

unsigned form[37];
int b'H

VSC_FORM 383

SEE ALSO

/*
Define the mouses ‘‘Hot Spot’’
*/
pt_set(&torm[0], 6, 2);
/*
Setup array information
*/
form[2] = 1; /* reserved by Atari */
form[3] = 2; /* Background color */
form[4] = 3; /* Foreground color */
/*
Define Background mouse form
*/

stuffbits(&form[6], "0000000000000000") ;
stuffbits(&form[6], "0000011111100000") ;
stuffbits(&form[7], "0000001111100000");
stuffbits(&form[8], "0000000001100000") ;
stuffbits(&form[9], "0000000000000000") ;

for (x=10; x<21; x++)
stuffbits (&form[x], "0000000000000000") ;

/*
Define Foreground mouse form

*/

stuffbits(&form[21], "0011111111110000");
stuffbits(&form[22], "0011100000010000") ;
stuffbits(&form[23], "0011110000010000") ;
stuffbits(&form[24], "0011111110010000") ;
stuffbits(&form[256], "0011111111110000");

for (x=26; x<37; x++)
stuffbits(&form[x], "0000000000000000") ;

vsc_form(handle, form);

v_show_c, graf_mouse

384 VS CLIP

NAME
vs_clip — set clipping rectangle; set or reset clipping of all primitives
SYNOPSIS

int vs_clip(handle, clip_flag, rect)
int handle;
int clip_flag;
int rectl[4];

DESCRIPTION

vs_clip defines a rectangular area within which all future drawing will be re-
stricted until clipping is disabled or redefined. Clipping is enabled if c1ip_flag
is 1 and disabled if it is 0. Open workstation (v_opnwk) initially disables clip-
ping.

The rectangle is defined by 2 diagonally opposed (z,y) coordinates in rect in
the following order: [z1,y1,z2,y2].

VS_COLOR 385

NAME
vs_color — Set Color Representation; define colors
SYNOPSIS

int vs_color(handle, color, rgb)
int handle;
int color;
int rgb[3];

DESCRIPTION

vs_color sets the intensity values of the color electron guns for the color index
specified. The intensities of the three colors have a range of 0 — 1000. Any
intensity above 1000 is mapped to 1000, and any less than O is mapped to O.
If the device is monochrome, each of the colors are mapped to a percentage of
white. The first parameter color is an index into the color table defined by
the v_opnvwk call. The second parameter is the rgb defines the values of each
color gun where rgb[0] is red, rgb_in[1] is green, and rgb_in[2] is blue.

NOTE
No action takes place if the device does not have a color look-up table, or
the color index (index) is out of range. See page 349 for the default color
assignments.

SEE ALSO

v_opnwk, vq_extnd, vq_color

386 VS_CURADDRESS

NAME
vs_curaddress — Direct Alpha Cursor Address
SYNOPSIS
int vs_curaddress(handle, row, column)
int handle;
int row;

int column;

DESCRIPTION

vs_curaddress moves the text cursor to (row,column). The cursor will not move
beyond the maximum displayable range of the screen if over range coordinates
are passed, instead it will move to the maximum value of each.
EXAMPLE
gotoxy(handle, x, y)
int handle, x, y;

{

vs_curaddress(handle, y, x);

}

SEE ALSO

vq-curaddress, v_enter_cur, v_cursor movement

VSF_COLOR 387

NAME
vsf_color — Set Fill Color Index
SYNOPSIS
int vsf_color(handle, color)
int handle;
int color;
DESCRIPTION

vsf_color will set the color index used for future polygon fill operations. If the
color requested in color is out of range, color 1 will be selected. The colors 0,
and 1 are always present, others may be available (see vg_extnd).

SEE ALSO

v_opnwk, vq_extnd, vs_color, vsf_interior, vsf_style

388 VSF_INTERIOR

NAME
vsf_interior — Set Fill Interior Style

SYNOPSIS

int vsf_interior(handle, style)
int handle;
int style;

DESCRIPTION

vsf_interior will set the fill style used in future interior fill operations. The
function result is the value of the style selected. The value selected will be O,
or hollow if the requested style does not exist. See vsf_style for a complete list
of the pattern and hatch styles.

Available fill styles
Hollow - fills with background color (index 0)
Solid - fills with current fill color
Pattern
Hatch
User-defined style

W N = O

SEE ALSO

vsf_color, vs_color, vsf_udpat, vsf_style

VSF_PERIMETER 389

NAME
vsf_perimeter — Set Fill Perimeter Visibility
SYNOPSIS

int vsf_perimeter(handle, visible)
int handle;
int visible;

DESCRIPTION

vsf_perimeter sets a flag which determines whether or not the perimeter of a
polygon when drawn should be visible. If visible is O, the perimeter of a filled
area is not visible. If visible is any value other than 0 the perimeter is visible.
If the perimeter is set visible, it is drawn as a solid line in the current fill color.
The default perimeter set by v_opnwk is visible.

390 VSF.STYLE

NAME
vsf_style — Set Fill Style Index
SYNOPSIS

int vsf_style(handle, style_index)
int handle;
int style_index; '

DESCRIPTION

vsf_style sets a fill style which is based on the fill interior style, set with
vsf_interior. This fill style has effect only if the fill interior style is set to Pattern
or Hatch. The desired index is passed in style_index, and the one chosen will
be the return value of the function. If the requested style does not exist or is
invalid then the function will default to style 1.

L
e

ety
Coesenesdt
T
bbb

2,2 2,5

o B o
2,10 2,12 2,13 2,14 2,15
e B
2,18 2,20 22 222 2235

3,2

2,24 3,1 4 35 36 3,7

//

38 39 3,10 3,11 3,12

Figure 17.2: Available Fill Styles

The available fill style indices start at 1 and continue to a device-dependent
maximum. The chart above shows the resulting patterns for some combinations
of the fill interior style and the fill style, set by this function. In the paired
numbers on the chart, the left number is the fill interior style, and the right is
the fill style (set with this function).

VSF.STYLE 391

The two colors displayed will be the fill color set by vsf_color and the darkest
color on the device (index 1).

SEE ALSO

vsf_interior, vsf_color

392 VSF_UDPAT

NAME
vsf_udpat — Set User-defined Fill Pattern
SYNOPSIS

int vsf_udpat(handle, fill_pattern, planes)
int handle;
int £ill_pattern[];
int planes; .

DESCRIPTION

vsf_udpat allows the user to define a customized fill pattern and make it the
user-defined fill pattern, (see vsf_interior. The pattern is a 16 X 16 bit array.
The defined pattern may consist of more than one plane. The number of planes
is defined by the parameter planes. For single plane patterns, a 1 maps to the
present foreground color, and 0 to the background. The foreground color is set
by vsf_color. The bit pattern is stored in fill_patttern as follows:

1010101010101010 word O, £ill_pattern[16 x 1] for plane ¢
0101010101010101 word 1, £il1l_pattern[16 X ¢ 4+ 1] for plane ¢

1010101010101010 word 15, £i11_pattern[16 x ¢ 4 15] for plane ¢

NOTE

The interior fill style must be set to 4 (user defined) using vsf_interior.
EXAMPLE

set_1ill_pattern(handle)
int handle;
{
unsigned x;
unsigned fill_pattern[16];

/*
Create checker board fill pattern
*/
for (x=0; x<16; x+= 2)
stuffbits(&fill_pattern[x], "0101010101010101");

for (x=1; x<16; x += 2)
stuffbits(&fill_pattern[x], "1010101010101010");

vsf_udpat(handle, fill_pattern, 1);

VSF_UDPAT 393

SEE ALSO

vsf_interior, vsf_style, vsf_color

394 V.SHOW_C

NAME

v_show_c — Show Cursor
SYNOPSIS

int v_show_c(handle, reset)
int handle;
int reset;

DESCRIPTION

v_show_c will cause the cursor to be displayed based upon its level of visibility.
reset indicates if the level of visibility should be reset. Calling this funntion
with reset = 0 will make the cursor appear and reset the visibility level to 0. If
reset is non-zero, the cursor will be displayed based upon its level of visibility.

The cursor visibility may be “nested” to any depth. Every call to v_hide_c must
be balanced with a call to v_show_c. If the cursor needs to be shown at any
time, a call to v_show_c with the reset parameter set to zero will cause the
cursor to become visible despite its “nesting” level. This also causes the nesting
level to be set to zero.

SEE ALSO
v_hide_c

VSL_COLOR 395

NAME

vsl_color — Set Polyline Color
SYNOPSIS
int vsl_color(handle, color)

int handle
int color;

DESCRIPTION

vsl_color sets the color index with which polylines are drawn. An out of range

color results in a color of 1 being set. The color index actually used will be
returned as the value of the function.

SEE ALSO

v_opnwk, vq_extnd, vql_attributes, vsl_ends

396 VSL_ENDS

NAME
vsl_ends — Set Polyline End Styles
SYNOPSIS

int vsl_ends(handle, start_style, end_style)
int handle;
int start_style, end_style;

DESCRIPTION

vsl_ends defines how the ends of a line appear. The first parameter start_style
defines the style of the beginning of the line. The second parameter end_style
defines the style of the end of the line. The types of styles available are:

0 squared
1 arrow
2 rounded

The rounded style extends past the end point of the line by one-half the line
width, or the radius of the half-circle. The others end at the end point.

NOTE

If an out of bounds style is asked for, then style 0, the default, is used.
SEE ALSO

vql_attributes

VSL_TYPE 397

NAME
vsl_type — Set Polyline Type
SYNOPSIS
int vsl_type(handle, style)
int handle;
int style;
DESCRIPTION
vsl_type sets the line style to style. Although the total number of styles
available is device dependent, at least six will always be available. If the style
requested is out of range, style 1 will be used.
In the chart below, a bit value of 1 represents a pixel on and 0 off. The MSB
(most significant bit) is displayed first. The user defined style (7) defaults to
all on, it is set with vsl_udsty.
1 solid 1111111111111111
2 long dash 1111111111110000
3 dot 1110000011100000
4 dash-dot 1111111000111000
5 dash 1111111100000000
6 dash-dot-dot 1111000110011000
7 User-defined 16 bits defined by vsl_udsty
8—n Device dependent
If a non-default line width is used, the device may use the solid pattern, and
may change the writing mode.
SEE ALSO

vsl_udsty, v_opnwk, vq_extnd, vql_attributes

398 VSL_.UDSTY

NAME

vsl_udsty — Set User-defined Line Style Pattern; define your polyline
SYNOPSIS

int vsl_udsty(handle, pattern)

int handle;
int pattern;

DESCRIPTION

The argument pattern contains a sixteen bit pattern which is used to define
which pixels of the user-defined line style (style 7) are on. The default for style
7 is a solid line, or all 1’s. The pattern is displayed MSB (most significant bit)
first, with 0’s indicating off and 1’s on.

EXAMPLE
set_line_pattern(handle)
int handle;
{
int pattern;
Define the line pattern. (16 bits wide)
stuffbits(&pattern, "0101010101010101");
Set the pattern to the user defined line draving pattern.
vsl_udsty(handle, pattern);
}
SEE ALSO

vsl_type

VSL_WIDTH 399

NAME
vsl_width — Set Polyline Line Width

SYNOPSIS

int vsl_width(handle, width)
int handle;
int width;

DESCRIPTION
vsl_width defines the width that all lines will be drawn at. If the width of the
line requested does not exist then the next smaller available line width will be
used. The function’s return value will be the set width of a line. The number
of line widths available may be obtained through v_extnd with owflag set to 0
by looking at output parameter work_out[7].

NOTE
Wide lines may be rendered with a solid pattern.

SEE ALSO

v_opnwk, vq_extnd

400 VSM_COLOR

NAME
vsm_color — Set Polymarker Color
SYNOPSIS
int vsm_color(handle, color)
int handle;
int color;
DESCRIPTION

vsm_color sets the output color index for polymarkers, and returns it as the
value of the function. The colors 0 and 1 will always be present. If the value
requested is out of range, the color selected will default to 1 (black).

SEE ALSO

v_opnwk, vq_extnd

VSM_HEIGHT 401

NAME
vsm_height — Set Polymarker Height
SYNOPSIS
int vsm_height(handle, height)
int handle;
int height;
DESCRIPTION

vsm_height changes the height of a marker. The value in height sets the height
of the polymarker’s output in y-axis units. If the height of the marker requested
does not exist then the next smaller available marker height will be used. The
function’s return value will be the actual height the marker was set at. The
number of line widths available may be obtained through v_extnd with owflag
set to 0 by looking at output parameter work_out[7].

SEE ALSO

vq_extnd, vqm_attributes

402 VSM_TYPE

NAME
vsm_type — Set Poly Marker Type
SYNOPSIS
int vsm_type(handle, symbol)
int handle;
int symbol;
DESCRIPTION

vsm_type sets the polymarker type. Although the number of types is device
dependent, a minimum of six will always be available.

- — dot
+ — plus
* — asterisk
O - square
X — diagonal cross
$ - diamond
6 device dependent

V O UL N -

The function returns the value of the marker used. If the value requested is out
of range the function will default to marker type 3.

NOTE
The smallest displayable dot is type 1, and it cannot be scaled.
SEE ALSO

v_opnwk, vq_extnd, vqm_attributes, vsm_height, vsm_color

vsm_valuator — input Valuator, Sample Mode

VSM_VALUATOR 403

int vsm_valuator(handle, val_in, val_out, term, status)

NAME
SYNOPSIS
int
int
int
int
int
DESCRIPTION

handle;

val_in;
*val_out;
*term;
xstatus;

This function returns the new valuator value in val_out if a key was pressed.
The result of the function is nothing happened. The parameter status contains
a 0 if nothing happened, a 1 if the valuator has changed, or a 2 if a key was
pressed. The parameter term contains the keypress if one occurred.

NOTE

As this function is not required, it may not be available on all devices.

SEE ALSO

vrq_valuator

404 VST_ALIGNMENT

NAME
vst_alignment — Set Graphic Text Alignment
SYNOPSIS

int vst_alignment(handle, horiz, vertical, new_horiz, new_vertical)
int handle;
int horiz;
int vertical; .
int *new_horiz;
int *new_vertical;

DESCRIPTION

vst_alignment sets the horizontal and vertical alignment of graphic text. The
parameters horiz and vertical are the requested values that the horizontal
and vertical alignment be set at. The actual values that are set are stored at
the locations pointed to by new_horiz and new_vertical.

Line

There are 6 valid values for the vertical alignment:

0 = Baseline, the default
1 = Halfline

2 = Ascent line

3 = Bottom

4 = Descent

5 = Top

There are three valid values for horizontal alignment:

VST_ALIGNMENT 405

0 Left justified, the default
1 Center justified
2 Right justified

NOTE

The default alignment of the text vertically is on the base line. The default
alignment of the text horizontally is against the left edge.

SEE ALSO
v_gtext

406 VST_COLOR

NAME

vst_color — Set Graphic Text Color
SYNOPSIS

int vst_color(handle, color)

int handle;
int color;

DESCRIPTION

vst_color sets the color index for all future graphic text output. The parameter
color is an index into the color table defined by the v_opnvwk function. If the
value passed in color is out of range then the color index is set to 1 (black).
All devices support at least 2 colors 0 (white) and 1 (black). The result of the
function is the color that was actually set.

SEE ALSO

v_opnwk, vq_extnd, vs_color, v_gtext

VST_EFFECTS 407

NAME
vst_effects — Set Graphic Text Special Effects
SYNOPSIS

int vst_effects(handle, effects)
int handle;
int effects;

DESCRIPTION

vst_effects controls the setting of special effects for graphic text. The special
text effects are controlled by the bits set in the argument effects. The bits
0 — 5 have represent the following effects:

0 Thickened (bold)
Light Intensity
Skewed (italicized)
Underlined
Outline

Shadow

O W WO N =

If the bit is set then that particular type style is in effect. Any combination of
these styles may be used. Example:

0000 0000 0000 1001 indicates bold underlined text.

The result of the function is an integer which contains the bits that are actually
set. If an effect is not supported that bit will be set to 0. If the function is not
available then the result will be 0.

EXAMPLE

#define BOLD 0x001
#define PLAIN 0x002
#define ITALICS 0x004
#define UNDERLINE 0x008
#define OUTLINE 0x010
#define SHADOW 0x020
laserproc(grathandle)

int grafhandle;

{
int dummy, cw, ch;
char *text = "Laser C";

/%

408 VST_EFFECTS

Set text size 26 pts &

set slant mode &

write mode = transparent.
*f
vst_height(grathandle, 26, &dummy, &dummy, &cw, &ch);
vst_effects(grathandle, OUTLINE | ITALICS | UNDERLINE);
vawr_mode(grathandle, 2);

v_gtext(grathandle, 40, 80, text);

SEE ALSO
v_gtext

VST _FONT 409

NAME
vst_font — Set Text Face
SYNOPSIS

int vst_font(handle, font)
int handle;
int font;

DESCRIPTION

vst_font changes the type face for all future graphics text output. The new font
is defined in the parameter font. The result of the function is the font number
of the type face that was set. There are several pre-defined font numbers as

follows:
1 System face
2 Swiss 721
3 Swiss 721 Thin
4 Swiss 721 Thin Italic
5 = Swiss 721 Light
6 Swiss 721 Light Italic
7 Swiss 721 Italic
8 Swiss 721 Bold
9 Swiss 721 Bold Italic
10 Swiss 721 Heavy
11 Swiss 721 Heavy Italic
12 = Swiss 721 Black
13 Swiss 721 Black Italic
14 Dutch 801 Roman
15 Dutch 801 Italic
16 Dutch 801 Bold
17 Dutch 801 Bold Italic

Only type face number 1 is built-in. Any others, if available, will need to be
loaded by vst_load_fonts.

NOTE

The number of type faces available may be obtained through v_extnd with
owflag set to O by looking at output parameter work_out[10].

SEE ALSO

vq-extnd, vqt_name, vst_load_fonts

410 VST_HEIGHT

NAME
vst_height — Set Character Height, Absolute Mode
SYNOPSIS

int vst_height(handle, height, char_width, char_height,
cell_width, cell_height)

int handle; ;
int height;

int *char_width;

int *char_height;

int *cell_width;

int *cell_height;

DESCRIPTION

vst_height sets the character height (not the cell height) in units of pixels.
The requested height is defined in the parameter height. If the height of the
character cell is not available then the next smaller height will be used. The
character and cell widths and heights are stored at the locations pointed to by
their associated variables. If the face (or font) has proportional spacing, the
width returned is that of the widest character and cell.

Left and Right Character Alignment Delta

Baseline Cell
Height

Character
Width

Cell Width

The function’s return value will be the set height of the character cell.
SEE ALSO
vst_point, v_gtext, graf_handle

VST _LOAD_FONTS 411

NAME
vst_load_fonts — Load Fonts
SYNOPSIS

int vst_load_fonts(handle, select)
int handle;
int select;

DESCRIPTION

vst_load_fonts loads the fonts for a driver into RAM. The number of fonts loaded
is returned as the function result. Zero is returned if the fonts for the driver are
already in RAM. The select parameter is reserved for future use and should
be set to 0.

This function need not be called if the default fonts for a driver are sufficient.
NOTE

This function should only be used with the GDOS driver installed. Any use of
this function outside of that environment will have disasterous results.

SEE ALSO

vst_unload_fonts

412 VST_POINT

NAME
vst_point — Set Cell Height, Points Mode
SYNOPSIS
int vst_point(handle, points, char_width, char_height,
cell_width, cell_height)
int handle; '
int points;
int *char_width, *char_height;
int *cell_width, *cell_height;
DESCRIPTION

vst_point sets the character height based upon a system of points. After this
call characters drawn will not be based upon graphic pixels, but upon printer
points where (one point = 1/72 inch). The height is the distance from the
base line of one text line to base line of the next and is defined by the parameter
points. If the height of the character cell is not available then the next smaller
height will be used. The character and cell widths and heights are stored at
the locations pointed to by their associated variables. If the face (or font) has
proportional spacing, the width returned is that of the widest character and
cell.

Left and Right Character Alignment Delta

Character

Height ell
1 Height

Baseline

Character
Width

Cell Width

The function’s return value will be the set height of the character cell.
SEE ALSO
vst_height, v_gtext, graf_handle

VST_ROTATION 413

NAME
vst_rotation — Set Character Baseline Vector
SYNOPSIS
int vst_rotation(handle, angle)
int handle;
int angle;
DESCRIPTION

vst_rotation sets the angle at which all future text will be drawn. This sets
the character baseline vector for the best fit of the angle requested in angle.
The angle is specified in tenths of degrees (0 — 3600), with O being the positive
x-axis. The angle actually set will be returned as the function result.

NOTE
This function may not be available for every workstation device.
SEE ALSO

vq-extnd

414 VST_UNLOAD_FONTS

NAME

vst_unload_fonts — Unload Fonts
SYNOPSIS

int vst_unload_fonts(handle, select)

int handle;
int select;

DESCRIPTION

The vst_unload_fonts function unloads (disassociates from the driver and pos-
sibly removes from RAM) the fonts for a driver loaded by the vst_load_fonts
function. The fonts will only be removed from RAM if all workstations which
have loaded them have been closed or have called vst_unload_fonts.

Only fonts loaded with the vst_load_fonts function are unloaded; the default
fonts will continue to be available.

The select parameter is reserved for future use and should be set to O.
NOTE

This function should only be used with the GDOS driver installed. Any use of
this function outside of that environment will have disasterous results.

SEE ALSO
vst_load_fonts

VSWR_MODE 415

NAME

vswr_mode — Set Writing Mode; define how output affects existing information
on the display.

SYNOPSIS

int vswr_mode(handle, mode)
int handle;
int mode;

DESCRIPTION

vswr_mode changes the way graphics is written to the display. The requested
mode is defined in the parameter mode. If the mode number is out of range then
this function will default to mode 1. The writing mode is used when drawing
lines, markers, filled areas and text. The four modes available are listed below.
The source pixels come from the line style, fill pattern, or black parts of graphic
text.

The writing mode in write_mode can be:

Replace Mode (1) — All source pixels are transfered; source pixels with a 1
will write the foreground color in the destination, all those with a 0 will
write color index 1.

Transparent Mode (2) — Only the source pixels with a value of 1 will write
over the destination pixels. The foreground color is used.

XOR (3) — The foreground color is XOR’d (exclusive OR’d) with a destina-
tion pixel when the source pixel value is 1. Otherwise the background

color is XOR’d with the destination pixel.

Reverse Transparent Mode (4) — This is the reverse of mode 2, only the
destination pixels with associated source pixels of 0 are written. Color
index 1 is used.

The mode actually set will be returned as the function result.

416 V_.UPDWK

NAME

v_updwk — update workstation; execute all pending workstation commands,
start printers

SYNOPSIS

int v_updwk(handle)
int handle;

DESCRIPTION

v_updwk causes the workstation defined by handle to be updated, and any
pending graphics commands to be executed in the order of their occurrence in
the command queue. If the workstation is a printer or plotter, this will cause
the device driver to begin output to the device. If a picture is drawn to a
printing device, no form feed will be issued. If the device is the screen, there
is no effect. If the workstation is defined as a metafile, GEM VDI outputs the
opcode.

SEE ALSO

v_clrwk

Chapter 18

BIOS, GEMDOS, XBIOS

Routines

Introduction

Digital Research Corp.’s GEMDOS operating system is the programmer’s inter-
face to the Atari ST hardware. GEMDOS was designed to be portable, in that
it’s hardware dependent functions are isolated in a section called the BIOS (Ba-
sic Input Output System). A computer manufacturer may port GEMDOS by
providing the BIOS routines for his particular hardware. Additional hardware
functionality not required by GEMDOS is included in the XBIOS (eXtended
BIOS). GEMDOS, BIOS, and XBIOS routines are called through the Motorola
68000’s TRAP instruction. The header file “OSBIND.H” contains C preproces-
sor macros for the various calls, and must be included by a GEM application.

18.1 BIOS Interface

The BIOS interface routines provide the basis for higher level GEMDOS in-
put/output functionality. Basic input/output includes:

Screen Output
Keyboard Input
Printer Output
RS-232 Input/Output

417

418

CHAPTER 18. BIOS, GEMDOS, XBIOS ROUTINES

Disk Input/Output

“OSBIND.H” contains macros which convert the name of the function to
a call to the function bios with an appropriate opcode. The opcode is then
passed to the ROM via a 68000 instruction TRAP #13. All BIOS functions are
accessed through this trap.

18.2 XBIOS Interface

The XBIOS interfaces special hardware features of the Atari ST, including:

68901 MFP (Multi-Function Peripheral) Timer Chip
YM-2149 Sound Generator Chip
6850 ACIA (Asynchronous Communications Interface Adapter)

MIDI Port Input/Output

“OSBIND.H” contains macros which convert the name of the function to
a call to the function xbios with an appropriate opcode. The opcode is then
passed to the ROM via a 68000 instruction TRAP #14. All XBIOS functions are
accessed through this trap.

18.3 GEMDOS Interface

GEMDOS routines include high level file input/output, disk directory manage-
ment, and memory allocation. The “OSBIND.H” header file contains macros
which convert each GEMDOS function call into a call to the function gemdos
with an appropriate opcode. The gemdos function then calls the ROM via a
68000 instruction TRAP #1.

18.4 GEM Run-time Structure

When executed, a GEM application is loaded into the section of RAM known as
the TP A (Transient Program Area). The base page, a data structure containing
run-time information, marks the base of the TPA. The TPA is contiguous and
extends from the base page to the top of usable RAM. In the TPA are the
program’s code, globals, stack, and heap. The heap is the memory pool from
which memory is dynamically allocated. The format of the base page is:

18.4 GEM RUN-TIME STRUCTURE

419

Offset Name Description

0x00 p-lowtpa Base address of TPA

0x04 p-hitpa Address of byte just past end of TPA
0x08 p-tbase Address of text segment (code of program)
0x0C p-tlen Length of text segment

0x10 p.dbase Address of data segment (strings)
0x14 p.dlen Length of data segment

0x18 p_bbase Address of BSS segment (globals)
0x1C p_blen Length of BSS segment

0x2C p-env Address of environment string

0x80 p.cmdlin Address of command line image

The extern variable _base points to the base page of the currently executing
program. Figure 18.1 shows how the memory in the TPA is partitioned.

€— High TPA
&— Stack Pointer
STACK
BSS
DATA
Text (code)
Base Page
€&— Low TPA

Figure 18.1: Transient Program Area

When a program is loaded into memory it is stored in the heap of its parent
program (the program from which it is executed). The parent waits until its
child program terminates before continuing. As a program terminates, its mem-
ory is returned to the heap from which it was allocated. Program termination
is extremely fast since the parent program remains in memory.

A program’s stack is initially 8K bytes. This size may be changed in Laser
C by declaring the initialized global variable _stksize. For example:

/* Make this program’s stack 4K bytes */
long _stksize = 4096L;

Note that the error codes for the GEMDOS functions are described in the
DOS Error Codes, pg. 587.

420 AUXILIARY PORT I/O

NAME

Cauxin, Cauxout, Cauxis, Cauxos — Auxiliary port read/write/status
SYNOPSIS

#include <osbind.h>
int Cauxin()

Cauxout (chr)
int chr;

int Cauxis()
int Cauxos()

DESCRIPTION

These function handle I/O through the serial ports. These routines are defined
as macros in <osbind.h>

Cauxin returns the next character from the RS232 port.
Cauxout writes chr to the RS232 port.

Cauxis returns non-zero if a character is available at the RS232 port.

Cauxos returns non-zero if the RS232 port is ready to send a character.

EXAMPLE

#include <osbind.h>
#define ESC 27

main()
{

char c;

vhile (¢ != ESC) {
/*
Display characters that come across the serial port.
*/
if (Cauxis())
Cconout((int)Cauxin()&127);

AUXILIARY PORT I/O 421

/*
Check for keyboard data
*/
itz (Cconis()) {
/*
Get keyboard data
*/

¢ = Cconin();

/*

Wait for OK to send char to RS-232
*/
vhile(!Cauxos())

/#*
Send character to serial port.
*/

Cauxout(c);

422 CHARACTER I/O

NAME
Bconstat, Bconin, Bconout, Bcostat — Character input, output, status
SYNOPSIS

#include <osbind.h>

int Bconstat(dev)
int dev;

long Bconin(dev)
int dev;

Bconout(dev, c)
int dev, c;

long Bcostat(dev)
int dev;

DESCRIPTION

dev is one of the following:

PRT: (parallel printer port)
AUX: (auxiliary RS-232 port)
CON: (console/keyboard)
MIDI port

Keyboard port (KBD)

W= O

Legal operations for each device:

Operation PRT: AUX: CON: MIDI KBD

Bconstat no yes yes yes no
Bconin yes yes yes yes no
Bconout yes yes yes yes yes
Bcostat yes yes yes yes yes

Bceonstat checks the status of a specified device and determines if any data
is available for input. Bconstat returns —1 if characters are available for
input, 0 if no characters are available.

Bconin waits until a character is available on the device specified by dev. The
result of the function is a 32-bit long which contains the character typed

CHARACTER I/O 423

and a keycode. The character is returned in the low word of the long. If
bit 3 of the system global contern is set, then the high word will contain
the value of the system variable kbshift at the time of the keystroke.

Bconout writes the character ¢ to the device specified in dev. Bconout will
wait until the character has been written before returning.

Bcostat checks the status of a specified device and determines if the device is
available for output. It returns —1 if the device is ready for output, and
0 if it is not.

These functions are defined as macros in <osbind.h>.
EXAMPLE

#include <osbind.h>

#define ESC 27
#define AUX 1
#define CONSOLE 2

The dumb terminal Handler using Bcon’s

main()

{

char c;

while (¢ !'= ESC) {
/*
Display characters that come across the serial port.
*/
if (Bconstat(AUX))
Bconout(CONSOLE, (int)Bconin(AUX)&127);

/*
Check for keyboard data
*/
if (Bconstat(CONSOLE)) {
/*
Get keyboard data
*/
¢ = Bconin(CONSOLE) ;

/*
Wait for OK to send char to RS-232
Note: Bcostat() not Bconstat().

*/

while(!Bcostat(AUX))

424 CHARACTER I/O

/*
Send character to serial port.
*/
Beconout (AUX, ¢);
}
}
}
SEE ALSO

Printer I/O, Console I/O

CONSOLE I/0 425

NAME

Cconin, Cconout, Cconws, Cconrs, Cconis, Cconos, Crawio, Crawcin, Cnecin
— Console input/output/status.

SYNOPSIS

#include <osbind.h>
int Cconin()

Cconout(chr)
int chr;

Cconws(str)
char *str;

Cconrs (buf)
char *buf;

int Cconis()
int Cconos()

int Crawio(wrd)
int wrd;

int Crawcin()
int Cnecin()

DESCRIPTION

Cconin returns and echoes (to the console) the next character from the console.
Cconout writes chr onto the console.
Cconws writes the null terminated string str to the console.

Cconrs reads an edited string from the console. buf[0] is the size of the buffer
beginning with buf [2]. buf[1] contains the number of characters read
on exit with the characters starting at buf[2]. The returned string is
also null terminated.

426 CONSOLE 1/0

Cconis returns non-zero if a character is available at the console.
Cconos returns non-zero if the console is ready to receive a character.

Crawio writes wrd to the console if wrd isn’t OxFF. If it is then a character is
read from the console and returned.

Crawcin returns the next character from the console without echoing. All con-
trol characters are returned. s

Chnecin returns the next character from the console without echoing, but the
control characters: “S (stop output), “Q (continue output), “C (terminate
program) are trapped and acted upon.

These routines are defined as macros in <osbind.h>
SEE ALSO
Printer I/O, Character I/O

CURSCONF 427

NAME
Cursconf — Configure the VT52 emulator cursor
SYNOPSIS

#include <osbind.h>

int Cursconf(function, operand)
int function, operand;

DESCRIPTION

The VT52 emulator cursor is configured according the the value in function:

function Operation performed
0 Hide cursor
Show cursor
Set blinking cursor
Set non-blinking cursor
Set blink time according to value in operand.
Return cursor blink time.

U W N =

The cursor blink rate is based on the vertical blanking interrupt (which occurs
at a 70hz rate on the B/W monitor, a 60hz rate on the color monitor and a
50hz rate for PAL). The time for the cursor to turn off and back on again is
two times operand divided by the screen frequency.

Cursconf is defined as a macro in <osbind.h>

428 DCREATE

NAME
Dcreate — Create a subdirectory
SYNOPSIS

#include <osbind.h>

int Dcreate(path)
char *path;

DESCRIPTION

Dcreate creates a new subdirectory on a disk with the path name specified by
the parameter path.

Dcreate is defined as a macro in <osbind.h>
DIAGNOSTICS

A non-zero error code is returned if an error occurred.
EXAMPLE

#include <osbind.h>

main()
{
mkdir ("C: \MEGAMAX\") ;
}
mkdir(path)
char #*path;
{
if (Dcreate(path)) {
printf("Error in creating path <%s>\n", path);
} else
printf("Success in creating path <%s>\n", path);
}
SEE ALSO

Ddelete, DOS error codes (pg. 587)

DDELETE

NAME
Ddelete — Delete a subdirectory
SYNOPSIS

#include <osbind.h>

int Ddelete(path)
char *path;

DESCRIPTION
Ddelete deletes the directory specified by the parameter path.
Ddelete is defined as a macro in <osbind.h>
DIAGNOSTICS

A non-zero error code is returned if an error occurs.
EXAMPLE

#include <osbind.h>

rmdir("A:\JUNKDIR\");

}
rmdir(path)
char #*path;
{
i? (Ddelete(path))
rmdir("Error in deleting path <%s>\n", path);
else
rmdir("Success in deleting path <¥%s>\n", path);
}
SEE ALSO

Dcreate, DOS Error Codes (pg. 587)

429

430 DFREFE

NAME
Dfree — Get information about disk allocation

SYNOPSIS

#include <osbind.h>

Dfree(buf, drv)
disk_info x*buf;
int drv;

DESCRIPTION

The Dfree function returns allocation information about drive drv where a 0
means the default drive, 1 means drive A:, 2 means drive B:, etc. The parameter
buf points to the following structure which is filled in by the call:

typedef struct _disk_info {

long b_free; /* no. of free clusters on drive */
long b_total; /* total no. of clusters on drive */
long b_secsiz; /* no. of bytes in a sector */
long b_clsiz; /* no. of sectors in a cluster */

} disk_info;

Dfree is defined as a macro in <osbind.h>
EXAMPLE

#include <osbind.h>

shov_disk_info(drive)
int drive;

{
disk_info myinfo;

Dfree(&myinfo, drive);

if (!drive)
printf("The default disk has:\n");
else
printf("The disk %c:\ has:\n", ’A’ + (drive-1));

print2("%1ld free clusters\n", myinfo.b_free);
printf("%1ld total clusters\n", myinfo.b_total);
printf("%1d bytes per sector\n", myinfo.b_secsiz);
printf("%1ld sectors per cluster\n", myinfo.b_clsiz);

DFREE 431

printf("%ld free bytes in disk\n",
myinfo.b_free * myinfo.b_clsiz * myinfo.b_secsiz); I

432 DOSOUND

NAME
Dosound — Set sound process “program counter”

SYNOPSIS

#include <osbind.h>

Dosound (ptr)
char *ptr; !

DESCRIPTION

The Dosound function starts the sound generator. The sound process “program
counter” is set to ptr. The parameter ptr points at a series of “instructions”
with the following meanings:

0x00 — OxOF Put the next byte into a sound register. 0x00 puts the byte in
register 0, 0x01 in register 1 etc.

0x80 Put the next byte into the temporary register.
0x81 for (register no. next byte = temp. reg.t;
temp. reg. != next+2 byte; temp reg += next+1
byte)

wait until next update; /* next+l byte is
signed */
0x82 — OxFF Set update time. If next byte is zero then the sound is termi-
nated. Otherwise the update rate is set to the next byte divided
by 50 hertz.

Dosound is defined as a macro in <osbind.h>
NOTE

The sound chip registers are defined in detail in giaccess.
EXAMPLE

#include <osbind.h>

Sound definition

unsigned char crash[] = {

0x06, Oxif, /* Noise Period */
0x07, 0x2f, /+ Mixer */
0x09, 0x10, /* Channel B volume */
0x0c, 0x20, /* Duration Course tune */

0x0d, 0x00, /#* Envelope Shape */

DOSOUND 433

0x81, 0x12, 0x02, Oxf8, /* Sustain time for tone #*/
Oxtf, 0x00 /* End Tone */
};

do_crash()
{

Dosound(crash);

}

SEE ALSO

Glaccess

434 DRVMAP

NAME
Drvmap — Return bit vector of on-line drives

SYNOPSIS

#include <osbind.h>
long Drvmap()

DESCRIPTION

Drvmap returns a bit map of availakble drives. Each bit in the returned long
represents the availability of a drive. A value of 1 means the drive is available,
0 means it isn’t (e.g. a 1 in bit 0 means drive 0 is available).

Drvmap is implemented as a macro in <osbind.h>.
NOTE

Mountable drives must set the _drvbits system global properly.
EXAMPLE

#include <osbind.h>

shovw_drives()

{
unsigned long drives;
int drive;
drives = Drvmap();
for (drive= ’A’; drive < ’P’; drive++, drives >>= 1)
if (drives & 0x001)
printf("Drive %c:\ is available\n", drive);
}
SEE ALSO

Dsetdrv

DSETDRV 435

NAME
Dsetdrv, Dgetdrv — Set/get the default disk drive
SYNOPSIS

#include <osbind.h>

long Dsetdrv(drv)
int drv;

int Dgetdrv()

DESCRIPTION

These functions are used in setting and discovering which drive is the default
disk drive. The default disk drive is the drive that is initially searched when
looking for a file.

Dsetdrv sets the default drive (the drive to use if a drive is not specified in
a path) to drv where a value of 0 means drive A, 1 means B, etc. The
return value of the function is a long containing a bit map of the available
drives, where bit 0 is 1 if drive A is on-line, bit 1 is 1 if drive B is on-line,
etc.

Dgetdrv returns the number of the current default drive (see above descrip-
tion).

These routines are defined as macros in <osbind.h>

436 DSETPATH

NAME
Dsetpath, Dgetpath — Set/get current working directory
SYNOPSIS

#include <osbind.h>

int Dsetpath(path)
char *path;

int Dgetpath(pathbuf, drive)
char *pathbuf;
int drive;

DESCRIPTION

These functions are used in setting and discovering the default path name. The
default path name is prepended to file names which contain no path (directory)
specification.

Dsetpath sets the default directory to path.

Dgetpath stores the name of the default directory for drive drive in the char-
acter array pointed to by pathbuf. A drive value of O means the default
drive, a value 1 means drive A:, 2 means B: etc.

pathbuf must point to a buffer space of at least 64 bytes.

These functions are defined as macres in <osbind.h>
DIAGNOSTICS

A negative error code is returned if an error occurs.
SEE ALSO

DOS Error Codes, (pg. 587)

NAME

FATTRIB 437

Fattrib — Get/set file attributes

SYNOPSIS

#include <osbind.h>

int Fattrib(path, mode, attr)
char *path;
int mode, attr;

DESCRIPTION

Fattrib gets and sets information about a file’s attributes. The parameter path
is a path name to the file whose attributes are to be investigated. The parameter
mode is used to determine if the function attributes are to be returned or set.
If the value of mode is O, the attributes of the file will be returned. If the value
of mode is 1, then the attributes from the attr parameter will be used to set
the file’s attributes. The file attribute bits and meanings are:

Bit Meaning
0 Read only
1 Hidden from directory search
2 System file (implies hidden from directory search)
3 File is Volume label
4 File is really a subdirectory
5 The file has been written to and closed

Fattrib is defined as a macro in <osbind.h>

EXAMPLE

#include <osbind.h>

#define

#define
#define
#define
#define
#define
#define

READ O

READONLY 0x01

HIDDEN 0x02
SYSTENM 0x04
VOLUME 0x08
DIRECTORY 0x10

WRITCLOSED 0x20

shov_attributes(pathname)
char *pathname;

{

438 FATTRIB

int mode = READ;
int attr;

attr = Fattrib(pathname, mode, attr);

print2("<%s> is ", pathname);

i? (attr & READONLY) printf("read only, ");

if (attr & HIDDEN) printf("hidden, ");

if (attr & SYSTENM) printf("a system file, ");
if (attr & VOLUME) printf("a volume label, ");
if (attr & DIRECTORY) printf("a directory, ");
printf("and a file.\n");

SEE ALSO
Fsfirst, Fsnext

FCLOSE 439

NAME
Fclose — Close an open file
SYNOPSIS

#include <osbind.h>

Fclose(£d)
int f4;

DESCRIPTION

Fclose closes the file specified by the file descriptor £d. This will cause any data
in the file buffers to be flushed from memory and written to the file before the
file is closed.

Fclose is defined as a macro in <osbind.h>
DIAGNOSTICS

A negative error number is returned upon failure.
SEE ALSO

Fopen, DOS Error Codes (pg. 587)

440 FCREATE

NAME
Fcreate — Create a file
SYNOPSIS

#include <osbind.h>

int Fcreate(name, attr)
char *name;
int attr;

DESCRIPTION

Fcreate creates files on disks. A file is created and opened with the pathname
name. Bits in attr contain extra information about the file for the directory:

Bit Meaning

File is read only

File is hidden from directory search commands

File is a system file (also hidden from directory search)
name contains a volume label in first 11 bytes.

W N =O

A positive file descriptor number is returned upon successful creation.
Fcreate is defined as a macro in <osbind.h>
DIAGNOSTICS
A negative error number is returned if an error occurs.
EXAMPLE
An example of Fcreate is shown in Fopen.
SEE ALSO
Fopen, DOS Error Codes (pg. 587)

FDELETE 441

NAME
Fdelete — Delete a file
SYNOPSIS

#include <osbind.h>

int Fdelete(path)
char *path;

DESCRIPTION

Fdelete deletes files from disks. The parameter path is the path name of the
file that is to be deleted.

Fdelete is defined as a macro in <osbind.h>
DIAGNOSTICS

A negative error number is returned if an error occurs.
EXAMPLE

An example of Fdelete is shown in Fopen.
SEE ALSO

Fopen, DOS Error Codes (pg. 587)

442 FDATIME

NAME
Fdatime — Get/set file “last modified” time and date stamp
SYNOPSIS

#include <osbind.h>

int Fdatime(buf, fd, set)
long *buf;
int fd, set;

DESCRIPTION

Fdatime returns the date and time of a file. The parameter buff points to a
long integer with the time in the low word and the date in the high word. The
format is as described in the time functions. The next parameter fd is the file
descriptor of the file to set or get the time stamp for. If set is 1 then the file’s
time stamp is set with the long at *buff, otherwise the time stamp is read into
the long at *buff.

This routine is defined as a macro in <osbind.h>
DIAGNOSTICS

The function result is negative if an error occurs.
EXAMPLE

#include <stdio.h>

#include <osbind.h>

shov_file_date_and_time(fname)
char *fname;

{
int 1d;
int datime[2];
int err;

it ((2d = Fopen(fname, 0)) < 0)
fatal ("Error in opening file.");

it ((err = Fdatime(datime, fd, 0)) < 0)
fatal("Error reading date and time.");

Fclose(£d);

i? (err >)
shovwtime (datime [0], datime[1]);

FDATIME 443

shovtime - display the date and time.

showtime (mytime, mydate)
time mytime;
date mydate;

{
print2("\t\t date \n Day: %d \t Month: %d \t Year: %d\n",
mydate .part.day, mydate.part.month, mydate.part.year + 80
);
print2("\t\t time \n Hour: %d \t Minute: %d \t Seconds: %d\n",
mytime.part.hours, mytime.part.minutes, mytime.part.seconds * 2
);
}
/*
fatal - works like printf() except that it waits for
a <CR> and then dies.
*/
fatal(args)
char *args;
{
_fprintf(stderr, tkargs);
puts("Press RETURN to exit...");
getchar();
exit(1);
}
SEE ALSO

Protobt, DOS Error Codes (pg. 587)

444 FDUP

NAME
Fdup — Duplicate file handle
SYNOPSIS

#include <osbind.h>

int Fdup(stdfd)
int stdfd; ‘

DESCRIPTION

Fdup duplicates the standard file descriptor defined in stdfd. The function
returns a file descriptor which is a normal file descriptor except that it refers
to the same file as the standard file descriptor. The first six, 0 — 5, file de-
scriptors are considered “standard” file descriptors. The rest are considered
non-standard. The standard file descriptors are:

Console input (stdin)
Console output (stdout)
Serial interface (AUX:)
Printer interface (PRT:)
Not used by GEMDOS.
= Not used by GEMDOS.

TR W= O
|

Fdup is defined as a macro in <osbind.h>
DIAGNOSTICS

A negative error number is returned upon failure.
SEE ALSO

Fforce, DOS Error Codes (pg. 587)

FFORCE 445

NAME

Fforce — Force standard file descriptor to use same file as a non-standard one
SYNOPSIS

#include <osbind.h>

int Fforce(stdfd, nstdfd)
int stdfd, nstdfd;

DESCRIPTION

Fforce forces the standard file descriptor stdfd to use the same file or device
as the non-standard file descriptor nstdfd. This permits standard input and
output to be redirected to a file. The first six, 0 — 5, file descriptors are con-
sidered “standard” file descriptors, while the rest are considered non-standard.
The standard file descriptors are:

Console input (stdin)
Console output (stdout)
Serial interface (AUX:)
Printer interface (PRT:)
Not used by GEMDOS.
Not used by GEMDOS.

G W= O

A typical non-standard file descriptor is returned by the function Fopen.

Fforce is defined as a macro in <osbind.h>
DIAGNOSTICS

A negative error number is returned upon failure.
SEE ALSO

Fdup, Fopen, DOS Error Codes (pg. 587)

446 FGETDTA

NAME

Fgetdta, Fsetdta — Get/set DTA (disk transfer address)
SYNOPSIS

#include <osbind.h>
long Fgetdta()

Fsetdta(ptr)
char *ptr;

DESCRIPTION

These functions get and set the DTA, which is used in getting directory infor-
mation.

Fgetdta returns a pointer to the current DTA (disk transfer address). The
DTA is a 44 byte buffer used when getting directory information.

Fsetdta sets the DTA to ptr.

Both routines are defined as macros in <osbind.h>
EXAMPLE

An example of this function is in Fsfirst().
SEE ALSO
Fsfirst, Fsnext

FLOPPY 447

NAME
Floprd, Flopwr, Flopfmt, Flopver — floppy disk operations
SYNOPSIS

#include <osbind.h>

int Floprd(buf, filler, devno, sectno, trackno, sideno, count)
int *buf;
long filler;
int devno, sectno, trackno, sideno, count;

int Flopwr(buf, filler, devno, sectno, trackno, sideno, count)
int Flopver(buf, filler, devno, sectno, trackno, sideno, count)

int Flopfmt(buf, filler, devno, spt, trackno, sideno, interlv,
magic, virgin)
char *buf;
long filler;
int devno, spt, trackno, sideno, interlv;
long magic;
int virgin;

DESCRIPTION

These functions are interface routines for the low-level disk operations. Great
care should be taken when using these functions.

buf points to a word aligned array of bytes for reading or writing.
It must be large enough to hold count sectors for read and
write, or an entire track when formatting.

filler an unused long value.

devno the floppy drive number (0 or 1).

sectno the first sector to read or write from/to (usually 1 - 9).
trackno the track to read or write from/to, or the track to format (usu-

ally 0 - 79).

448 FLOPPY
sideno the side number (0 or 1).
count the number of sectors to read or write (must be less than or
equal to the number of sectors in a track.)
The following variables are used only when formatting:
spt the the number of sectors per track (usually 9).
interlv the sector interleaving factor (the number of physical sectors
between two logical sectors.) This number must be relatively
prime with spt.
magic must be the long value 0x87654321.
virgin an int sized value with which to fill the newly created sectors.
Floprd reads count sectors into buf.
Flopwr writes count sectors from buf. Writing to side 0, track 0, sector 1 will
cause Mediach and Rwabs to enter the “might have changed” state.
Flopfmt returns a O terminated int sized list of bad sectors in buf. virgin
should be set to OxESES if another value isn’t required. The high four
bits cannot be OxF. Formatting causes Mediach and rwabs to enter the
“definitely changed” state.
Flopver verifies count sectors by non-destructive reading. buf must point to
at least 1024 bytes. Bad sectors are returned in buf as in Flopfit above.
These routines are defined as macros in <osbind.h>
DIAGNOSTICS
Each routine returns a non-zero error number if an error occurs.
EXAMPLE

#include <osbind.h>
#include <stdio.h>

FLOPPY 449

Program to format a floppy disk

#define DRIVE 0
#define SECTORS 9
#define BUFSIZ SECTORS*1024

char buf [BUFSIZ];
main()
{
setbuf (stdout, NULL);
printf("Floppy disk format program vi.O0\n\n");

format();

create_boot_blocks();

verity();
printf("\nFormat Complete.");
wvait();

}

format ()

{
[*

Variables for formating floppy.

*/
int interleave 1;
long filler NULL;
int devno DRIVE;
int sectors_pertrack SECTORS;
int trackno;
int sideno 0;
long magic 0x87664321L;
int virgin Oxebeb;

printf("Place disk to be formatted in drive A:.");
wvait();

puts("Formatting track:");
for (trackno = 0; trackno < 80; trackno++) {
print£("[%02d] ", trackno);

450 FLOPPY

if (1((trackno+1) % 10))
printf("\n");

if (Flopfmt(buf, filler, devno, sectors_pertrack, trackno, sideno,
interleave, magic, virgin))
printf ("\nError on track %02d\n", trackno);

}
}
verify()
{
/*
Variables required for disk verify.
*/
long filler NULL;
int devno DRIVE;
int sectno 1;
int trackno;
int sideno 0;
puts("Verifying track:");
for (trackno = 0; trackno < 80; trackno++) {
print2("[%02d] ", trackno);
if (!'((trackno+1) % 10))
printf("\n");
it (Flopver(buf, filler, devno, sectno, trackno, sideno, SECTORS))
printZ("\nError on track %02d\n", trackno);
}
}

create_boot_blocks()
{

Variables required for disk write.

long filler = NULL;
int devno = DRIVE;
int sectno =1;

int trackno;

int sideno =0;

int i;

/*

Variables for Building Boot Blocks.
*/
long serialno = 0x01000000L;

FLOPPY 451

[3]

int disktype =
int execflag =0;

printf("\nCreating Boot Blocks.\n\n");

/*
Zero out buffer.
*/
for (i=0; i<BUFSIZ; i++)
but[i] = 0;
/*
Write out zero’d buffer to track zero
*/

for(trackno = 0; trackno < 1; trackno++)
Flopwr(buf, filler, devno, sectno, trackno, sideno, SECTORS);

/*
Build prototype boot blocks.
*/
Protobt(buf, serialno, disktype, execflag);
/*
Write boot blocks to disk.
*/
trackno = 0;
Flopwr(butf, filler, devno, sectno, trackno, sideno, 1);
}
/*
A routine to keep the number of printf() & getchar()’s to a minimum.
*/
vait()
{
printf ("\nPress RETURN to continue.\n");
getchar();
}
SEE ALSO

DOS Error Codes (pg. 587)

452 FOPEN

NAME

Fopen — Open a file

SYNOPSIS

#include <osbind.h>

int Fopen(name, mode)
char *name;
int mode ;

DESCRIPTION

Fopen opens the file defined in name. The mode that the file will be opened in
is defined in mode. The parameter mode has the following values:

mode
0
1
2

Meaning

Read only mode
Write only mode
Read/write mode

A positive file descriptor number is returned upon successfully opening the file.

Fopen is defined as a macro in <osbind.h>

NOTE

If the file does not exist Fopen will not create the file.

DIAGNOSTICS

A negative error number is returned on failure.

EXAMPLE

#include <stdio.h>
#include <osbind.h>

#define CREATE
#define RENAME
#define DELETE
#define READ
#define WRITE
#define QUIT

11’
|2!
’3’
'4'
,5’
l6’

extern char *gname();

main()

{

FOPEN 453

char fnamei1[80];
char fname2[80];
int done = 0;
int err;

int {1d;

vhile(!done) {
svitch(gmenu()) {
case CREATE:
1d = Fcreate(gname(fnamel, "File to create:"), 0);

it (24 < 0)
puts("Error occurred during create.");

printf("File: ‘%s’ created.\n\n", fnamel);
Fclose(1d);
break;

case RENAME:
gname (fnamel, "Nevw filename:");
gname (fname2, "01d filename:");
err = Frename(0, fname2, fnamel);

it (err < 0)
puts("Error occurred during rename.");

printf("File: “%s’ renamed to ‘%s’.\n\n", fname2, fnamel);
break;

case DELETE:
err = Fdelete(gname(fnamel, "File to Delete:"));

it (err < 0)
puts("Error occurred during delete.");

printf("File: ‘%s’ deleted.\n\n", fnamel);
break;

case READ:
readfrom(gname (fnamel, "File to read:"));

puts("\n");
break;

case WRITE:
writeto(gname(fnamel, "File to write:"));

puts ("\n");
break;

454 FOPEN

case QUIT:
done = 1;
break;
default:
puts("\nError: Unknown function.\n");
break;

int gmenu()

{
int c;

puts("1) Create a file.");

puts("2) Rename a file.");

puts("3) Delete a file.");

puts("4) Read text from file.");

puts("6) Write text to file.");

puts("");

puts("6) Quit.");

puts(“");

printf("Enter number: "); fflush(stdout);

return Bconin(2);

char *gname(fname, literal)
char *fname, *literal;

{
printf("\n%s ", literal); fflush(stdout);
scanf("%s", fname);
return fname;
}
/*
readfrom - reads the data from the file ‘‘fname’’ and displays
that file’s data on the screen.
*/
readfrom(fname)
char *fname;
{

int 14;
char c;

FOPEN 455

1d = Fopen(fname, 0);

iz (2d < 0)
printf ("Error: Couldn’t open file ‘%s’.\n", fname);
else {
vhile(Fread(f#d, 1L, &c))
printt ("%c", ¢);

Fclose (1d);
}
}
/*
writefrom - writes the data from the character pointer
‘‘testtext’’ to the file defined by ‘‘fname.’’
*/
writeto(fname)
char *fname;
{
int 1d;
int c;
int err;
char *testtext = "This is a test linel\r\nThis is a test line2\r\na";
long 1;
1d = Fopen(fname, 1);
if (24 < 0)
printf("Error: Couldn’t open write file ‘%s’.\n", fname);
else {
err = Fyrite(2#d, (long) strlen(testtext), testtext);
if (lerr)
printf ("Error writing Data..., error = %d\n", err);
Fclose (1d);
}
}
SEE ALSO

DOS Error Codes, (pg. 587)

456 FREAD

NAME
Fread, Fwrite — File binary I/O
SYNOPSIS

#include <osbind.h>

long Fread(fd, count, buf)

int fd; ,
long count;
char *buf;

long Fwrite(fd, count, buf)
int 1d;
long count;
char *buf;

DESCRIPTION

These functions are used to read and write data to/from disks. The number of
bytes actually read or written is returned.

Fread reads count bytes from the open file with file descriptor £d into the array
of bytes pointed to by buf.

Fwrite writes count bytes to the open file with file descriptor f£d from the array
of bytes pointed to by buf.

Both functions are defined as macros in <osbind.h>
DIAGNOSTICS

A zero is returned if an error occurs.
EXAMPLE

Examples of Fread() and Fwrite() are in Fopen().
SEE ALSO

Fopen, DOS Error Codes (pg. 587)

FRENAME 457

NAME
Frename — Rename a file
SYNOPSIS

#include <osbind.h>

int Frename(zero, old, new)
int zero;
char *o0ld, *new;

DESCRIPTION

Frename takes the name of an existing file and renames it. The first parameter
is zero whose value must be zero. The old file name is a pointer to the name
of the file to change. The new file name is a pointer to the name to change the
old file name to. Note that the new file name must not exist. This function
can also be used to move a file between subdirectories on the same drive.

Frename is defined as a macro in <osbind.h>
DIAGNOSTICS

A negative error number is returned upon failure.
EXAMPLE

An example of Frename() is shown in Fopen().
SEE ALSO

Fopen, DOS Error Codes (pg. 587)

458 FSEEK

NAME
Fseek — Reposition file pointer

SYNOPSIS

#include <osbind.h>

long Fseek(offset, fd, mode)
long offset;

int fd;
int mode;
DESCRIPTION

The file pointer (the location in the file where the next read or write will occur)
is set for file descriptor £d. The location set is offset bytes from the location
defined by mode as follows:

mode Start location for offset
0 From beginning of file
1 From current position
2 From end of file

The location of the file pointer from the beginning of the file is returned upon
successful operation.

Fseek is defined as a macro in <osbind.h>
DIAGNOSTICS

A negative error number is returned upon failure.
EXAMPLE

#include <osbind.h>

[*

Seek modes
*/
#define BEG 0 /+ seek from beginning of file. */
#define CUR 1 /* seek from current file mark. */
#define END 2 /% seek from end of file. */

long recsize; /+ the size of a record in the data file. */

Read a record from a file.

FSEEK 459

DBread(fd, buf, recnum)
int £d, recnum;

char *buf;
{
long recpos;
/=
Calculate the record position
*/
recpos = recnum * recsize;
/*
Seek to mark.
*/
Fseek(recpos, fd, BEG);
/*
Read in the record.
*/
Fread(f#d, recsize, buf);
}
SEE ALSO

DOS Error Codes (pg. 587)

460 FSFIRST

NAME
Fsfirst, Fsnext — Search a directory
SYNOPSIS

#include <osbind.h>

int Fsfirst(path, attr)
char *path;
int attr;

int Fsnext()

DESCRIPTION

These functions are used to read a disk’s directory information. The Fsfirst be-
gins a directory search. Any further directory entries may be obtained through
calls to the Fsnext function.

path A pathname which may contain the wildcard characters ‘*’ and
‘?” in the file name part (but not in the drive or directory part).

attr A word containing the file attribute settings that the search
will be limited to. The bit meanings of attr are:

Meaning

Readonly

Hidden from directory search

System file (implies hidden from directory search)
File is Volume label

File is really a subdirectory

The file has been written to and closed

cnnkwtov-togq
o+

If attr is 0, then no volume labels, subdirectories, hidden or
system files will be matched. If the hidden, system or subdi-
rectory bits are set then those file types are included in the
search along with normal files. If the volume label bit is set
then only volume labels will be searched.

Information on matched file names is returned in the DTA (disk transfer ad-
dress) as follows:

FSFIRST 461

Offset Size Meaning
00 21 bytes Reserved for OS
21 1 byte File attribute
22 2 bytes File time stamp (int)
24 2 bytes File date stamp (int)
26 4 bytes File size (long)
30 14 bytes File name and extension

Fsnext finds the next file in the search, and places the information about the
file in the DTA. The end of the search is indicated by a negative error result
from either function.

Both functions are defined as macros in <osbind.h>
EXAMPLE

#include <osbind.h>
#include <stdio.h>

/*
DTA : Disk Transfer Address. A buffer vhere directory information
is stored.

*/

main()

{

15("*.*"):

printf("Press return...");
getchar();

/*
1s - list a disk directory using the path specification ‘pathspec’.
*/
1s(pathspec)
char #*pathspec;
{
long olddta;
int err;
struct {
char reserved[21];
char fattr;
int ftime;
int fdate;
long 1size;
char fname[14];
} newvdta;

462 FSFIRST

olddta = Fgetdta();

Fsetdta(&nevdta);
printf(" File Size Date Time
err = Fsfirst(pathspec, 0x003%); /* 2ind all files
vhile(lerr) {
printf("%-14.14s ", newdta.fname);

print£("%81d ", newdta.fsize); :
1s_date(newdta.ftime, newdta.fdate);
printf(" 0x%02x\n", newdta.fattr);

err = Fanext(); /* find next file */

}
Fsetdta(olddta);

}

/*
Print time and date in human-readable form

*/

1ls_date(date, time)
int date, time;

{
int mth = (date>>b) & Oxt;
int day = (date) & Oxif;
int yr = ((date>>9) & 0x71) + 80;
int hrs = (time>>11) & Oxif;
int min = (time>>b) & 0x31;
int sec = ((time) & Ox11) * 2;
if (hrs == 0)

hrs = 12;

print2(" %02d-%02d-%024", mth, day, yr);
print2(" %02d:%02d:%02d", hrs, min, sec);

}

SEE ALSO

Fattrib, Fgetdta, Gettime

Attributes\n");

*/

GETBPB 463

NAME
Getbpb — Get BIOS parameter block
SYNOPSIS

#include <osbind.h>

bpb *Getbpb(dev)
int dev;

DESCRIPTION

Getbpb returns a pointer to a BIOS parameter block. The block contains
information pertaining to the disk that is contained in the drive specified by
the parameter dev. The parameter dev is the device number where 0 indicates
drive A: and 1 indicates drive B:. The result of the function is a pointer to the

BIOS parameter block.
Getbpb is implemented as a macro in <osbind.h>.
DIAGNOSTICS

If no block exists then a null pointer (OL) is returned.
EXAMPLE

#include <osbind.h>

#include <obdefs.h>

show_bios_info(device)
int device;

{
bpb *mybpb;
mybpb = Getbpb(device);
printf("Sectors size == %d (bytes)\n", mybpb -> sector_size_bytes);
printf("Cluster size == %d (sectors)\n", mybpb -> cl_sectors);
printf("Cluster size == %d (bytes)\n", mybpb -> cl_bytes);
printf("Directory size == %d (sectors)\n", mybpb -> dir_length_sectors);
printf ("FAT size == %d (sectors)\n", mybpb -> FAT_size_sectors);
printf("Second FAT Sector == %d\n", mybpb -> FAT_sector);
printf("Start Data Clusters == %d\n", mybpb -> data_sector);
printf("Total Data Clusters == %d\n", mybpb -> total_data_clusters);
printf("Miscellaneous Flags == %x\n", mybpb -> flags);

}

SEE ALSO

Rwabs

464 GETMPB

NAME
Getmpb — Get Memory Parameter Block
SYNOPSIS

#include <osbind.h>

Getmpb(mpb)
mpb *mpb;
DESCRIPTION

Getmpb stores a copy of the initial memory parameter block at the location
pointed to by the parameter mpb. The parameter mpb will contain a information
about the internal memory structure of the machine as follows:

typedef struct _md {

struct _md *m_link; /* next memory block */

long m_start; /* start address of block */

long m_length; /* No. of bytes in block */

long m_own; /* Memory block’s owner ID */
} md;

typedef struct _mpb {

md *mp_mfl; /* memory free list */

md *mp_mal; /* memory allocated list */

md *mp_rover; /* roving pointer */
} mpb;

Getmpb is defined as a macro in <osbind.h>.

NOTE
The memory parameter block lists are in protected memory. Since this is the
case any accesses to the memory data structure will have to be done in super-
visor mode.

EXAMPLE

#include <osbind.h>

shov_freemem()

{
mpb my_mpb;
md *free, *used;
long {freemem = O;

GETMPB

long usedmem = 0;

/*
Do supervisor mode.
*/
long save_ssp = Super(OL);
[*

Get the memory parameter block
*/
Getmpb (&my_mpb) ;

/*
Let’s count free memory chunks

*/

for (free = my mpb.mp_mfl; free; free = free -> m_link)
freemem += free -> m_length;

/*
How much have we used?

*/

for (used = my mpb.mp_mal; used; used = used -> m_link)
usedmem += used -> m_length;

/*
Restore to user mode.
*/
Super(save_ssp) ;
/*
Print the compiled statistics.
*/

printf("Free memory: %1d\n", freemem);
print2("Used memory: %1d\n", usedmem);

465

466 GETTIME

NAME
Gettime, Settime — Get/Set time of day clock
SYNOPSIS

#include <osbind.h>
long Gettime()

Settime(thedatetime)
datetime thedatetime;

DESCRIPTION

These functions are designed to manipulate and read the system date and time.
The parameter thedatetime to Settime is defined as follows:

Bits Meaning

0-4 Seconds times 2 (range 0 — 30)
5-10 Minutes (range 0 — 60)
11 - 15 Hours (range 0 — 24)
16 — 20 Day in month (range 1 — 31)
21 - 24 Month (range 1 — 12)
25 - 31 Year since 1980 (range 0 — 119)

Gettime returns the current date and time in the above format as the function
result.

Settime sets the date and time with the value in datetime.

Both functions are defined as macros in <osbind.h>
EXAMPLE

#include <stdio.h>
#include <osbind.h>

/*
This structure is a bit field that represents the different components of
the date and time words. A union structure vas used so that a long
could be used for the assignment from the gettime() function and the
bit-field structure could be used to easily decode the long word.

Note: This data structure was designed to work with Megamax C. Not all
compilers allocate bit-fields in the same manner. rpt

GETTIME 467

Note : To set the time just assign the ‘‘part’’ fields of the
structure and then pass Settime() the real datetime. Ex:

10;
7;

mytime.part.day
mytime.part.year

Settime(mytime.realtime);

*/
typedef union {
struct {
unsigned day N H
unsigned month : 4;
unsigned year (/H
unsigned seconds : b;
unsigned minutes : 6;
unsigned hours b;
} part;
long realtime;
} time;

Example of how to get information from the Gettime Xbios functions.

main()

{

time mytime;

Get the date and time with the long word of the time data structure.

mytime.realtime = Gettime();

Send it off to be printed.

showtime (mytime);
puts("Press return");
getchar();
}
/*
Print the date and time based on the time data structure.
*/
showtime (mytime)
time mytime;
{

/*

468 GETTIME

Print the date.

Note: The years are represented from 1980.
*/
printf("\t\t date \n Day: %d \t Month: %d \t Year: %d\n",
mytime.part.day,
mytime.part.month,
mytime.part.year + 80

Print the time.
Note: The seconds are represented in multiples of 2.

printf("\t\t time \n Hour: %d \t Minute: %d \t Seconds: %d\n",
mytime .part.hours,
mytime.part.minutes,
mytime.part.seconds * 2

GIACCESS 469

NAME

Giaccess, Offgibit, Ongibit — Modify register on the sound chip
SYNOPSIS

#include <osbind.h>

char Giaccess(data, regno)
char data;
int regno;

0ffgibit(bitno)
int bitno;

Ongibit(bitno)
int bitno;
DESCRIPTION

These functions are a high level interface used to modify the sound chip sound
registers.

Giaccess reads or writes a sound chip register. Logically OR the value 0x80
with regno to write data. The Giaccess function will return the register
value for a read operation.

Offgibit clears bit number bitno in the PORT A register.

Ongibit sets bit number bitno in the PORT A register.

The sound chip contains 16 8-bit registers (labeled 0 — F). Registers E and F
are not used for sound but to control the floppy disk drives. These registers are
called ports A and B respectively. Offgibit and Ongibit modify selected bits of
port A. The other registers are modified with Giaccess.

The Port A bits are defined as follows:

0 Disk side select (for double sided drives)
Drive A select

Drive B select

RS-232 RTS (Request to Send) line
RS2322 DTR (Data Terminal Ready) line
Centronics data strobe

General purpose output on video connector
Unused

N O U A WN =

470

GIACCESS

NOTE

The sound chip used in the Atari is Yamaha’s YM-2149 programmable sound
synthesis chip. This chip was initially designed to be used by arcade games
before it found it’s home in the Atari ST. Some of the special features of the

YM-2149 are:

e Three independent programmable tone generators (called channels A, B

and C)

e Programmable noise generator

e Software controlled analog output

e Programmable mixer for tone and noise

e Programmable envelopes (ADSR)

e Two bi-directional 8-bit data ports

All of the sound capabilities of the YM-2149 are controlled through sixteen
8-bit registers. These registers are defined as follows:

Reg. O
Reg. 1

Reg. 2

Reg. 3

The period for the channel A freqency generator. This is a
twelve bit number with the low eight bits in register 0 and the
high four bits in the low four bits of register 1.

The period determines the frequecy of the tone generator by
use of the following formula:

frequency (Hz) = 62500 / (12-bit register value);
The register values may be calculated accordingly:

register 0 = (62500 / frequency (Hz)) & 0x0Off;
register 1 = ((62500 / frequency (Hz)) >> 8) & 0x000f;

This register is the same as register 0 except that it affects the
frequency of the channel B tone generator.

This register is the same as register 1 except that it affects the
pitch of the channel B tone generator.

Reg. 4

Reg. 5

Reg. 6

Reg. 7

Reg. 8

Reg. 9

Reg. A

GIACCESS 471

This register is the same as register 0 except that it affects the
frequency of the channel C tone generator.

This register is the same as register 1 except that it affects the
pitch of the channel C tone generator.

This register controls the pitch of the noise generator. Only
the low order 5 bits are used. Note that smaller values cause
the noise to be generated at a higher pitch.

This register is the mixer for all of the tone generators and
the noise generator. The bits for this register are defined as
follows:

Description

Channel A tone generator on/off
Channel B tone generator on/off
Channel C tone generator on/off
Channel A noise generator on/off
Channel B noise generator on/off
Channel C noise generator on/off
Port A I/O select input/output
Port B I/O select input/output

QO}U‘AN&I—‘OE
o+

Note that in the bit settings above a value of zero indicates
that the channel is on. Conversely, if the value of the bit is 1
then the channel is off.

This register controls the amplitude or volume of the Channel
A tone generator. The lower 4 bits, bits 0 — 3, contain the
volume of the channel. If bit 4 is set then bits 0 — 3 are ignored
and the tone’s loudness will decay (e.g. go from loud to soft or
from soft to loud). The waveform of this decay is determined
by registers B, C, and D.

This register is the same as register 8 except that it controls
the volume of the Channel B tone generator.

This register is the same as register 8 except that it controls
the volume of the Channel C tone generator.

472 GIACCESS

Reg. B This register contains the low-byte of the sustain counter.
Reg. C This register contains the high-byte of the sustain counter.
Reg. D This register determines the waveform of the envelope gen-

erator. The lower 4 bits, bits 0 — 3, are used to select the
waveform, and have the following representations:

Bit Description

0 Hold : If this bit is set then the tone and the end
of the initial decay will be held. (see Continue)

1 Alternate : If this bit is set then the Attack will al-
ternate directions while being repeated. (see Con-
tinue)

2 Attack : A value of zero in this field will cause
the tone to go from loud to soft (decay), whereas
a value of one in this fields will cause the tone to
go from soft to loud (attack).

3 Continue : If this bit is set then the Attack will
repeat itself until stopped by another sound. Note
that the Alternate and Hold bits are only valid
when this bit is set.

The possible envelopes are:

00xx = Decay and hold.

Olxx = Attack, sharp decay, and hold.

1000 = Decay, sharp attack, decay (reverse saw-
tooth wave).

1001 = Decay and hold.

1010 = Decay, attack (Triangle wave).

1011 = Decay, sharp attack, and hold.

1100 = Attack, sharp decay, Attack (saw-tooth
wave).

1101 Attack and hold.

1110 Attack, Decay (Triangle wave).

1111 Attack, sharp decay, and hold.

Reg. E This register controls port A of the sound chip (not to be con-

fused with channel A). These ports are not used for sound

GIACCESS 473

generation on the Atari ST. They are used to control the floppy
disk drive select signals. Note that the state of this port (in-
put/output) is determined by register 7.

Reg. F This register performs the same function as register E, except
that Port B of the sound chip is affected.

These routines are defined as macros in <osbind.h>.
EXAMPLE

#include <osbind.h>
#define WRITE 0x80

/*
Define register set for each tone.
*/
char tonei[] = { Oxib, 0x01, Oxlc, 0x01, Oxid, 0x01, 0x00,
0x38, 0x10, 0x10, 0x10, 0x00, 0x30, 0x03

)

{ 0xa7, 0x00, Oxab, 0x00, Oxa®, 0x00, 0x00,
0x38, 0x10, 0x10, 0x10, 0x00, 0x30, 0x03

char tone2[]

{ 0xd3, 0x00, 0xd4, 0x00, 0xd6, 0x00, 0x00,
0x38, 0x10, 0x10, 0x10, 0x00, 0x30, 0x03

char tone3[]

{ 0xa8, 0x01, Oxa9, 0x01, Oxaa, 0x01, 0x00,
0x38, 0x10, 0x10, 0x10, 0x00, 0x30, 0x03

char tone4[]

)

char *songl[] = { tonel, tone2, tone3, toned4, tonel };

main()
{
int x;
int reg7; /* bits 7 and 6 are used by the 0S */

puts("Phone home?");

Save bits 7 and 6 of register 7

reg? = Giaccess(0, 7);

474 GIACCESS

/%
Play each tone.
*/
for(x=0; x<(sizeof(song) / sizeof(char *)); x++) {
/*
Play tone.
*/
do_tone(song[x], reg7 & 0xcO0);
/*
Wait for tone to finish.
*/
vait60(30);
}
Bconin(2);
}
/%
do_tone - setup the sound chips registers.
As the registers change the tone is produced.
*/

do_tone(thetone, mask)
char *thetone;

int mask;
{
int x;
for(x=0; x<0xOe; x++)
i2 (x==7)
Giaccess((unsigned) thetone [x] |mask, x|WRITE);
else
Giaccess((unsigned)thetone[x], x|WRITE);
}
/*
vait60 - wait for delay 1/60th seconds
%/
vait60(delay)
int delay;
{
vhile(delay--)
Vsync();
}
SEE ALSO

Dosound

NAME

IKBDWS 475

Ikbdws — Write a string to the intelligent keyboard processor

SYNOPSIS

#include <osbind.h>

Ikbdws(cnt, ptr)
int cnt;
char *ptr;

DESCRIPTION

NOTE

The Ikbdws functions writes a string of characters to the intelligent keyboard
processor. The parameter ptr points to an array of characters whcih are com-
mands for the keyboard processor. The last parameter cnt is the number of
characters to write minus one.

Ikbdws is defined as a macro in <osbind.h>

There is a set of commands that the keyboard processor understands pertaining
to the handling of the mouse and keyboard. These are defined as follows:

0x07 Return the result of the mouse buttons when pressed. This
command is only valid in absolute mode. The following byte
defines how the keyboard controller will react to mouse events
as follows:

Bit Meaning
return position when the button is pressed.
1 return position when the button is released.
2 affect mouse position through keyboard.
3 -7 zero.

0x08 Return the mouse position in relative mode. This will return
the mouse position in terms of the distance from the last po-
sition of the mouse. A mouse packet is generated when the
threshold value of the mouse is exceeded. The mouse packet
returned in this mode is as follows:

Header byte whose values range from 0xf8 to Oxfb (The
low order bits represent the state of the mouse buttons)

476

IKBDWS

0x09

0x0a

0x0b

0x0c

0x0d

1 byte msb x position.
1 byte Isb x position.
1 byte msb y position.
1 byte Isb y position.

Return the mouse position is absolute mode. This will return
the mouse position in terms of an absolute coordinate system.
This command must be followed by two bytes. The first byte
indicates the maximum X value of the mouse and the second
byte indicates the maximum Y value.

Sets the keyboard controller to treat the mouse movement like
the movement described by the cursor keys. This command
must be followed by two bytes. The first byte indicates the
stepping for the X coordinate counter, and the second indicates
the stepping for the Y coordinate counter when the mouse
keyboard equivalent is struck.

Sets the threshold value for the mouse. This function deter-
mines how responsive the mouse is in terms of how far the
mouse must move before a mouse packet is sent to the mouse
handler. The command must be follwed by two bytes. The
first byte defines the threshold for movement in the X direc-
tion. The second byte defines the threshold for movement in
the Y direction. This command can only be used in relative
mode (command 0x08).

Set the mouse scale. This function determines how responsive
the mouse is in terms of how far the mouse must move before
the coordinate is changed. The command must be followed by
two bytes. The first bytes defines the X scale. The second
bytes defines the Y scale. This command an only be used in
absolute mode (command 0x09).

Get the mouse’s absolute position. This function will cause a
keyboard packet to be returned via the keyboard packet han-

dler. The following bytes will be returned:
1 byte header = 0x£f7

1 byte mouse button status.

IKBDWS 477

0x0e

0x0f

0x10

Ox11

0x12

0x13

0x14

0x15

Bit Meaning
0 right button pressed since the last read.
1 right button not pressed since last read.
2 left button pressed since the last read.
3 left button not pressed since last read.

1 byte msb X coordinate
1 byte Isb X coordinate
1 byte msb Y coordinate
1 byte Isb Y coordinate

Set the mouse position. This command requires five bytes. The
first bytes is a 0 byte. The next two bytes define the mouse’s
X position. The last two bytes define the mouse’s Y position.

Set mouse Y-axis origin at bottom.
Set mouse Y-axis origin at top.
Resume the sending of data packets. (see command 0x13)

Turn off mouse handling. If the mouse mode is changed the
keyboard controller will resume mouse handling.

Pause the sending of data packets and buffer any keyboard or
mouse commands.

Force the keyboard controller to return a data packet for each
movement of the joystick. The data packet returned has the
following format:

1 byte Header (Oxfe = joystick 0, Oxff = joystick 1)
1 byte status:

Bits 0 — 3: position of joystick.
Bit 7: status of fire button.

stop the keyboard controller from automatically returning joy-
stick data packets.

478 IKBDWS

0x16

0x17

Oxla

0x1b

Oxic

0x80

read the joystick. This command causes the keyboard con-
troller to send a data packet to the joystick packet handler.
The format of the packet is the same as with command 0x14.

joystick timeout. This command sets the interval in 1/100’ths
of a second between each joystick packet that is sent. Once this
command is invoked the following packet is sent at the end of
every interval:

1 byte time since last message in 1/100’ths of a second.
1 byte (bit O fire button joystick 1, bit 1 fire button joy-
stick 2)
1 byte

bits 0 — 3: position of joystick 1

bits 4 — T: position of joystick 0.

turn off joystick handling.

set clock time. This command is followed by 6 bytes which are
defined in BCD (Binary Coded Decimal, every four bits is a
decimal digit) format. These bytes are defined as follows:

1 byte year

1 byte month

1 byte day

1 byte hour

1 byte minute
1 byte seconds

read block time. This command will cause the keyboard con-
troller to send a data packet to the clock packet handler. The
header byte for this packet is Oxfc. The header byte will be
followed by BCD values in the format described in command
Ox1b.

reset keyboard controller without affecting the internal clock.
This command must be followed by a single byte 0x01.

IKBDWS 479

NOTE

The packet handling routines may be defined by the Kbdvbase function. Also,
for a complete discussion of the keyboard commands refer to the HD-6301
technical reference manual.

SEE ALSO
Kbdvbase

480 INITMOUS

NAME
Initmous — Initialize mouse packet handler

SYNOPSIS

#include <osbind.h>

Initmous(type, paramp, vec)

int type;

mouse_data *paramp;

int (xvec) O);
DESCRIPTION

Initmous sets up the mouse’s initial state and the mouse’s interrupt handler.
The parameters are defined as follows:

type indicates the operation to be performed:
0 = disable mouse
1 enable mouse and set to relative mode
2 enable mouse and set to absolute mode
3 unused
4 enable mouse and set to keycode mode
param points to a param struct:

struct _mouse_data {
char topmode;
char buttons;
char xparanm;
char yparanm;
int xmax, ymax; /* absolute only */
int xinital, yinital; /* absolute only */

}
topmode values:

0 y position of 0 at bottom of screen
1 y position of O at top of screen

INITMOUS 481

buttons is a parameter to the keyboard’s “set mouse buttons”

command. .))
txparam and yparam have the following meanings depending

on the mode:

mode meaning of xparam and yparam
relative x and y interrupt threshold values
absolute x and y scale factors
keycode x and y delta factors

The absolute mode requires the additional x and y maximum
and x and y initial values.

vec points the the mouse interrupt handler (see kbdvbase).

Initmous is defined as a macro in <osbind.h>
SEE ALSO
kbdvbase

482 IOREC

NAME
Iorec — Get serial device input buffer descriptor

SYNOPSIS

#include <osbind.h>

iorec *Iorec(device)
int device;

DESCRIPTION

Iorec returns a pointer to a device input buffer descriptor record. The result
returned is a pointer to the input buffer record for the device specified in the
parameter device. The parameter device will be defined as one of the follow-
ing:

Device Number Device Name

0 RS232
1 Keyboard
2 MIDI

The structure the returned pointer points to is defined as follows:

typedef struct _iorec {
char *ibuf; /* pointer to queue */
int ibufsiz; /* size of queue in bytes */
int ibufhd; /* head index of queue */
int ibuftl; /* tail index of queue */

int ibuflow; /* low water mark */
int ibufhigh; /* high water mark */
} iorec;

ibuf is a pointer to the I/O buffer. ibuftl points at the last character to enter
the queue. ibufhd points just before the next character to be removed from
the queue. The queue is empty if ibufhd equals ibuftl.

The ST will request the sender to stop transmitting when the number of char-
acters in the queue equals ibufhigh. It will request the sender to resume when
the number drops to ibuflow. Output flow control for RS-232 operates in a
similar manner.

Iorec is defined as a macro in <osbind.h>

NOTE

IOREC 483

An output buffer descriptor (just like the input descriptor) immediately follows
the input descriptor in memory if the device is RS-232.

EXAMPLE

#include <osbind.h>

show_iorec(device)

{

int device;

iorec *therec;

therec = (iorec *)Iorec(device);

printf("\nThe device %d is:\n", device);

printf("buffer == %1x\n", therec ->
printf("buffer size == %d\n", therec ->
printf("head index %d\n", therec ->
printf("tail index %d\n", therec ->
printf("lov mark %d\n", therec ->
printf("high mark %d\n", therec ->

ibut);
ibufsiz);
ibufthd);
ibuftl);
ibuflovw);
ibuthigh);

484 KBRATE

NAME
Kbrate — Get/set keyboard repeat rate
SYNOPSIS

#include <osbind.h>

int Kbrate(initial, repeat)
unsigned char initial, repeat;

DESCRIPTION

Kbrate establishes the time before a key repeat is performed and how much
of a delay between each repeat. The parameter initial establishes the delay
before the auto-repeat begins. The last parameter repeat determines the delay
between each repeated key. If a value of —1 is passed for either of the parameters
then that value will not be changed. Note that all times are measured in ticks,
each tick being about 20 microseconds. The previous setting of initial and
repeat is returned as an integer with initial in the high byte and repeat in
the low byte.

Kbrate is defined as a macro in <osbind.h>
EXAMPLE

#include <osbind.h>

set_keyrepeat() - set the keyboard repeat rate at 1 second before
repeat and repeat 4 keys per second.

set_keyrepeat()

60; /* delay for a second. 1000 per second / 20 ticks */
12; /* repeat. B0 ticks per sec / 4 reps per sec
== 12 ticks per rep */

int initial
int repeat

Kbrate (60, 12);

KBDVBASE 485

NAME
Kbdvbase — Get list of various system vectors

SYNOPSIS

#include <osbind.h>
kbdvecs *Kbdvbase()

DESCRIPTION

Kbdvbase returns a pointer to a list of system vectors. The pointer to the
following structure is returned:

typedef struct {
int (*midivec) (); /* MIDI-input */
int (*vkbderr)(); /* keyboard error */
int (*vmiderr) (); /* MIDI error */
int (*statvec)(); /* ikbd status packet */
int (*mousevec)(); /* mouse packet */
int (*clockvec)(); /* clock packet */
int (*joyvec) (); /* joystick packet */
int (*midisys)(); /* system MIDI vector */
int (*ikbdsys)(); /* system IKBD vector */
} kbdvecs;

midivec points to a routine in the BIOS that returns the character read from
the MIDI port in the low byte of DO.

vkbderr and vmiderr are called whenever an overrun condition is detected on
the keyboard or MIDI 6850s.

statvec, mousevec, clockvec and joyvec point to ikbd (intelligent keyboard)
packet handlers for the status, mouse, real-time clock and joystick. A pointer
to the packet is passed to the routine in A0 and on the stack. The handler
returns with an rts instruction (as opposed to rte) and must not spend more
than 1 millisecond in the routine.

midisys and ikbdsys are called when characters are ready on the appropri-
ate 6850. They dispatch to the other vectors. The initial midisys just calls
midivec. The initial ikbdsys figures out what kind of thing has happened and
calls one of statvec, mousevec, clockvec or joyvec. -

Kbdvbase is defined as a macro in <osbind.h>
EXAMPLE

486 KBDVBASE

#include <osbind.h>
extern packet_handler();
extern status();

extern state();

kbdvecs *thevecs;

int *thestate = (int *) state;
long savevec;
main()
{
int x, y;

appl_init();

Get pointer to vector table and replace the mouse
packet handler.

thevecs = (kbdvecs #*)Kbdvbase();
savevec (long) thevecs -> mousevec;
thevecs -> mousevec = packet_handler;

/*
Loop Until done.
*/
vhile (x < 100) {
if (*thestate) {
char *p = (char *)status;
printf("status == %02x %02x %02x %02x %02x %02x\n",
*(p+0) &Oxtf, *(p+1)k0xtf, +(p+2)&Oxtf,
+(p+3) &Oxtf, *(p+4)&0xte, *(p+6)&0OxtL);

X++;

*thestate = 0;
} else
it (y++ > 100) {
puts("Waiting...");

y=0;
}
}
/*
Restore the old mouse packet handler.
*/

thevecs -> mousevec = (int(*)()) savevec;

KBDVBASE 487

appl_exit();

Packet_handler - move packet information to a more easily accessible
place.
asm {
status:
dc.b 0, 0,0,0,0,0
state:
dc.w 0

packet_handler:

lea

move.
move.
move.
move.
move.
move.

lea
addq
rts

o ovovooo

status(PC), Al

(K0)+, (A1)+
(A0)+, (A1)+
(A0)+, (A1)+
(A0)+, (A1)+
(R0)+, (A1)+
(A0)+, (A1)+

state(PC), AO
#1, (AO)

/* get the address of our status work space */

/* move it over fast. +/

/* kiss it goodbye. *f

488 KBSHIFT

NAME
Kbshift — Gets or sets the keyboard shift bits
SYNOPSIS

#include <osbind.h>

long Kbshift(mode)
int mode;

DESCRIPTION

Kbshift returns information about the keyboard’s special keys. The parameter
mode controls the setting or getting of the keyboard shift bits. If mode is negative
then the current settings are returned. If mode is non-negative then the value
of mode is used to set the shift bits. The shift bit assignments are as follows:

Bit Key
0 Right shift key
1 Left shift key
2 Control key
3 ALT key
4 Caps-lock key
5 Right mouse button (CLR/HOME)
6 Left mouse button (INSERT)
7 Reserved

Kbshift is implemented as a macro in <osbind.h>.

KEYTBL 489

NAME
Keytbl, Bioskeys — Sets keyboard translation tables
SYNOPSIS

#include <osbind.h>

long Keytbl(unshift, shift, capslock)
char unshift[128], shift[128], capslock[128];

Bioskeys()

DESCRIPTION

Keytbl sets the keyboard translation tables. unshift, shift and capslock
point to keycode-to-ASCII translation tables for unshifted, shifted and
capslock down while pressed keys respectively. The pointers are stored
into the following structure for which a pointer to is returned (as a long):

struct keytab {
char *unshift;
char *shift;
char *capslock;

};

Bioskeys restores the initial boot up values of the translation tables.

Both routines are defined as a macro in <osbind.h>

490 MALLOC

NAME
Malloc, Mfree, Mshrink — Memory allocator
SYNOPSIS

#include <osbind.h>

long Malloc (amount)
long amount;

int Mfree(addr)
char *addr;

int Mshrink(zero, mem, size)
int Zero;
char *mem;
long size;

DESCRIPTION

These functions are used to manipulate memory dynamically.

Malloc allocates amount bytes of memory from the current program’s heap and
returns a pointer to the beginning of the block. The block is word aligned.
If amount is —1L then the amount of free space in the heap is returned. A
NULL value is returned if the requested number of bytes is not available
Or an error occurs

Mfree releases the block pointed to by addr and returns the space to the pro-
gram’s heap. The block must have been allocated by Malloc. A non-zero
value is returned if an error occurs.

Mshrink changes the size of the heap. The parameter zero must have a value
of zero. mem points to the base of the TPA. size is the number of bytes to
retain in the TPA for the program (basically the size of the base page +
code + data + bss + stack). This function is used by the system library
before main is called. A non-zero value is returned if an error occurs.

These functions are defined as macros in <osbind.h>
EXAMPLE

#include <osbind.h>

MALLOC 491

shov_freemem()

{
printf ("There are %1d bytes free in the heap.\n", Malloc(-1L));
}

492 MEDIACH

NAME
Mediach — Return current “media-changed” value for a device

SYNOPSIS

#include <osbind.h>

long Mediach(dev)
int dev;

DESCRIPTION

Mediach is used internally by BIOS before reading and writing to ensure the
disk has not been replaced by another disk. The parameter dev is the device
to return the “media-changed” value for.

The return value is one of:

0 Media definitely has not changed
1 Media might have changed
2 Media definitely has changed

Mediach is implemented as a macro in <osbind.h>.

NAME

MFPINT 493

Mifpint, Jdisint, Jenabint — Set, disable and enable interrupts on the MFP

SYNOPSIS

#include <osbind.h>

Mfpint(interno, vector)
int interno;
int (*vector)();

Jdisint(interno)
int interno;

Jenabint(interno)
int interno;

DESCRIPTION

Mifpint sets the 68901 MFP chip to interrupt to a user defined routine. The
interrupt number is specified in the parameter interno. The user defined
interrupt handler is defined by the parameter vector.

Jdisint disables the interrupt specified by the parameter interno.

Jenabint enables the interrupt specified by the parameter interno.

The 68901 MFP (Multi-Function Peripheral) supports up to 16 interrupt func-
tions. The address of each function is stored in the 68000’s vector numbers
64 — 79 (4 bytes each starting at address 0x100). Interrupt functions on the
68000 must return with the RTE instruction instead of the usual RTS. See the
Morotola 68000 reference manual for more information. Additionally, the bit
in the 68901’s “Interrupt Status Register” (ISR) corresponding to the interrupt
number must be cleared before returning.

There are two 8-bit ISRs labeled ISRA and ISRB. ISRA has a bit for functions
8-15 while ISRB has a bit for functions 0-7.

Interrupt numbers are assigned as follows:

494 MFPINT

interno ISR bit Used for
0 ISRB 0 Parallel port (initially disabled)
1 RS232 Carrier Detect (initially disabled)
2 RS232 Clear-To-Send (initially disabled)
3 Unused, disabled
4 Unused, disabled (Timer D)
5 200hz system clock (Timer C)
6 Keyboard /MIDI (6850)
7 Polled FDC/HDC (initially disabled)
ISRA 0 HSync (initially disabled) (Timer B)
1 RS232 transmit error
10 2 RS232 transmit buffer empty
11 3 RS232 receive error
12 4 RS232 receive buffer empty
5
6
7

00 =3 O O i N =

©

13 Unused, disabled (Timer A)
14 RS232 Ring detect (initially disabled)
15 Polled monitor type (initially disabled)

ISRA is stored at memory location OxfffaOf. ISRB is at Oxfffall.
See Xbtimer for information about programming the four timers (A,B,C and
D).
These routines are defined as macros in <osbind.h>
NOTE
The interrupt priority levels are from 0 to 15, lowest to highest priority.
EXAMPLE
An example of a 68901 interrupt routine is provided in Xbtimer.
SEE ALSO
Xbtimer(), Rsconf()

NAME

MIDIWS 495

Midiws — Write a string to the MIDI port

SYNOPSIS

#include <osbind.h>

Midiws(cnt, ptr)

int cnt;
char *ptr;

DESCRIPTION

NOTE

Midiws writes characters out accross the MIDI out port of the ST. The param-
eter cnt is the number of characters to write minus 1. The parameter ptr is a
pointer to the data that is to be written out.

MIDI is an acronym which stands for “Musical Instrument Device Interface.”
This interface is a standard for most of the electronic synthesizers on the market
today.

Below is listed some of the commands that are defined in the MIDI standard.
This is not a complete list, nor can it be due to the fact that each synthesizer
has a set of commands which shows of it’s own individual talents as well as
the manufacturers thoughts. These channel messages are defined as three 8-bit
bytes where the individual bits are represented as follows:

Flag Description
c Channel. There are sixteen total channels available (0 - 15).
k Key pressed. From piano: 21 (low D) — 108 (high C).

Middle C 60
Sharps note number + 1
Flats note number - 1
Octave jumps note number + 12
v Velocity. Determines how loud a note is to be played.
(soft) O_1___________ 64____________ 127 (loud)

PPP PP mp mf £ £f fff
p Program number (0 - 127).
b Pitch bender range (0 - 127). 64 = center (i.e. no bend)
X Don’t care

496 MIDIWS

MIDI command Message Description in bits

note OFF 1000 cccc + Okkk kkkk + 0100 0000
note ON 1001 cccc + Okkk kkkk + Ovvv vvvv
OSC modulation 1011 cccc + 0000 0001 + Ovvv VvVvVvv
VCF modulation 1011 cccc + 0000 0010 + OvVvv VvVvvy
Damper pedal OFF 1011 cccc + 0100 0000 + 0000 0000
Damper pedal ON 1011 cccc + 0100 0000 # 0111 1111
Portamento OFF 1011 cccc + 0100 0001 + 0000 0000
Portamento ON 1011 cccc + 0100 0001 + 0111 1111
Program change 1100 cccc + Oppp pPpPpPp + 000X XoOX
Channel Pressure 1101 cccc + OVVV VVVV + dO000X X000K
Pitch bender change 1110 cccc + 0000 0000 + Obbb bbbb

Note that if a note is specified that is outside the range of the synthesizer, then
the note is transposed to the nearest octave.

Midiws is defined as a macro in <osbind.h>
EXAMPLE

An example of Midiws is in the file midi.c on the Examples disk supplied with
the Laser package.

PEXEC 497

NAME
Pexec — Load another program

SYNOPSIS

#include <osbind.h>

long Pexec (mode, path, commandline, environment)
int mode ;
char *path, *commandline, *environment;

DESCRIPTION

Pexec is used to launch an application from another application. There are
several modes that may be specified by the mode parameter. These modes are
defined as follows:

Mode Function Description
0 load and go Set up the parameters as described in the de-
scription section.
3 just load Exactly like mode = 0, however, the address of
the base page is returned and the application
is not executed.

4 just go pathname = address of the base page.
5 create a base page and allocate free memory.
path the file containing the program to load.

commandline the command line image to be placed in the base page. The
command line may include I/O redirection.

environment the environment string to be placed in the base page. If envi-
ronment is OL then the parent program’s environment string
is used.

Pexec is defined as a macro in <osbind.h>
NOTE

The commandline parameter is actually a Pascal style string (i.e. length byte
with character data following).

DIAGNOSTICS

498 PEXEC

If the load fails, then a negative error number is returned.

EXAMPLE

#include <osbind.h>
#include <stdio.h>

#define LOADNGO O

/*

o/

This program demonstrates using the Pexec() function to launch
itself. Note that in order to work it’s executable name
must be ‘‘pexec.prg’’.

main(argc, argv)

}

int argc;
char *argv[];

it (arge < 2) {
printf("This is the first time through the Pexec Test Program\n");

launch("pexec.prg", "Hello world ...");

} else {
printf("This is the second time through the Pexec Test Program\n");
exit(0);

}

puts("End of program.");

launch(command, commandline)

SEE ALSO

char *command;
char *commandline;

char work[128]; /* the max size of a command line is 128 chars. */
/*

Convert to Pascal Style string.
*/

work[0] = strlen(commandline);
strcpy(&vork[1], commandline);

Pexec (LOADNGO, command, work, "");

DOS Error Codes (pg. 587)

PRINTER PORT I/O 499

NAME
Cprnout, Cprnos — Printer port write and status.

SYNOPSIS

#include <osbind.h>

int Cprnout(chr)
int chr;

int Cprnos()

DESCRIPTION

The Printer I/O functions are designed to facilitate output to a printing device.

Cprnout writes the character chr to the printer port. If the character was
successfully sent to the printer then a value of —1 is returned as the
function’s result. If the printer is offline or inactive for more than 30
seconds then a value of zero will be returned.

Cprnos returns non-zero if the printer port is ready to receive a character.

These routines are defined as macros in <osbind.h>
EXAMPLE
print_text(thetext, thecount)

char #*thetext;
int thecount;

{
it (1Cprnos())
fatal("Printer is offline.\n");
else
vhile(thecount--)
if (!(Cprnout(*thetext++)))
fatal("Error during print.\n");
}
SEE ALSO

Character I/O, Console I/O

500 PROTOBT

NAME

Protobt — Construct a prototype boot sector

SYNOPSIS

#include <osbind.h>

Protobt(buf, serialno, disktype, execflag)
char buf[512]; ‘
long serialno;
int disktype, execflag;

DESCRIPTION

Protobt creates a prototype boot sector at the memory pointed to by the pa-
rameter buf which may be written to the disk. The rest of the parameters are
defined as follows:

serialno

disktype

execflag

A serial number to be stamped into the boot sector. buf may
already point at an existing boot sector, if it does and serialno
is —1 then the previous serial number will be used. If serialno
is greater than 0x01000000 then a random serial number will
be used.

The disk type. If it is —1 and buf points at an existing boot
sector then the disktype information is left unchanged. Other
values for disktype are:

single sided 180K, 40 tracks
double sided 360K, 40 tracks
singed sided 360K, 80 tracks
double sided 720K, 80 tracks

W N = O

The executable status of the boot sector. If execflag is —1
and buf points at an existing boot sector, then the sector is
left unchanged with respect to executable status. If execflag
is 1, the boot sector is made executable. If it is O then the boot
sector is made non-executable.

Protobt is defined as a macro in <osbind.h>

EXAMPLE

Refer to Floppy() for an example of Protobt

Floppy

502 PTERMO

NAME
PtermO, Pterm, Ptermres — Terminate current process
SYNOPSIS

#include <osbind.h>
PtermO()

Pterm(code)
int code;

Ptermres(keep, ret)

long keep;
int ret;
DESCRIPTION

These Pterm functions terminate the current program and return control to
the calling program. Each of these functions has a slightly different behavior
as follows:

PtermO terminates the current process with an exit status of 0.
Pterm terminates the current process with an exit status of code.

Ptermres terminates the current process with an exit status of ret, but leaves
it in memory. The keep parameter is the number of bytes to leave in the
process descriptor.

These routines are defined as macros in <osbind.h>

PUNTAES 503

NAME
Puntaes — Throw away GEM AES freeing up its space
SYNOPSIS

#include <osbind.h>
Puntaes()

DESCRIPTION

Puntaes will cause the system to reboot, but won’t load the AES routines or
GEM desktop. Puntaes will just return if it has already been called.

Puntaes is defined as a macro in <osbind.h>
NOTE
This won’t work with the system in ROM.

504 RANDOM

NAME

Random — Generate a 24-bit pseudo-random number
SYNOPSIS

#include <osbind.h>
long Random()

DESCRIPTION

Random generates a 24-bit pseudo-random number which is returned as the
function’s result as a long. A linear congruential algorithm is used:

S=(xC)+K

K is 1 and C is 3141592621. The initial value for S is taken from the frame-
counter global (_frclock). S >> 8 is returned.

Random is defined as a macro in <osbind.h>

RSCONF

505

NAME
Rsconf — Configure the RS232 port
SYNOPSIS
#include <osbind.h>
Rsconf (speed, flowctl, ucr, rsr, tsr, scr)
int speed, flowctl, ucr, rsr, tsr, scr;
DESCRIPTION

Rsconf sets communication parameters for the serial port.

speed Sets the baud rate for the RS232 port as follows:
speed Baud rate
0 19,200
1 9600
2 4800
3 3600
4 2400
5 2000
6 1800
7 1200
8 600
9 300
10 200
11 150
12 134
13 110
14 75
15 50
flowctl Sets the flow control as follows:

flowctl Type of flow control

0

1
2
3

No flow control (default value)
XON/XOFF

RTS/CTS

Both XON/XOFF and RTS/CTS

506 RSCONF

ucr, rsr, Set the corresponding 68901 registers. A —1 for one of these
tsr, scr parameters will not set the register (so you don’t have to set
them all). Only the ucr register is useful:

e

Bit Meaning
0 Not used
1 Parity. 1=even parity, 0=o0dd parity
2 Parity enable. 1=enabled.

3,4 Start/Stop bits:
Bit4 Bit3 Start Stop Format

0 0 0 0 Sync.

0 1 1 1 Async.
1 0 1 1.5 Async.
1 1 1 2 Async.

5,6 Word length:
Bit 6 Bit5 Word length

0 0 8 bits
0 1 7 bits
1 0 6 bits
1 1 5 bits

7 Clock mode. 1 = 1/16 rate (use this one),
0 = full speed.

Rsconf is defined as a macro in <osbind.h>. The 68901 MFP Timer D is used
to control the baud rate. See Xbtimer for information on how to program the
timer for other baud rates.

EXAMPLE

#define BAUD19200 O
#define XON_XOFF 1

/*
Initialize RS-232 port to 19.2 kbaud using XON/XOFF
flovw control.
*/
initRS232()
{
Rsconf (BAUD19200, XON_XOFF, -1, -1, -1, -1);
}

SEE ALSO
Mifpint(), Xbtimer()

RWABS 507

NAME
Rwabs — Read/write blocks on a device.

SYNOPSIS

#include <osbind.h>

long Rwabs(rwflag, buf, count, recno, dev)
int rwilag;
char *buf;
int count, recno, dev;

DESCRIPTION

Rwabs allows the user to read and write to the disk using absolute block refer-
ences. The parameter rwflag is contains the operation to be performed which
is defined as follows:

Read
Write
Read, but doesn’t affect “media-change”
Write, but doesn’t affect “media-change”

W N = O

If an error occurs during the requested operation then a negative value will be
returned. A return value of OL indicates successful operation. The rest of the
parameters are defined as follows:

buf points to a buffer to be read or written. Note that if the buffer
begins on an odd address the performance of the operation will
decrease.
count the number of blocks to transfer.
recno the logical sector to start transferring at.
dev the device number:
0 = Floppy drive A:

1 Floppy drive B:
>1 = Hard disks, networks or other devices.

508 RWABS

Rwabs is implemented as a macro in <osbind.h>.
SEE ALSO

mediach

SCRDMP 509

NAME
Scrdmp — Dump B/W screen to printer
SYNOPSIS

#include <osbind.h>
Scrdmp()

DESCRIPTION

Scrdmp sends the current screen data to the printer. Note that this only works
with the black and white monitor.

Scrdmp is defined as a macro in <osbind.h>
EXAMPLE

#include <osbind.h>

print_screen()
{
if (Getrez() != 2)
printf("Cannot print screen in this screen resolution!");
else
Scrdmp();

510

SCREEN FUNCTIONS

NAME

Physbase, Logbase, Setscreen, Getrez — Screen functions

SYNOPSIS

#include <osbind.h>

long Physbase()

long Logbase()

int Getrez()

Setscreen(log_loc, phys_loc, rez)

char *log_loc, *phys_loc;
int rez;

DESCRIPTION

NOTE

These functions are designed to facilitate the manipulation of the graphics
screens. The functions are defined as follows:

Physbase returns the screen’s physical location in memory at the next vertical
blanking interrupt.

Logbase returns the screen’s logical location immediately. Note that the logical
screen base is where all drawing is done. This may contrast with the
physical screen base where the video hardware looks for the data to display
on the monitor.

Getrez returns the current screen resolution (0=low, 1=medium, 2=high).

Setscreen sets the logical base, physical base and resolution for the screen. A
negative value for a parameter is ignored so it is possible to set only one or
two of the values. The logical base is set immediately. The physical base
will not be changed until the next vertical blanking interrupt. Changing
the screen resolution causes the screen to be cleared and the VT52 emu-
lator to be reset. The address of the screen must be on a page (256 byte)
boundary.

These routines are defined as macros in <osbind.h>

SCREEN FUNCTIONS 511

Even when the screen resolution is changed certain parts of GEM are not aware
of the change.

EXAMPLE

#include <stdio.h>
#include <osbind.h>

/*®
Example showing the use of Vsync(), Physbase(), Setscreen().
*/
main()
{

register char *vis_screen, *back_screen, *temp;
int rez;
int count = 10;

/%
Allocate memory for second screen.
*/
back_screen = malloc(32768 + 266);
/*
The screen address must be on a 266 byte boundary.
+/

if ((long) back_screen & Oxff)
back_screen = back_screen + (0x100 - (long)back_screen & Oxff);

/*

Get visible screen address.
*/
vis_screen = (char *)Physbase();
/*

Get the current resolution
*/
rez = Getrez();
/*

Reset VIb2 cursor to top-left of screen
*/

printf("\033Y%ckc", 0 + * *, 0 + * *);
ff1ush(stdout);

puts("Example showing the use of Vsync(), Physbase(), Setscreen()");
puts("Press return to start the pageflip...");
getchar();

/*

Wait until the vertical blank interrupt and then svap the screens.

512 SCREEN FUNCTIONS

The physical screen address is the screen image that is displayed.
The logical screen address is the back screen vhere everything is
drawn.

+/

vhile (count--) {
Setscreen(back_screen, vis_screen, -1);

/*
do your thing.
*/

draw(back_screen,count);

/*
swap screens.

*/

temp

vis_screen

back_screen

vis_screen;
back_screen;
temp;

nun

}

Setscreen(vis_screen, vis_screen, -1);
puts("Press return...");
getchar();

drav(back,count)
char *back;

{
int i = 60;
while(i--)
Vsync();

Drav and undrav the animation here in the background screen.

if (count &1)

puts("This is the first screen");
else

puts("This is the second screen");

SETCOLOR 513

NAME
Setcolor — Set an entry in the hardware color palette
SYNOPSIS

#include <osbind.h>

int Setcolor(colornum, color)
int colornum, color;

DESCRIPTION

Setcolor allows the user to change a color in the color palette. The color palette
entry colornun is set to color. If the color is negative no change is made to
the color. The result of the function is the previous value of the colornum
before the call. The color is defined by intensity values for each of the different
colors in the monitors rgb gun.

Bits Description

0 -2 The intensity of blue.
4 -6 The intensity of green.
8 — 10 The intensity of red.

Setcolor is defined as a macro in <osbind.h>
EXAMPLE

#include <osbind.h>

#define RED 8
#define GREEN 4
#define BLUE 0

display_palette_values()

int colornum;
int color;

for(colornum = 0; colornum < 16; colornum++) {
color = Setcolor(colornum, -1);
print2("The color %d contains %d red, %d green, %d blue\n",
colornum,
(color > RED) & Oxt,
(color >> GREEN) & Oxf,
(color >> BLUE) & Oxt);

514 SETEXC

NAME
Setexc — Set exception vector for 68000
SYNOPSIS

#include <osbind.h>

long Setexc(vecnum, vec)
int vecnum;
int (*vec)();

DESCRIPTION

Setexc changes one of the 68000’s exception vectors. The parameter vecnum
defines the number of the vector that is to be changed. The parameter vec is
the address of the new vector routine. The function result will be the previous
value of the vector if it was changed. If the vector was not changed then the
function will return a value of —1.

Setexc is implemented as a macro in <osbind.h>.
NOTE

The 68000 reserves vectors 0x00 through OxFF. Vectors 0x100 through Ox1FF
are reserved for GEM DOS. The following are currently implemented:

0x100 System timer interrupt
0x101 Critical error handler
0x102 Process termination vector

0x103 — 0x107 Unused but reserved

The vectors above 0x200 are reserved for OEM use.
EXAMPLE

extern death();

set_error_handler()

{
Setexc (0x101, death);
}
death()
{

puts("Oops!");
Pterm(1);

SETPALETTE 515

NAME

Setpalette — Set the contents of the hardware color palette
SYNOPSIS

#include <osbind.h>

Setpalette(newpalette)
int newpalette[16];

DESCRIPTION

Setpalette sets the color palette to user defined values. The 16 color video
lookup table is loaded with the values from newpalette. The assignment will
occur at the next vertical blanking interrupt.

Setpalette is defined as a macro in <osbind.h>
NOTE

The colors in the palette are described in the color word in terms of the inten-
sities of each of the rgb guns.

Bits Description

0-2 The intensity of blue.
4 -6 The intensity of green.
8 — 10 The intensity of red.

516 SETPRT

NAME
Setprt — Set/get printer configuration word
SYNOPSIS

#include <osbind.h>

int Setprt(config)
int config;

DESCRIPTION

Setprt allows the setting and querying of the printer’s current configuration. If
the value of the parameter config is negative then the configuration word is
returned as the function’s result. If config is a positive value then the printer
will be set to the value of config and the previous configuration word is returned
as the function’s result. The bits in config represent information about the
printer as follows:

Bit Meaning if 0 Meaning if 1
0 Dot matrix Daisy wheel
1 Color device Monochrome device
2 Atari printer Epson style printer
3 Draft mode Final mode
4 Parallel port RS232 port
5 Continuous feed Single sheet

6 —14 Unused
15 Must be zero

Setprt is defined as a macro in <osbind.h>

SUPER 517

NAME
Super — Change 68000 privilege status
SYNOPSIS

#include <osbind.h>

long Super(stack)
long stack;

DESCRIPTION

Super allows the user to change or query the 68000’s supervisor mode. If the
parameter stack is —1, then a O is returned if the processor is in user mode,
and a 1 if it is in supervisor mode.

If the processor is in user mode and stack is greater than zero, then Super
switches to the supervisor state and sets the SSP (supervisor stack pointer) to
stack.

If the processor is in user mode and stack is zero, then Super switches to the
supervisor state and sets the SSP to the current USP (user stack pointer).

If the processor is in the supervisor state, then Super switches to the user state
and uses stack as the new SSP.

Super returns the old SSP value for the above three conditions.

Super is defined as a macro in <osbind.h>
EXAMPLE

#include <osbind.h>

/*
tickcount() - returns the number of 200 hertz ticks that have
occurred since system pover-up. Since this information lies in
protected memory it is necessary to move into the 68000 supervisor
mode.
*/
long tickcount()
{
/*
Put in supervisor mode. Save user stack in User_stack. Get
Hz200 tickcount from the System global.
*/
long User_stack = Super(OL);
long ticks = *(long *)Oxdba;

/*

518 SUPER

Restore the processor to user mode.

+/

Super(User_stack) ;

/*

Return the tickcount

*/

return ticks;

}
SEE ALSO

Supexec

SUPEXEC 519

NAME

Supexec — Execute a function in 68000 supervisor mode.
SYNOPSIS

#include <osbind.h>

long Supexec (func)
void (*func)();

DESCRIPTION

Supexec calls the function pointed to by func with the 68000 supervisor mode
set. The function should not expect any parameters, and should not return a
result.

Supexec is defined as a macro in <osbind.h>
EXAMPLE

#include <osbind.h>
extern tickcount();

long thetickcount;

/*
fetch_tickcount() - calls the tickcount function which needs to
run in supervisor mode.
*/
fetch_tickcount()
{
Supexec(tickcount);
}
/*
tickcount() - stores the current 200 hz tick count to the global
variable thetickcount.
*/
tickcount()
{
thetickcount = *(long *)Ox4ba;
}
SEE ALSO

Super

520 SVERSION

NAME

Sversion — Returns current version number of GEM

SYNOPSIS

#include <osbind.h>
int Sversion()

DESCRIPTION

Sversion returns the current version number of GEM. The low byte contains the
major version number and the high byte contains the minor version number.

Sversion is defined as a macro in <osbind.h>

TICKCAL 521

NAME
Tickcal — Return system timer calibration value to nearest millisecond.

SYNOPSIS

#include <osbind.h>
long Tickcal()

DESCRIPTION

Tickcal tells the user how long a system tick is in milliseconds. The function’s
result is the system timer calibration value rounded to the nearest millisecond.

NOTE

This is not very useful since the number of elapsed milliseconds is passed on
the stack when a system timer exception occurs.

Tickcal is implemented as a macro in <osbind.h>.

522 TIME FUNCTIONS

NAME
Tgetdate, Tsetdate, Tgettime, Tsettime — Get/set date and time
SYNOPSIS

#include <osbind.h>
int Tgetdate()

Tsetdate(date)
dateinfo date;

int Tgettime()

Tsettime(time)
timeinfo time;

DESCRIPTION

The time functions are used to manipulate the system’s date and time. The
functions are defined as follows:
Tgetdate returns the current date in an int using the following format:

bits0 -4 Day in month (1 - 31)
bits 5 -8 Month in year (1 - 12)
bits 9 — 15 Year since 1980 (0 - 119)

Tsetdate sets the date to date using the above format.
Tgettime returns the current time in an integer using the following format:

bits 0 — 4 Current second divided by 2 (0 - 30)
bits 5 — 10 Current minute (0 — 59)
bits 11 — 15 Current hour (0 - 23)

Tsettime sets the time to time using the above format.

These functions are defined as macros in <osbind.h>

TIME FUNCTIONS 523

EXAMPLE
#include <osbind.h>

/*
Example of how to get information from the Tgettime() functions.
Note : To set the time just assign the ‘‘part’’ fields of the
structure and then pass Settime() the real datetime. Ex:
time.part.hours = 5;
time.part.minutes = 34;
time.part.seconds = 16 / 2;
Tsettime(time.realtime);
*/
show_date_and_time()
{

timeinfo mytime;
dateinfo mydate;

mytime.realtime = Tgettime();
mydate.realdate = Tgetdate();

print2("\t\t date \n Day: %d \t Month: %d \t Year: %d\n",
mydate.part.day, mydate.part.month, mydate.part.year + 80
);

printf("\t\t time \n Hour: %d \t Minute: %d \t Seconds: %d\n",
mytime.part.hours, mytime.part.minutes, mytime.part.seconds * 2

):

printf("\nPress RETURN to exit...\n");
Bconin(2);

524 VSYNC

NAME
Vsync — Wait until the next vertical blanking interrupt

SYNOPSIS

#include <osbind.h>
Vsync ()

DESCRIPTION

Vsync helps in syncing with the video’s vertical retrace. This function will not
return until the next vertical retrace occurs.

Vsync is defined as a macro in <osbind.h>
EXAMPLE

/*
delay() - this function is used to delay a specified number of
seconds. Note that this depends on the vertical retrace
occurring every 1/60th of a second.

*/
delay(secs)
int secs;
{
int tsecs;

vhile(secs--)
for(tsecs=0; tsecs<60; tsecs++)
Vsync() ;

XBTIMER 525

NAME
Xbtimer — Set timer on 68901 MFP (Multi-Function Peripheral)
SYNOPSIS
#include <osbind.h>
Xbtimer(timer, control, data, vec)
int timer, control, data;
int (*vec)();
DESCRIPTION
timer The 68901 timer to set (0=A, 1=B, 2=C, 3=D).
control The 8-bit value for the timer control register.
data The 8-bit value for the timer data register. This is used as the

inital value for the counter.

vec The address of a new interrupt vector.

The timers are used as follows:

Timer Usage

Reserved for applications

Reserved for graphics (HSYNC signal)
200hz system timer

RS232 baud-rate control. The interrupt vector for this timer
may be used for any purpose.

OaQw»

Bit 4 of the control register for timers A and B is used to reset the TAO and
TBO outlines of the 68901 respectively. These lines are not used by the ST.

Timers A and B can be in one of three modes:
Delay Timer continuously counts down to O and interrupts

Pulse width Used to measure external signals
Event count Used to count external events

526 XBTIMER

Bits 0 — 3 have the following meaning:

Bit3 Bit2 Bitl BitO0O Meaning

Stop timer

Delay mode, divide by 4 prescale

Delay mode, divide by 10 prescale
Delay mode, divide by 16 prescale
Delay mode, divide by 50 prescale
Delay mode, divide by 64 prescale
Delay mode, divide by 100 prescale
Delay mode, divide by 200 prescale
Event Count mode

Pulse width mode, divide by 4 prescale
Pulse width mode, divide by 10 prescale
Pulse width mode, divide by 16 prescale
Pulse width mode, divide by 50 prescale
Pulse width mode, divide by 64 prescale
Pulse width mode, divide by 100 prescale

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1 Pulse width mode, divide by 200 prescale

-2 OO0OO0OO0OHMKMKMEOOOO
= O OMMOOKEMEMKOOMIMODO
HOHFOFMFROROMHRHOMROHRORDO

Timer registers C and D use the same control register. Bits 0 — 2 are used for
register D and bits 4 — 6 for register C. The meaning of these bits is as follows:

Bit 2,6 Bit1,5 Bit 0,4 Meaning

Stop timer

Delay mode, divide by 4 prescale
Delay mode, divide by 10 prescale
Delay mode, divide by 16 prescale
Delay mode, divide by 50 prescale
Delay mode, divide by 64 prescale
Delay mode, divide by 100 prescale
Delay mode, divide by 200 prescale

-0 000
- O O MMMOO
= O = O MO MO

Xbtimer is defined as a macro in <osbind.h>

NOTE
The timers on the 68901 MFP are controlled by a 2.4576 Mhz crystal. Using
timer ’A’ in the delay mode with a pre-scale set at 200 (i.e. by setting the timer
’A’ control register to 7) creates a 12288 Hz counter (2457600 Hz / 200 pre-

scale). Using a count of 256 (i.e. by loading the timer ’A’ data register with 0)
you get an interrupt frequency of 48 Hz (12288 Hz / 256 ticks).

See the description of Mfpint for details of writing interrupt functions for the
68901.

XBTIMER 527

EXAMPLE

#include <osbind.h>
#include <stdio.h>

/*

xbtimer.c

Sample code that demonstrates the use of TIMER A on the 68901 MFP
Also demonstrates hov to handle the process terminate interrupt.

The program begins by installing the address of the function ‘terminate’

into the exception vector 0x102 (Process terminate exception), saving its
old pointer. It then starts up Timer A on the 68901 MFP, configured to
interrupt the function ‘dispatcher’ at 48Hz. The main loop continuously
displays the value of a counter, that the function ‘‘ticker’’ increments.
If CTRL-C is struck, the ‘terminate’ function is called to handle the
termination of the program. It stops timer, then restores the original
process terminate vector and returns (to the default system Interrupt
Service Routine).

The timers on the 68901 MFP are controlled by a 2.4676 Mhz crystal.
Using timer ’A’ in the delay mode with a prescale set at 200 (ie. by
setting the timer ’A’ control register to 7) gives you a 12288 Hz counter
(2467600/200) . Using a count of 266 (ie. by loading the timer ’A’ data
register with 0) you get an interrupt frequency of 48 Hz (12288/266). For
other values for the control & data registers see the 68901 manual available
for free by calling Motorola.

The timer interrupt is handled by the function ’dispatcher’. This
function calls a routine to increment the long counter, then clears Bit b
of the ISRA (In Service Register A), and then returns from the exception
by doing an RTE.

Note: In the ST the 68901 always operates in the Software End of Interrupt

Mode (ie. bit 3 of the Vector Register VR is always set). In this mode the
ISR bit of the ISRA, the ISR bit correpsonding to the Timer A interrupt is
bit 6, is automatically set when an interrupt occurs and the processor
requests the interrupt vector. As long as the bit is set, that interrupt
and any other interrupts of lowver priority cannot occur. Once the bit is
cleared the same interrupt or any lover priority interrupts can once

again occur. This is why it is important to clear bit 6 of the ISRA before
performing the RTE. The address of the ISRA register is OxfffAOF

*/

#define MyApp O /* my application */
#define Control 7 /* divide by 200 prescale */
#define Data 0 /* Countdown from */

/* 1 byte, 1, 2, ... 264, 2656, 0 = 256 */

#define 0ff 0

528 XBTIMER

#define MAXITER 100 /# Iterations */
#define MAXTICKS 10 /* Maximum timer count-down events */

extern dispatcher(); /+ labels in in-line assembly must be declared. */
extern set_timer();
extern unset_timer();

long ticks = MAXTICKS; /* local tick counter. */
long oldvector; /+ storage for old terminate vector. */
/*

This routine is called by the interrupt handler to increment the
local tick counter.

*/
ticker()
{
ticks++;
}
main()
{

int count = 0;

puts("Sample code demonstrating the use of TIMER A on the 68901 NFP");
printf("Iterations : %d\n", MAXITER);
print2("Timer events per iteration: %d\n\n", NAXTICKS);

set_timer(); /* turn on timer */

/*
8et the terminate vector so that the user can’t leave without
turning of the timer first.

*/
set_terminate();
/%
Keep on ticking...
*/

vhile(count < NAXITER) {
if (ticks == NAXTICKS) {
printf("count == %d\r", count++);
ff1ush(stdout);
ticks = OL;
}
}

unset_terminate();
unset_timer(); /% turn off timer */

XBTIMER 529

puts("\nPress return...");
getchar();
}
/*
My terminate application function.
*/
terminate()
{
/*
Clear 68901 timer interrupt
*/
unset_timer();
/*
Restore the old process terminate vector
*/
Setexc (0x0102, oldvector);
}
/*
Get the old terminate application vector and setup
the local terminate function.
*/
set_terminate()
{
long user_stack = Super(OL);
oldvector = Setexc(0x0102, -1L);
Setexc (0x0102, terminate);
Super(user_stack) ;
}

unset_terminate()

{
/*
Restore the old process terminate vector
*/
Supexec (Setexc(0x0102, oldvector));
}
/*
This is the interrupt dispatcher routine.
*/

asm {

530 XBTIMER

dispatcher:
jsr ticker /* our function *f

belr.b #5,0xf21a0f /+ Tell MFP the interrupt has been serviced */
rte /* return from exception */

This function is callled by the maia() function to set up the
application terminate function and the 68901 function timer.

set_timer()

{
register char *globals;
Tell the timer chip to call the dispatcher routine for the interrupt.
Xbtimer(MyApp, Control, Data, dispatcher);
}
/*
Turn off the timer and reset the terminate vector.
*/
unset_timer()
{
/*
Turn off the application timer.
*/
Xbtimer(MyApp, 0ff, 0ff, NULL);
}
SEE ALSO

Mfpinit, Rsconf

Chapter 19

Line-A Graphics Kernal

Introduction

The Atari ST’s ROM contains some low-level graphic drawing routines, called
the line-A routines, which are named after their calling mechanism (the 68000
line-A emulation). The line-A routines provide a hardware independent inter-
face for all graphic operations. The Atari ST’s VDI (Virtual Device Interface)
calls line-A routines to perform its actual drawing. However, due to the over-
head associated with the VDI calling mechanism, drawing operations can be
performed more quickly by calling line-A routines directly, rather than calling
VDI routines which in turn call line-A routines.

19.1 Line-A Graphics Routines

In this section an explanation of the graphics sub-system of the Atari is dis-
cussed. It is suggested that the programmer have a solid understanding of GEM
and VDI before delving into this section.

As mentioned previously, the low-level graphics routines make use of a spe-
cial type of instruction on the 68000 called line-A emulation. The 68000 pro-
cessor has no instructions whose upper four bits are Oxa. These unimplemented
instructions have been defined by Atari to call graphic drawing routines.

The following line-A opcodes are defined on the ST:

R21

532

CHAPTER 19. LINE-A GRAPHICS KERNAL

0xA000 Initialize the graphics system
0xA001 Plot a point

0xA002 Get a value for a point
0xA003 Draw a line

0xA004 Draw a horizontal line
0xA005 Fill a rectangle

0xA006 Fill a polygon

0xA007 — Bit Block Transfer ‘
0xA008 Text Block Transfer

0xA009 Show Mouse Cursor

0xAOOA Hide Mouse Cursor

0xA00B Change Mouse Form
0xA00C Draw Sprite

0xAO0OD — Undraw Sprite

O0xAOOE Copy Memory Form Definition Block (MFDB)
0xAQOF Flood Fill

19.2 Graphics Modes

When the Atari ST is initially turned on, a 32000 byte block of RAM is defined
near the top of memory as the screen RAM. Screen RAM is the memory which
is scanned by special video hardware to produce the screen display. Although
this block of memory is contiguous, it is logically arranged into rows of bytes,
each representing a scan line (row) on the display. The dots, or pixels (picture
elements), on the screen reflect bit patterns in these rows of bytes.

19.2.1 High-resolution Mode

The high-resolution mode displays 640 pixels on each of 400 scan lines. Each
pixel displayed on the screen represents a single bit, either on or off in a row,
with each row using 80 bytes. If a bit is zero (0), that pixel is displayed as
white, if it is one (1), it is displayed as black. The top-left pixel on the screen
is the upper bit of the first byte of screen RAM.

19.2.2 Medium-resolution Mode

The medium-resolution mode displays 640 pixels on each of 200 scan lines. This
mode divides screen RAM into twoequally sized planes, displaying only one-half
the number of scan lines of high resolution. The planes are actually alternate
words (16 bit) in memory, such that even words comprise the top plane and

19.3 LINE-A PORT

533

odd words comprise the bottom plane. The video hardware overlays the two
planes and uses the binary number formed by corresponding bits of the top and
bottom planes as an index into a color table, which determines the actual pixel
color displayed. Note that two planes allow indices to range from 0 — 3, yielding
four possible colors.

19.2.3 Low-resolution Mode

The low-resolution mode displays 320 pixels on each of 200 scan lines. This
mode divides screen RAM into four equally sized planes, displaying one-half
the number of scan lines and one-half the number of pixels per scan line of
high-resolution. As with medium-resolution mode, the planes are alternate
words (16 bit) in memory, such that every fourth word from the base of screen
RAM lies in a plane. The video hardware overlays the four planes and uses the
binary number formed by corresponding bits of these planes as an index into a
color table, which determines the actual pixel color displayed. Note that four
planes allow indices to range from O — 15, yeilding sixteen possible colors.

19.3 Line-A Port

The line-A routines operate from a set of variables contained in the 1ineaport
Data Structure. The table is initialized through the call to a_init. The port
data structure is defined as follows:

typedet struct {

/*
Draving Environment
*/
int vplanes; /* Number of video planes */
int vwrap; /* Number of bytes per video scan */
int *ontrl; /* pointer to VDI contrl array */
int *intin; /* pointer to VDI intin array */
int *ptsin; /* pointer to VDI ptsin array */
int *intout; /* pointer to VDI intout array */
int *ptsout; /* pointer to VDI ptsout array */
int plane0; /* color bit mask for plane 0 */
int planet; /* color bit mask for plane 1 */
int plane2; /* color bit mask for plane 2 */
int plane3; /% color bit mask for plane 3 */
int minusone; /* -1 used in XOR mode */
int linemask; /* VDI line style */
int writemode; /* VDI write mode */
int x1, y1, x2, y2; /+ drawing rectangle */
int *patptr; /* pointer to current VDI fill patter */

534

CHAPTER 19. LINE-A GRAPHICS KERNAL

int patmask; /* size of fill pattern mask */

int planefill; /* number of planes to fill (0 = 1 plane) */
int clipflag; /* clipping flag (0 = no clipping) */

int oxminclip, yminclip; /* clipping rectangle */

int xmaxclip, ymaxclip;

/*
Font Information

*+/

textblock thetext; /* Text Drawing Block 74
Miscellaneous Drawving Variables

int copymode; /* copy mode for raster operations */

int (*seedabort)(); /* pointer to seed fill abort routine */

} lineaport;

19.4 Line-A Data Structures

The data structure below is used with the a_bitblit function for describing the
bit block to move.

typedef struct {
int x;
int y;
int *base;
int offset;

int width;
int plane_offset;

} bitblock;

typedef struct {
int width; /* width of bit block */
int height; /* height of bit block */
int planecount; /* number of planes */

int ForeColor;
int BackColor;
char table[4];

/*

Bit blocks to Blit
*/
bitblock source;
bitblock destin;

/*

Pattern Information

19.4 LINE-A DATA STRUCTURES

*/

int #*patbuf;

int pat_offset;

int pat_width;

int pat_plane_offset;
int pat_mask;

Temp Work space

int work[12];
} blitblock;

The data structure below is used with the a_drawsprite function for describ-
ing the image of the sprite. Note that this data structure is also used to define

the mouse form in the function a_transformmouse.

typedef struct {

int x; /* x offset of hot spot */

int y; /* y offset of hot spot */

int format; /* 0 = Copy, 1 = XOR */

int forecolor; /* background color */

int backcolor; /* foreground color */

int image[32]; /* bit-image of sprite */
} sprite;

/*

Save area for area behind Sprite. Needs to be
4 + sizeof(Sprite) so that all four color

planes can be saved.
*/
typedef sprite spriteBack[4]

The data structure below is used with the a_textblit function for describing

the block of text that is moved.

typedef struct {

int xdda;

int ddainc;
int scaledir;
int mono;

int fontx;

int fonty;

int 8CIrNX;

int scrny;

int charheight;
int charvidth;
char *fontdata;

int fontwidth;

/*
/*
/*
/*
/*

/*

draving work variable
draving work variable
draving work variable
monospaced font flag
character (x, y) in font def

charcter (x, y) on screen

width of character
height of character
pointer to font bit-image data
width of font form

*/
*/
+/
*/
*/

*/

*/
*/
*/
*/

535

e el B

536 CHAPTER 19. LINE-A GRAPHICS KERNAL

int fontstyle; /* font style */
int litemask; /* mask for dehilited text */
int skewmask; /* mask for italics text */
int boldmask; /* mask for bold text */
int fsuper; /* offset for superscript text */
int fsub; /* offset for subscript text */
int scaleflag; /* 0 = no scaling */
int textdir; /* text orientation flag */
int forecolor; /* foreground text color */
int *textefx; /* pointer to start of text, special */

/* effects buffer */
int scalebuf; /% offset for scale buffer in textefx */
int backcolor /* background text color */

} textblock;

The next data structure is a definition of the Atari Font header. This header
gives the Atari drawing routines information about a font.

typedef struct _FontForm {
int fontid; /* Font Identifier
int {fontsize; /* Font 8ize in points
char fontname[32]; /+ Font name

int lowascii; /* lowest displayable ASCII char */
int highascii; /* highest displayable ASCII char */
/*
Character draving offsets (see vst_alignment())

*/

int top; /* offset from baseline to top */
int ascent; /* offset from baseline to ascent */
int half; /* offset from baseline to half */
int descent; /* offset from baseline to descent */
int bottom; /* offset from baseline to bottom */
int largechar; /* widest character in font */

int largeboxchar; /* widest character cell in font */

int kern; /* kerning offset */
int rightoffset; /+ right offset for italics */
/*

Text Effects masks
*/
int boldmask;
int underlinemask;
int 1litemask;
int skevmask;

struct {

19.4 LINE-A DATA STRUCTURES

537

unsigned system 1; /* is it a system font? */
unsigned horiz : 1; /* horiz offset table? */
unsigned swapbytes : 1; /+ integers are reversed? */
unsigned monospace : 1; /* is font monospace? */

} flags;

int *horztable; /* pointer to horizontal offset table */

int *chartable; /* pointer to character offset table */

int *fonttable; /* pointer to font bit-image data */

int formwidth;

int formheight;

struct _FontForm *nextfont;
} fontform;

Example

#include <linea.h>
#include <osbind.h>

#define

#define
#define
#define
#define

int top

int left
int bottom

CONSOLE 2

WHITE O
RED 1
GREEN 2
BLACK 3
= 1b;

10;
196;

int right = 630;

int x, y;
int color;

main()

{

lineaport *myport;

myport = a_init();

myport -> plane0
myport -> planel

BLACK;
BLACK;

a_hidemouse();

drawbox() ;

/*

pointer to next font def */

538 CHAPTER 19.

LINE-A GRAPHICS KERNAL

bounce();

a_showmouse();

}

bounce ()

{
int mx, my, sx ,sy;
sprite thesprite;
spriteback theback;

left + 10;
to + 10;
1;
1;

mx
my
8x
8y

makesprite(&thesprite);

vhile(!(Bconstat(CONSOLE))) {

mx += 8X;
my += 8y;

it ((mx < left) | (mx > right-16))

8x *= -1;

if ((my < top+2) | (my > bottom-16))

sy *= -1;

a_putpixel(mx, my, RED);

a_dravsprite(mx, my, &thesprite, theback);

Vsyne();
a_undravsprite(theback);
}
Bconin(CONSOLE) ;
}

drawbox()

{
a_line(left, top, right,
a_line(right, top, right,
a_line(right, bottom, left,
a_line(left, bottom, left,

}

mekesprite(thesprite)
sprite *thesprite;

{

int x;

thesprite -> x =0;

top);
bottom) ;
bottom) ;
top) ;

19.4 LINE-A DATA STRUCTURES 539

thesprite -> y = 0;
thesprite -> format =0;
thesprite -> forecolor = WHITE;

thesprite -> backcolor = BLACK;

for (x=0; x<32; x+=2) {
stuffbits(&thesprite -> image([x], "1010101010101010") ;
stuffbits(&thesprite -> image[x+1], "0101010101010101");

540 A_BITBLIT

NAME
a_bitblit — move a rectangular block of bits.
SYNOPSIS

a_bitblit(theblock)
blitblock *theblock;

DESCRIPTION

a_bitblit copies blocks of screen bits from a source rectangle to a destination
rectangle. The description of the block to move is communicated by the param-
eter theblock. The block is a pointer to the data structure blitblock which
is defined in section 19.4.

SEE ALSO

vro_cpyfm

A_COPYRASTER 541

NAME
a_copyraster — Copy Raster Form
SYNOPSIS
#include <gemdefs.h>
a_copyraster(source, destin)
MFDB *gource, *destin;
DESCRIPTION
a_copyraster performs a raster block move. The MFDB data structure is defined
in the VDI Introduction (pg. 307).
NOTE

The blocks copied must be defined on word boundaries and it’s width must be
defined in words.

SEE ALSO

vro_cpyfm

542 A_DRAWSPRITE

NAME
a_drawsprite — Draw a grahics entity on the screen
SYNOPSIS
a_drawsprite(x, y, thesprite, thebackgnd)
int X, Y
sprite *thesprite;

spriteback *thebackgnd;

DESCRIPTION

a_drawsprite copies the background of the screen into the area of memory de-
fined by the parameter thebackgnd. The graphics entity thesprite is then
drawn on the screen at the location (z, y).

NOTE
The sprite data structure is described in section 19.4.
SEE ALSO

a_undrawsprite

A_FILLPOLY 543

NAME
afillpoly — Draw a filled polygon
SYNOPSIS
a_fillpoly(vert, points, numpts)
int vert;
int *points;
int numpts;
DESCRIPTION
a_fillpoly fills a scan line specified by the parameter vert. The scan line is
bounded by the polygon defined by the parameters points and numpts. The
horizontal line is drawn with the current fill attributes. The following fields of
the lineaport data structure are used:
x1, x2, y1
planeO, planel, plane2, plane3
writemode
patptr
patmask
planefill
clipflag
xminclip, yminclip, xmaxclip, ymaxclip
NOTE

The starting point of the polygon must also be defined as the ending point.
EXAMPLE

#include <osbind.h>
#include <linea.h>

int pts[4][2] = {

320, 060,
120, 160,
620, 160,
320, 060

) H

main()

{

lineaport #*theport;

544 A_FILLPOLY

int fillpat[4], y;

stuffbits (&fillpat[0],
stuffbits(&fillpat[1],
stuffbits(&fillpat[2],
stuffbits(&fillpat[3],

theport = a_init();

theport
theport
theport
theport

theport
theport
theport
theport

->
->
=->
=>

=>
=->
->
=>

plane0
planel
plane2
plane3

writemode
patptr
planefill
clipilag

©C OO

for(y=560; y<160; y++)
a_fillpoly(y, pts,

Cconin();

SEE ALSO
v_fillarea

"1100110011001100") ;

"0110011001100110") ; -

"0011001100110011") ;
"1001100110011001") ;

2;
fillpat;
0;
0;

3);

A_FILLRECT 545

NAME
a_fillrect — Fill a rectangle
SYNOPSIS

a_fillrect(x1l, y1, x2, y2)
int x1, yi;
int x2, y2;

DESCRIPTION

a_fillrect fills the rectangle defined by (z1,y1) and (z2, y2) with the current fill
area attributes. The following fields of the 1ineaport data structure are used:

x1, y1, x2, y2

planeO, planel, plane2, plane3

writemode

patptr

patmask

planefill

clipflag

xminclip, yminclip, xmaxclip, ymaxclip
NOTE

The rectangle is filled from the top left corner to the bottom right hand corner.

SEE ALSO

vr_recfl

546 A_GETPIXEL

NAME
a_getpixel — get pixel value
SYNOPSIS

int a_getpixel(x, y)
int x, y:

DESCRIPTION ,

a_getpixel returns the color value of the pixel at the position (z,y).
NOTE

The coordinates of the point are placed in the ptsin[] array.
SEE ALSO

v_get_pixel

A_HIDEMOUSE 547

NAME
a_hidemouse — hide the mouse cursor.

SYNOPSIS

a_hidemouse()

DESCRIPTION

The a_hidemouse function hides the mouse cursor. Note that the mouse cursor
hide level is nested.

SEE ALSO

v_hide_c, v_show_c, graf_mouse

548 A_HLINE

NAME
a_hline — draw a horizontal line.
SYNOPSIS
a_hline(x1, x2, y)
int x1, x2, y;
DESCRIPTION
a_hline draws a horizontal line from the pixel position x1 to x2. The line is
drawn on the scan line defined by the parameter y. The line drawing function
uses the following fields of the 1ineaport data structure:
x1, y1, x2, y2
planeO, planel, plane2, plane3
linemask
writemode
minusone (used for XOR mode only)
NOTE

The line is always drawn from left to right and the line style mask is also applied
from left to right. The line style mask is word aligned pattern for the horizontal
lines, (i.e. any bit of the mask may be used at the left-most endpoint.)

SEE ALSO
v_pline

A_INIT 549

NAME
a_init — Initialize the Line-A drawing routines

SYNOPSIS

#include <linea.h>
lineaport *a_init()

DESCRIPTION

The a_init function initializes the drawing variables that are used by the Line-A
drawing routines. The result of the function is a pointer to the 1ineaport data
structure.

SEE ALSO

v.opnvwk

550 A_LINE

NAME
aline — Draw a line

SYNOPSIS

a_line(x1, y1, x2, y2)
int x1, yi;
int x2, y2;

DESCRIPTION

a_line draws a line that connects the two points (z1,y1) and (z2,y2). The line
drawing function uses the following fields of the 1ineaport data structure:

x1, y1, x2, y2

planeO, planel, plane2, plane3

linemask

writemode

minusone (used for XOR mode only)
NOTE

The line is always drawn from left to right. The line style mask is also applied
from left to right. The line style mask is a word aligned pattern.

SEE ALSO
a_hline, v_pline

A_PUTPIXEL 551

NAME
a_putpixel — Plot a pixel point
SYNOPSIS
int a_putpixel(x, y, color)
int x, y;
int color;
DESCRIPTION

a_putpixel plots a pixel at the screen location (z,y). The point is set to the
color index defined by the parameter color The return value of the function
will be the value of the pixel at the point.

NOTE

The coordinates for the point are placed in the ptsin[] array. The result of
the function is stored in intin[0].

SEE ALSO

v_pline

552 A_SHOWMOUSE

NAME
a_showmouse — show the mouse cursor.

SYNOPSIS
a_showmouse()

DESCRIPTION
a_showmouse displays the mouse cursor.

NOTE
The level of display for the mouse is nested. This means that the number of
calls to a_showmouse() should be balanced with the number of a_hidemouse()
calls.

SEE ALSO

graf_mouse, v_hide_c, v_show_c

A_TEXTBLIT 553

NAME
a_textblit — Copies a charcter using special effects.
SYNOPSIS

a_textblit(charblock)
textblock *charblock;

DESCRIPTION

a_textblit performs a copy block operation of a character to the screen. The
graphics text character copied is defined by the parameter charblock. The
following fields of the 1ineaport data structure are used:

writemode

textig, textbg
fontdata, fontwidth, fontstyle
srcx, srcy

destx, desty
charheight, charwidth
skewmask, boldmask
upoffset, downoffset
scaleflag, scale

xdda

txtdirect

mono

textefx, scalebuf

SEE ALSO
v_gtext

554 A_TRANSFORMMOUSE

NAME
a_transformmouse — change the mouse form

SYNOPSIS

a_transformmouse (theform)
sprite *theform;

(]

DESCRIPTION

The a_transformmouse function changes the current form of the mouse cursor.
The parameter theform is a pointer to a mouse form data structure described
in section 19.4.

EXAMPLE

#include "linea.h"
#include <osbind.h>

#define CONSOLE 2

int top = 1b;
int left = 10;
int bottom = 195;
int right = 630;
int x,y:

int color;

main()

{

lineaport *myport;
mouse themouse;

myport = a_init();
a_hidemouse();

drawvbox() ;

makemouse (kthemouse) ;
a_transformmouse (&themouse) ;
a_showmouse () ;

while(!(Bconstat (CONSOLE)))

A_TRANSFORMMOUSE 555

drawbox()

{
a_line(left, top, right, top);
a_line(right, top, right, bottom);
a_line(right, bottom, left, bottom);
a_line(left, bottom, left, top);

}

makemouse (thesprite)
sprite *thesprite;
{

int x;

thesprite -> x =
thesprite -> y
thesprite -> format
thesprite -> forecolor
thesprite -> backcolor

1
1
1;
2
3

stuffbits(&thesprite -> image[0], "0000000000000000") ;
for (x=1; x<1b6; x++)

stuffbits(&thesprite -> image[x], "0111111111111110");
stuffbits(&thesprite -> image[16], *0000000000000000") ;

stuffbits(&thesprite -> image[16], "1111111111111111»);
for (x=17; x<32; x++)

stuffbits(&thesprite -> imagel[x], "1000000000000001") ;
stuffbits(&thesprite -> image[32]. "1111111111111111");

SEE ALSO

graf_mouse

556 A_UNDRAWSPRITE

NAME
a_undrawsprite — restores screen behind sprite

SYNOPSIS

a_undrawsprite (thebackgnd)
spriteback *thebackgnd;

DESCRIPTION

a_undrawsprite restores the screen to the contents pointed to by the parameter
thebackgnd. The buffer thebackgnd is filled by the a_drawsprite function.

SEE ALSO

a_drawsprite

Chapter 20

Utility Routines

Introduction

Though not a part of the Atari ST ROM, the routines described in this chapter
can be useful when writting a GEM application. Note that structure passing
may be used for some routines which require point or rectangle coordinates.
For example:

GRECT rectl, rect2;

rect_equal(recti.g_x, rectl.g_y, rectl.g_w, rectli.g_h,
rect2.q_x, rect2.g_y, rect2.q_w, rect2.g_h);

...1s equivalent (due to structure passing) to:
GRECT rectl, rect2;

rect_equal(rectl, rect2);

Coordinate Functions

ptset set a point rect_equal are rects equal
ptinrect is point in rect rect_offset offset a rect
ptsub subtract two points rect_set set a rect
pt2rect two points to rect rect_empty is a rect empty
pt-equal are points equal rect_inset inset a rect
pt-add add two points rect_union union two rects
rect_intersect intersect two rectangles rect_set set a rect

557

558

CHAPTER 20. UTILITY ROUTINES

change_item
change_aux

min
max

Object Tree Functions
change and redraw objects clear_tree clear and redraw objects

change and redraw objects
with given clipping

Miscelaneous Functions
return min of two integers stuffbits value from binary string

return max of two integers stuffhex value from hex string

CHANGE_AUX 559

NAME
change_aux, change_item, clear_tree — set or clear object trees

SYNOPSIS

change_aux(tree, item, mask, value, cx, cy, cw, ch)
OBJECT *tree;
int item, mask, value, cx, cy, cw, ch;

change_item(tree, item, mask, value)
OBJECT *tree;
int item, mask, value;

clear_tree(tree, cx, cy, cw, ch)
OBJECT *tree;
int ¢x, cy, cw, ch;

DESCRIPTION

These routines recursively traverse object trees, beginning with item, and
change the ob_state field of each OBJECT visited. The new value assigned to
each ob_state field is given in value. The mask parameter specifies which bits
of the source are to be preserved (set bits in the mask correspond to preserved
bits). The objects are redrawn to reflect the new ob_state. The ob_state of
an object determines how an object is displayed (i.e. NORMAL, SELECTED,
CROSSED, etc.). See the Object Manager, section 16.8, for more information
on object states.

change_aux change objects state with specified clipping. The cx, cy, cw, ch
parameters determine the clipping rectangle used when the objects are
redrawn.

change_item change objects state with clipping restricted to the size of the item
being redrawn.

clear_tree set all object states to NORMAL. The cx, cy, cw, ch parameters deter-
mine the clipping rectangle used when the objects are redrawn.

560 MAX AND MIN

NAME
max, min — return the maximum or minimum of two integers

SYNOPSIS
int max(a, b)

int a, b;

int min(a, b)
int a, b;

DESCRIPTION

Returns the maximum or minimum of two integers

PT_2RECT 561

NAME

pt_2rect — convert two points into a rectangle.
SYNOPSIS

pt_2rect(x1, yl, x2, y2, rect)
int x1, y1, x2, y2;
GRECT *rect;

DESCRIPTION

The two points are converted into rectangle coordinates. Point (x1, y1) is the

top left of the rectangle and (x2, y2) is the bottom right. The result is placed
in rect.

Alternate method:

pt_2rect(pointl, point2, rect)
GPOINT pointl, point2;
GRECT *rect;

562 PT_ADD

NAME
pt-add — add two points
SYNOPSIS

pt_add(x, y, point)
int x, y:
GPOINT *point;

DESCRIPTION

Corresponding coordinates of (x, y) are added to and assigned point.

Alternate method:

pt_add(pointl, point2)
GPOINT pointi;
GPOINT *point2;

PT_EQUAL 563

NAME
pt_equal — are two points equal

SYNOPSIS

int pt_equal(x1l, y1, x2, y2)
int x1, y1, x2, y2;

DESCRIPTION

Returns non-zero if corresponding point coordinates are both equal, else returns
zero. Points are given by (x1, y1) and (x2, y2).

Alternate method:

int pt_equal(pointl, point2)
GPOINT pointl, point2;

564 PT_INRECT

NAME
pt-inrect — is a point in a rectangle
SYNOPSIS

int pt_inrect(px, py, rx, ry, rw, rh)
int px, py, rx, ry, rw, rh;

DESCRIPTION

Returns non-zero if the point given by px and py lies inside the rectangle given
by rx, ry, rw, rh. returns zero.

Alternate method:

int pt_inrect(point, rect)
GPOINT point;
GRECT rect;

PTSET

565

NAME
pt_set — set a point

SYNOPSIS

int pt_set(point, x, y)
GPOINT *point;
int x, y;

DESCRIPTION

The coordinates (x, y) are copied into the point.

Alternate method:

int pt_set(dest_pt, src_pt)
GPOINT *dest_pt;
GPOINT src_pt;

566 PT_SUB

NAME

pt_sub — subtract two points
SYNOPSIS

pt_sub(x, y, point)

int x, y;
GPOINT *rect;

DESCRIPTION

Corresponding coordinates of (x, y) are subtracted from and assigned point.

Alternate method:

pt_sub(pointl, point2)
GPOINT pointil;
GPOINT *point2;

RECT_EMPTY 567

NAME
rect_empty — is a rectangle empty
SYNOPSIS
int rect_empty(x, y, w, h)
int x, y, w, h
DESCRIPTION

Returns non-zero if either the width or the height is less than or equal to zero.
Alternate method:

int rect_empty(rect)
GRECT rect;

568 RECT_EQUAL

NAME
rect_equal — are two rectangles equal

SYNOPSIS

int rect_equal(x1l, y1, wi, hil, x2, y2, w2, h2)
int x1, y1, w1, hl, x2, y2, w2, h2;

DESCRIPTION
Returns non-zero if corresponding coordinates are all equal, else returns zero.

Alternate method:

int rect_equal(rectl, rect2)
GRECT rectl, rect2;

RECT_INSET 569

NAME

rect_inset — change the size of a rectangle
SYNOPSIS

int rect_inset(rect, delta_x, delta_y)

GRECT =*rect;
int delta_x, delta_y;

DESCRIPTION

The rectangle given in rect is made smaller or larger by delta_x and delta_y.
Positive delta values make the rectangle smaller and negative values make the
rectangle larger.

570 RECT_INTERSECT

NAME

rect_intersect — produce the intersection of two rectangles
SYNOPSIS

rect_intersect(x1l, y1, wi, hl, x2, y2, w2, h2, rect)

int x1, y1, wi, hl, x2, y2, w2, h2;
GRECT *rect;

DESCRIPTION

The intersection of the two rectangles given by x1, y1, wi, h1, and x2, y2, w2,
h2 is placed in the rectangle given by rect. The function returns non-zero if
the two rectangles actually intersect, else it returns zero.

Alternate method:

rect_intersect(rectl, rect2, rect3)
GRECT rectl, rect2;
GRECT *rect3;

RECT_OFFSET 571

NAME
rect_offset — offset the x and y of a rectangle

SYNOPSIS

rect_offset(rect, delta_x, delta_y)
GRECT *rect;
int delta_x, delta_y;

DESCRIPTION

The x and y coordinates of the rectangle given in rect are incremented by
delta_x and delta_y, respectively.

572 RECTSET

NAME
rect_set — set a rectangle

SYNOPSIS

rect_set(rect, x, y, w, h)
GRECT *rect;
int x, y, w, h;

DESCRIPTION
The fields of the rectangle given in rect are set to x, y, w, h.

Alternate method:

rect_set(dest_rect, src_rect)
GRECT *dest_rect;
GRECT src_rect;

RECT_UNION 573

NAME

rect_union — produce the union of two rectangles
SYNOPSIS

rect_union(x1l, y1, wi, hil, x2, y2, w2, h2, rect)

int x1, y1, wi, hl, x2, y2, w2, h2;
GRECT *rect;

DESCRIPTION

The union of the two rectangles given by x1, y1, w1, hil, and x2, y2, w2, h2 is
placed in the rectangle given by rect.

Alternate method:

rect_union(rectil, rect2, rect3)
GRECT rectl, rect2;
GRECT *rect3;

574 STUFFBITS

NAME
stuffbits — fill a data structure from a string of binary digits

SYNOPSIS

stuffbits(ptr, bits)
char *ptr, *bits;

DESCRIPTION

The character string in bits is a string of ones and zeros. The string is trans-
lated into bits which are copied into the destination ptr. Each bit in the string
is stuffed into the destination starting from the highest bit of the destination.
Any character of the string which is not a zero or one is ignored, leaving the
corresponding bit of the destination unaffected.

EXAMPLE
char des = 0x01;

/*

des will be Oxbb6 after this...
*/
stuffbits (&des, "0101010 ");

STUFFHEX 575

NAME
stuffhex — fill a data structure from a string of hex digits

SYNOPSIS

stuffhex(ptr, hex)
char *ptr, *hex;

DESCRIPTION

The character string in hex is a string of hex digits (0 - 9, A — F). The string is
translated into bits which are copied into the destination ptr. Each hex digit
in the string is stuffed into the destination starting from the highest four bits of
the destination. Any character of the string which is not a hex digit is ignored,
leaving the corresponding four bits of the destination unaffected.

EXAMPLE

long des = 0x000£0000;

des will be Oxtfffffff after this...

stuffhex(&des, "£1f £111");

Appendix A

File Formats

A.1 Laser Object File Format

A.out is the name of the format of object files produced by the C compiler.
This object file format is same as that used by UNIX systems. The file has
five sections: a header, the program TEXT, the program DATA, relocation
information, a symbol table, and a string table (in that order). The TEXT
segment contains the actual machine code for the program, while the DATA
segment contains initialized variables. A segment for uninitialized variables,
called the BSS segment, is set up at by the loader when the program is run.
Formats using the C structure definitions are:

/* Header prepended to each object file.

*/

typedef struct {
long a_magic; /* magic number 0x0107 */
long a_text; /* size of text segment */
long a_data; /* size of initialized data */
long a_bss; /% size of uninitialized data */
long a_syms; /* size of symbol table */
long a_entry; /* entry point */
long a_trsize; /* size of text relocation */
long a_drsize; /* size of data relocation */
} exec;

/* Format of a relocation datum.

577

578 APPENDIX A. FILE FORMATS

*/
typedef struct {
long r_address; /* address which is relocated */
long r_info; /* r_symbolnum, r_pcrel, */
/* r_length, r_extern. */

} relocation_info;

/¥ Macros to access the r_info field

*/
#define r_symbolnum(x) ((x>>8) & OxffffffL)
#define r_pcrel(x) ((x>>7) & Ox1L)

#define r_length(x) ((x>>5) & 0x3L)
#define r_extern(x) ((x>>4) & Ox1L)

If r_extern is zero, then r_symbolnum is actually the N_TYPE (see below)
for the relocation rather than an index into the symbol table.

/* Format of a symbol table entry.

*/

typedef struct {
char *n_name; /* string table index x/
char n_type; /* type flag, i.e. N_TEXT etc */
char n_other; /* unused */
char n_desc; /* currently not used */
long n_value; /* value of this symbol */
} nlist;

/* Simple values for n_type.

*/

#define N_UNDF 0x0 /* undefined */
#define N_ABS 0x2 /* absolute */
#define N_TEXT 0x4 /* text */
#define N_DATA 0x6 /* data */
#define N_BSS 0x8 /* bss */
#define N_FN Ox1f /% file name symbol */
#define N_EXT 01 /* external bit, or’ed in */

#define N_TYPE Oxle /* mask for all the type bits */

A.2 DRI OBJECT FILE FORMAT 579

A.2 DRI Object File Format

In addition to Laser C’s a.out format, Laser utility programs (the linker, archiver,
disassembler, and symbol namer) support DRI’s CP/M-68K object file format.
These files are composed of up to four sections: A header, the TEXT and DATA
segments, an optional symbol table, and optional relocation information.

The header, the first component in the file, specifies the size and starting
address of the other components in the application which are listed below.

/* CP/M-68K header

*/

typedef struct {
int c_magic; /* magic number (Ox601A) */
long c_text; /* size of text segment */
long c_data; /* size of initialized data */
long c_bss; /* size of uninitialized data */
long cC_syms; /* size of symbol table */
long c_entry; /* entry point */
long c_res; /* reserved, always zero */
int c_reloc; /* size of data relocation */
} header;

/* Symbol table entry

*/

typedef struct {
char name [8] ; /* Symbol name */
int type; /* Type (i.e. DEFINED|TEXT_REL)*/
long value; /* Symbol value */
} symbol;

/* CP/M-68K values for symbol types

*/

#define DEFINED 0x8000 /* The symbol is defined */
#define EQUATED 0x4000 /* The symbol is an equate */
#define GLOBAL 0x2000 /* The symbol is global */
#define EQU_REG 0x1000 /* The symbol is a register */
#define EXTERNAL 0x0800 /* The reference is external */
#define DAT_REL 0x0400 /* Data segment reference */
#define TEX_REL 0x0200 /* Text segment reference */

#define BSS_REL 0x0100 /* Bss segment reference */

580

APPENDIX A. FILE FORMATS

The above values may be OR’d together to indicate symbol type.

One word (16-bit) of relocation information exists for each word of TEXT
and DATA. The type of relocation is indicated in bits 0-2 of the word. If the
relocation is an external reference, the remaining bits (15-3) form an index into
the symbol table, thus indicating the name of the external reference.

/* CP/M-68K relocation word values (bits 0-2)
x/

#define NO_RELOC 0 /* No relocation necessary */
#define DATA_BASED 1 /* Relocate from Data segment */
#define TEXT_BASED 2 /* Relocate from Text segment */
#define BSS_BASED 3 /* Relocate from Bss segment */
#define UNDEF_SYMBOL 4 /* Symbolic reference */
#define LONG_REF 5 /* Next relocation is long */
#define PC_RELATIVE 6 /* Is a PC relative reference */
#define INSTRUCTION 7 /* Is an instruction */

A.3 GEMDOS Application File Format

The file format output by the linker (GEMDOS) is identical to the DRI object
file format excepting the relocation information. The GEMDOS loader will only
relocate 32-bit references. GEMDOS relocation information consists of a long
(32-bit) word, indicating the offset into the program of the first long word to be
relocated, followed by a series of relocation bytes (8-bit). These bytes indicate
the distance from the last offset relocated to the current offset to be relocated. If
a relocation byte is equal to 254, the last offset is incremented, but no relocation
is done. A relocation byte of zero means end-of-relocation-information.

Appendix B

System Globals

The addresses of the globals in this list of BIOS variables is guaranteed not
to change with future releases of the Atari ST, so programs can rely on their
locations.

etv_timer (long) 0x400 The System Timer interrupt vector (logical vector
0x100).

etvcritic (long) 0x404 Critical error handler vector (logical vector 0x101).
etv_term (long) 0x408 Process-terminate vector (logical vector 0x102).
etvxtra (longs) 0x40c Space for logical vectors 0x103 through 0x107.

memvalid (long) 0x420 The magic number 0x752019F3, which (combined
with memval2) validates memcntlr and indicates a successful coldstart.

memcntlr (char) 0x424 Memory controller configuration nibble (the low nib-
ble). Some common values are:

Memory size Value
128K 0
512K 4
256K (2 banks) 0
1MB (2 banks) 5

resvalid (long) 0x426 If resvalid contains the magic number 0x31415926
on system RESET, the system will jump through resvector.

581

582

APPENDIX B. SYSTEM GLOBALS

resvector (long) Ox42a System RESET trap vector. Called only if resvalid
has the correct magic number in it. The vector is called early during
system initialization before any hardware registers are configured.

phystop (long) 0x42e Physical end of RAM. Contains a pointer to the first
unusable byte (i.e. 0x80000 on a 512K machine).

_membot (long) 0x432 Bottom of available memory. The Getmpb BIOS func-
tion uses this value as the start of the TPA.,

-memtop (long) 0x436 Top of available memory. The Getmpb BIOS function
uses this value as the end of the TPA.

memval2 (long) Ox43a Contains the magic number 0x237698AA which (com-
bined with memvalid) validates memcntlr and indicates a successful cold-
start.

flock (int) Ox43e Locks usage of the DMA chip. A nonzero value ensures
that the operating system does not alter the DMA chip registers during
vertical retrace. This variable must be nonzero for the DMA bus to be
used.

seekrate (int) 0x440 Default floppy disk seek rate. Bits zero and one have
the following meaning:

Bits 0,1 Seek rate

00 6ms
01 12ms
10 2ms

11 3ms (default)

_timrms (int) 0x442 System timer calibration (in ms). Should be set to 20
since the system timer interrupt vector is called at 50hz. This variable is
returned by the BIOS function Tickcal, and is passed on the stack to the
timer interrupt vector.

fverify (int) 0x444 Floppy disk verify flag. A nonzero value means all
write operations to floppies are read-verified (default value). A zero value
indicates no verification.

_bootdev (int) 0x446 Boot device number. An environment string is con-
structed from this variable by the BIOS before GEM desktop is loaded.

palmode (int) 0x448 A nonzero value indicates the PAL (50hz video) mode
is in use. A zero value means the NTSC (60hz video) mode is being used.

583

defshiftmd (char) Ox44a Contains the resolution for the color monitor the
system will use if it must change from monochrome mode to color mode.

sshiftmd (int) Ox44c Contains the current value for the shiftmd hardware
register:
0 320 x 200 x 4 (low resolution color)
1 640 x 200 x 2 (medium resolution color)
2 640 x 400 x 1 (high resolution B/W)

_v_bas_ad (long) Ox44e Address of screen memory (32K, any resolution).
Must be on a 512 byte boundary.

vblsem (int) 0x452 A semaphore used to ensure mutual exclusion in the
vertical-blank interrupt handler. Should be 1 to allow vertical-blank pro-
cessing.

nvbls (int) 0x454 Number of pointers that _vblqueue points to. Set to 8 on
system RESET.

_vblqueue (long) 0x456 Pointer to a vector of pointers to vertical-retrace
handlers to be executed at each vertical retrace interrupt.

colorptr (long) Ox45a Address of an array of 16 integers to be loaded into
the hardware color palette during the next vertical retrace. The palette is
not loaded if the value is OL. A OL is stored in colorptr after the palette
is loaded.

screenpt (long) Ox45e New screen memory address which will be stored into
v_bas_ad during the next vertical retrace. If screenpt contains OL then
the screen base will not be changed.

_vbclock (long) 0x462 Count of vertical-blank interrupts that have occurred
since last RESET.

frclock (long) 0x466 Number of vertical retrace interrupts that were pro-
cessed (i.e. not blocked by vblsem)

hdv_init (long) Ox46a Address of hard disk initialization routine. OL if un-
used.

swv_vec (long) Ox46e Address of routine to be executed when the monitor
is physically changed from monochrome to color or vise-vera. Initially set
to system RESET vector.

584

APPENDIX B. SYSTEM GLOBALS

hdv_bpb (long) O0x472 Address of the routine that returns a hard disk’s BIOS
parameter block (BPB). Parameters and return value are the same as
Getbpb. Contains OL if unused.

hdv_rw (long) 0x476 Address of routine to read or write on hard disk. Works
like the Rwabs BIOS function. Contains OL if unused.

hdv_boot (long) Ox47a Address of routine to boot from hard disk. Contains
OL if unused. '

hdv_mediach (long) Ox47e Address of routine that returns the hard disk’s
media change mode. Works like the Mediach BIOS function. Contains
OL if unused.

<cmdload (int) 0x482 A non-zero value means to attempt to execute the pro-
gram COMMAND.PRG on the boot device. This value can be set by a boot
sector so that an application can be loaded instead of GEM desktop.

conterm (char) 0x484 Contains the attribute bits for the console system:

Function

1 = enable bell when ~G is written to CON:

1 = enable auto key-repeat

1 = enable audible key-click

1 = Return the current value of kbshift in bits 24 —31 when
a Bconin is called.

WNHOE
-+

themd (long) Ox48e Points at the GEM DOS TPA limits. Filled in by the
BIOS with a Getmbp call. The structure has the following format:

struct MD
{
struct MD *m_link; /% ->next MD must be OL */
long m_start; /* start of TPA %/
long m_length; /* size of TPA in bytes */

struct PD *m_own; /* ->MD’s owner (OL) */
};

The structure may not be changed after GEM DOS has been initialized.
savptr (long) Ox4a2 Pointer to register save area for BIOS functions.

nflops (int) 0x4a6 Number of floppy disks actually attached to the system
(0, 1, or 2).

sav_context (long) Ox4ae Pointer to saved processor context when a catas-
trophic error occurs (like odd address trap or divide by zero).

Dbufl (2 longs) 0x4b4 Two BCB (buffer control block) pointers. The first
is to the sector BCB and the second to the FAT (file allocation table) and
directory sectors BCB. A BCB has the following format:

struct BCB
{
struct BCB *b_link;/* next BCB */
int b_bufdrv; /* drive#, or -1 %/
int b_buftyp; /* buffer type */
int b_bufrec; /* record# cached here */
int b_dirty; /* dirty flag */
DMD *b_dm; /* ->Drive Media Descriptor */

char *b_bufr; /* ->buffer itself */
};

hz 200 (long) Ox4ba Count of 200hz timer ticks. Divided by four to generate
the 50hz system timer.

the_env (char[4]) Ox4be The default environment string (four NULL char-
acters).

drvbits (long) Ox4c4 Value returned by Drvmap BIOS function.

dskbufp (long) Ox4c6 Address of a 1024 byte disk buffer in the systems
global area. This buffer should not be used by interrupt handlers.

prt_cnt (int) Ox4ee Count of number of times the ALT-HELP key combina-
tion has been pressed. Initially —1, a value of O causes the screen dump
routine being printing the screen. A non-zero value causes the dump
routine to abort the print and reset this value to —1.

sysbase (long) 0x4f2 Points to the base of TOS (in ROM or RAM).
shell p (long) O0x41f6 Address of some shell-specific data.

end os (long) Ox4fa Address of byte immediately after the last byte used by
TOS. This is also the start of the TPA.

exec_os (long) Ox4fe Address of the shell program. The shell is executed by
the BIOS after system initialization if complete. This normally points at
the first byte of the AES code.

585

Appendix C

DOS Error Codes

These error numbers are returned by some of the BIOS and GEMDOS routines.
The error code is always in the low 16 bits of the return value so mask long
values with Oxffff before checking the error.

Code
0

-1
-2

-3
—4
-5

Error

0K
ERROR
DRIVE_NOT_READY

UNKNOWN_CMD
CRC_ERROR
BAD_REQUEST

SEEK_ERROR
UNKNOWN_MEDIA

SECTOR_NOT_FOUND
NO_PAPER
WRITE_FAULT
READ_FAULT

GENERAL_MISHAP
WRITE_PROTECT

Description

No error.

General error.

Device was not ready, was not attached, or has
been busy for too long.

Device didn’t understand the command.

Soft read error.

Device couldn’t handle the command, although
it understood it. Check command parameters.
Drive couldn’t perform the seek.

Attempt to read un-formatted or foreign media.
Usually caused by a trashed or zeroed boot block.

The requested sector could not be found.
The printer is out of paper.

A write operation failed.

A read operation failed.

Reserved for future errors.
Attempt to write onto write-protected or read-
only media.

587

588

APPENDIX C. DOS ERROR CODES

—14

-15

—16
-17

GEMDOS error codes

-32
-33
—-34
-35
—36
-37
-39
—40
—46
—49
—64
—65
—66
—67

MEDIA_CHANGE

UNKNOWN_DEVICE

BAD_SECTORS
INSERT_DISK

EINVFN
EFILNF
EPTHNF
ENHNDL

EACCDN
EIHNDL

ENSMEM
EIMBA
EDRIVE

ENMFIL
ERANGE

EINTRN
EPLFMT

EGSBF

The media has changed since the last write. The
operation did not take place.

The operation specified a device that the BIOS
couldn’t recognize.

A format operation detected bad sectors.
Request to ask user to insert a disk.

Invalid function number.

File not found.

Path not found.

No file descriptors left (too many files are open).

Access denied.
Invalid file descriptor.

Insufficient memory.
Invalid memory block address.
Invalid drive specified.

No more files.
Range error.

Internal error.
Invalid program load format.

Setblock failure due to growth restrictions.

Appendix D

Key Codes

The first two numbers are the high and low bytes returned by evnt_keybd() or
evnt_multi() for each key on the keyboard.

(NULL) 1A 1B Control
2B 1C Control
iB 1D Control
07 1E Control
OC 1IF Control -
39 20 Space
02 21 !

28 22 "
04 23 #
06 24 $
06 25 Y%
&

03 00 Control 2
iE 01 Control A
30 02 Control B
2E 03 Control C
20 04 Control D
12 06 Control E
21 06 Control F
22 07 Control G
23 08 Control H
17 09 Control I
24 OA Control J
26 0B Control K
26 O0C Control L 28 27
32 0D Control M OA 28
N
0
P
Q
R
S
T
U
\')
W
X
Y
Z

[B |

08 26

18 OF Control 09 2A
19 10 Control
10 11 Control
13 12 Control
iF 13 Control
14 14 Control
16 16 Control
2F 16 Control
11 17 Control
2D 18 Control
16 19 Control
2C 1A Control

(
31 OE Control OB 29)
*
+

oD 2B
33 2C
oC 2D
34 2E
36 2F
OB 30
02 31
03 32
04 33
06 34
06 3b

-

AW N O N\

589

590 Appendix C: Key Codes

07 36 6 1IE 61 a
08 37 7 30 62 b

09 38 8 2E 63 ¢

OA 39 9 20 64 d

27 3A 12 66 e

27 3B ; 21 66 f

33 3C < 22 67 g

oD 3D = 23 68 h

34 3E > 17 69 i

3 3F ? 24 6A j

03 40 0@ 26 6B k

1E 41 A 26 6C 1

30 42 B 32 6D m

2E 43 C 31 6E n

20 44 D 18 6F o

12 46 E 19 70 p

21 46 F 10 71 q

22 47 G 13 72 r

23 48 H iF 73 s

17 49 I 14 74 ¢

24 4A J 16 76 u

26 4B X 2F 76 v

26 4C L 11 77 w

32 4D M 2D 78 x

31 4E N 16 79 y

18 4F 0O 2C TA z

19 60 P 1A 7B {

10 61 Q 2B 7C |

13 562 R iB 7D }

iF 63 § 20 TE ~

14 64 T 63 TF Rubout (DEL)
16 66 U 81 00 Alt O
2F 66 V 78 00 Alt 1
11 67 W 79 00 Alt 2
2D 68 X TA 00 Alt 3
16 69 Y 7B 00 Alt 4
2C BA Z 7C 00 Alt 6
1A 6B [7D 00 Alt 6
2B 6C \ TE 00 Alt 7
1B 6D] TF 00 Alt 8
07 BE - 80 00 Alt 9
0oC bBF _ Underscore 1E 00 Alt A
20 60 * 30 00 Alt B

Appendix C: Key Codes

591

2E 00 Alt
20 00 Alt
12 00 Alt
21 00 Alt
22 00 Alt
23 00 Alt
17 00 Alt
24 00 Alt
26 00 Alt
26 00 Alt
32 00 Alt
31 00 Alt
18 00 Alt
19 00 Alt
10 00 Alt
13 00 Alt
iF 00 Alt
14 00 Alt
i6 00 Alt
2F 00 Alt
11 00 Al
2D 00 Alt
16 00 Alt
2C 00 Alt
3B 00 F1

3C 00 F2

3D 00 F3

3E 00 F4

3F 00 Fb

40 00 Fe

41 00 F7

42 00 F8

43 00 F9

44 00 F10
64 00 Fi1
b6 00 Fi2
66 00 F13
b7 00 Fi4
68 00 F1ib
69 00 Fie
BA 00 F17
6B 00 Fi8
6C 00 Fi19

N<dMXEgcc-Hnwowovvo=2=2trr"x"uHITOQETEODAOQ

6D
bE
bF
60
61
62
63
64
66
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
73
4D
4D
74
60
60
48
48
b1
b1
76
49
49
84
7
47
47
b2
b2
63
63
72

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
36
00
00
32
00
38
00
33
00
00
39
00
00
00
37
00
30
00
2E
00

F20

F21

F22

F23

F24 (Help)

F26 (Undo)

F26

F27

F28

F29

F30

F31

F32

F33

F34

F3b

F36

F37

F38

F39

F40

Control Left Arrow
Right Arrow

Shift Right Arrow
Control Right Arrow
Down Arrow

Shift Down Arrow
Up Arrow

Shift Up Arrow
Page Down

Shift Page Down
Control Page Down
Page Up

Shift Page Up
Control Page Up
Control Home

Home

Shift Home

Insert

Shift Insert
Delete

Shift Delete
Control Print Screen

592

37
01
OE
82
83
1C
iC
4C
4A
4E
OF
OF
4B
4B
4F
4F
76
72

2A
iB
08
00
00
oD
OA
36

2B
09
00
00
34
00
31
00
oD

Print Screen
Escape

Backspace

Alt -

Alt =

Carriage Return
Control Carriage Return
Shift Numeric Pad b
Numeric Pad -
Numeric Pad +

Tab

Backtab

Left Arrow

Shift Left Arrow
End

Shift End

Control End

Enter

Appendix C: Key Codes

Appendix E

Header Files

/*
Character type tables

NOTE
If changes/additions are made, please ensure that the argument
to the macro is referenced ONLY ONCE in the macro.

*/

#ifndef DL_CTYPE

#define DL_CTYPE

#define ctUCASE 0x01
#define ctLCASE 0x02
#define ctDIGIT 0x04
#define ctSPACE 0x08
#define ctPUNCT 0x10
#define ctCNTRL 0x20
#define ctHEXDG 0x40

extern char _ct_[];

#define isalpha(c) (_ct_[(c) + 1] & (ctUCASE | ctLCASE))

#define isupper(c) (_ct_[(c) + 1] & ctUCASE)

#define islower(c) (_ct_[(c) + 1] & ctLCASE)

#detine isdigit(c) (_ct_[(c) + 1] & ctDIGIT)

#define isxdigit(c) (_ct_[(c) + 1] & (ctDIGIT | ctHEXDG))

#define isspace(c) (_ct_[(c) + 1] & ctSPACE)

#define ispunct(c) (_ct_[(c) + 1] & ctPUNCT)

#define isalnum(c) (_ct_[(c) + 1] & (ctUCASE | ctLCASE | ctDIGIT))

#define isprint(c) (_ct_[(c) + 1] & (ctPUNCT | ctUCASE | ctLCASE | ctDIGIT)) -
#define iscntrl(c) (_ct_[(c) + 1] & ctCNTRL)

#define isascii(c) ((unsigned) c <= Ox7F)

593

594

Appendix E: Header Files

#define _toupper(c) ((c) - ’a’ + ’A’)
#define _tolower(c) ((c) - ’A’ + ’a’)
#define toascii(c) ((c) & Ox7F)

#endif /* DL_CTYPE */

Ty
/* DEFINE.H Typical miscellaneous C definitions. *+/
/* Copyright 1985 Atari Corp. */
T T T T T T T T T T T T
#ifndef DL_DEFINE
#define DL_DEFINE

#define NIL O /* Nil Pointer */
#define NO O /% "FALSE" */
#define YES 1 /* "TRUE" #*/

#define TRUE 1
#define FALSE 0

#define EOS ’\O’ /* End of String marker */

#define EOF (-1) /* End of File marker */

#define NEWLINE ’\n’ /* Carriage Return */

#define FAILURE (-1) /* Function failure return val */
#detine SUCCESS (0) /* Function success return val #*/
#define FOREVER for(;;) /* Infinite loop declaration */
#endif

fcntl.h

#ifndef O_RDONLY

#define O0_RDONLY O

#define O_WRONLY 1

#define O0_RDWR 2

#define O0_CREAT 4

#define O_APPEND 8

#define O0_TRUNC 16

#define O_BINARY 8192 /* low 12 bits not used to comform with UNIX #/

#endif

filefmt.h

/* Laser C object file format definitions

Appendix E: Header Files 595

+/
#define LMAGIC 0x0107 /+ Laser C magic number */
/+ Header prepended to each Laser object file.

+/

typedef struct {

/*
*/

long a_magic; /* magic number */
long a_text; /* size of text segment */
long a_data; /* size of initialized data */
long a_bss; /* size of uninitialized data */
long a_syms; /* size of symbol table */
long a_entry; /* entry point */
long a_trsize; /* size of text relocation */
long a_drsize; /* size of data relocation */
}

exec;

Format of a relocation datum.

typedef struct {

/*
*/

/*
*/

long r_address; /* address vhich is relocated */
unsigned long r_info; /* r_symbolnum, r_pcrel, r_length, */

/* r_extern. +/
}

reloc_info;

NOTE: If r_extern is zero, then r_address is actually and N_TYPE,
and no symbol entry is present for the relocation.

Fields for r_info (above)

#define r_symbolnum(x) ((x>>8) & OxtfffffL)
#define r_pcrel(x) ((x>>7) & Ox1L)
#define r_length(x) ((x>>6) & 0x3L)
#define r_extern(x) ((x>>4) & 0x1L)

/*
*/

Symbol table entry

typedef struct {

/*

char *n_name; /* index into string table
char n_type; /* type flag, i.e. N_TEXT etc
char n_other; /* unused

char n_desc; /% currently not used

long n_value; /* value of this sym

}

nlist;

Values for n_type (above)

596 Appendix E: Header Files

*/

#define N_UNDF 0x0 /* undefined */
#define N_ABS 0x2 /+* absolute */
#define N_TEXT 0x4 /* text */
#define N_DATA 0x6 /* data */
#define N_BSS 0x8 /* bss */
#define N_EXT 0x01 /* external bit, or’ed in */
#define N_TYPE Oxle /* mask for all the type bits */

/* Folloving the relocation information is a long word (32-bit)
vhich tells the length of the string table which follows.
The length includes the four bytes of the long word (it
includes own size). Strings are zero (0) terminated.

*/

/* GEMDOS executable file format

*/

/* CP/M-68K header

*/

typedef struct {
int c_magic; /* magic number (0x601A) */
long c_text; /* size of text segment */
long c_data; /* size of initialized data */
long c_bss; /* size of uninitialized data */
long c_syms; /* size of symbol table */
long c_entry; /* entry point */
long c_res; /* reserved, always zero */
int c_reloc; /* size of data relocation */
} header;

/* Symbol table entry

*/
typedef struct {
char name [8]; /* Symbol name */
int type; /* Type (i.e. DEFINED|TEXT_REL)*/
long value; /* Symbol value */
} symbol;
/* CP/M-68K values for symbol types
*/
#define DEFINED 0x8000 /* The symbol is defined */
#define EQUATED 0x4000 /* The symbol is an equate */
#define GLOBAL 0x2000 /* The symbol is global */
#define EQU_REG 0x1000 /* The symbol is a register */
#define EXTERNAL 0x0800 /+ The reference is external */
#define DAT_REL 0x0400 /* Data segment reference */
#define TEX_REL 0x0200 /* Text segment reference */

#define BSS_REL 0x0100 /* Bss segment reference */

Appendix E: Header Files 597

/* The above values may be OR’d together to indicate
symbol type.

One word (16-bit) of relocation information exists for each
word of TEXT and DATA. The type of relocation is indicated
in bits 0-2 of the word. If the relocation is an external
reference, the remaining bits (16-3) form an index into the
symbol table, thus indicating the name of the external
reference.

s/

/* CP/N-68K relocation word values (bits 0-2)
*/

#define NO_RELOC 0 /* No relocation necessary */
#define DATA_BASED 1 /* Relocate from Data segment */
#define TEXT_BASED 2 /* Relocate from Text segment */
#define BSS_BASED 3 /* Relocate from Bss segment */
#define UNDEF_SYMBOL 4 /* Symbolic reference */
#define LONG_REF b /* Next relocation is long */
#define PC_RELATIVE 6 /* Is a PC relative reference */
#define INSTRUCTION 7 /* Is an instruction */

/* The file format output by the linker (GEMDOS) is identical to the
DRI object file format excepting the relocation information. The
GEMDOS loader will only relocate 32-bit references. GEMDOS
relocation information consists of a long (32-bit) word, indicating
the offset into the program of the first long word to be relocated,
folloved by a series of relocation bytes (8-bit). These bytes
indicate the distance from the last offset relocated to the current
offset to be relocated. If a relocation byte is equal to 264, the
last offset is incremented, but no relocation is done. A
relocation byte of zero means end-of-relocation-information.

+/

gembind.h

/t‘i‘i‘i‘#llll‘lllllllilllhl‘#*‘*ii‘lhl‘#.ll‘ll#i#‘.iiii**‘lhl‘*ii‘**‘iii‘#i“ii‘#*‘/

/* GEMBIND.H Do-It-Yourself GEM binding kit. */

/* Copyright 1986 Atari Corp. */

/+ */

/* WARNING: This file is not supported! */

/* We reccomend you use the supplied binding libraries */

ATy T YY)
#ifndef DL_GEMBIND
#define DL_GEMBIND

Global arrays references. rpt 8-21-87

598

Appendix E: Header Files

extern
extern

extern
extern
extern

extern

extern
int
int
int
int

crystal(); /* Used by crys_if to do the actual AES trap call. */
ctrl_cnts(); /+ actually a table of numbers #*/

int control[], global[];
int_in[], int_out[];
long addr_in[], addr_out[];

int gl_apid; /+ application ID */

struct __c {
*cb_pcontrol;
*cb_pglobal;
*cb_pintin;
*cb_pintout;

long *cb_padrin;
long *cb_padrout;

} ¢, #

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

#define
#tdefine
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

_ad_c;

/* Application Manager */
APPL_INIT 10
APPL_READ 11
APPL_WRITE 12
APPL_FIND 13
APPL_TPLAY 14
APPL_TRECORD 16
APPL_EXIT 19
/% Event Manager */
EVNT_KEYBD 20
EVNT_BUTTON 21
EVNT_MOUSE 22
EVNT_MESAG 23
EVNT_TIMER 24
EVNT_MULTI 26
EVNT_DCLICK 26
/* Menu Manager */
MENU_BAR 30
MENU_ICHECK 31
MENU_IENABLE 32
MENU_TNORMAL 33
MENU_TEXT 34
MENU_REGISTER 36
/* Object Manager */
0BJC_ADD 40
O0BJC_DELETE 41
O0BJC_DRAW 42
0BJC_FIND 43
0BJC_OFFSET 44
OBJC_ORDER 46

Appendix E: Header Files 599

#define OBJC_EDIT 46
#define OBJC_CHANGE 47

/* Form Manager */
#define FORM_DO 60
#define FORN_DIAL b1
#define FORN_ALERT 62
#define FORM_ERROR 53
#define FORN_CENTER b4
#define FORN_KEYBD b6
#define FORN_BUTTON 66

/* Graphics Manager */
#define GRAF_RUBBOX 70
#define GRAF_DRAGBOX 71
#define GRAF_NBOX 72
#define GRAF_GROWBOX 73
#define GRAF_SHRINKBOX 74
#define GRAF_WATCHBOX 76
#define GRAF_SLIDEBOX 76
#define GRAF_HANDLE 77
#define GRAF_MOUSE 78
#define GRAF_MKSTATE 79

/* Scrap Manager */
#define SCRP_READ 80
#define SCRP_WRITE 81

/* File Selector Manager */
#define FSEL_INPUT 90

/% Window Manager */
#define WIND_CREATE 100
#define WIND_OPEN 101
#define WIND_CLOSE 102
#define WIND_DELETE 103
#define WIND_GET 104
#define WIND_SET 106
#define WIND_FIND 106
#define WIND_UPDATE 107
#define WIND_CALC 108

/* Resource Manager */
#define RSRC_LOAD 110
#define RSRC_FREE 111
#define RSRC_GADDR 112
#define RSRC_SADDR 113
#define RSRC_OBFIX 114

/* Shell Manager */
#define SHEL_READ 120
#define SHEL_WRITE 121
#define SHEL_GET 122
#define SHEL_PUT 123
#define SHEL_FIND 124
#define SHEL_ENVRN 1256

/* max sizes for arrays */

600

Appendix E: Header Files

#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

#define
#define
#define

C_SIZE 4
G_SIZE 156
I_SIZE 16
0_SIZE 7
AI_SIZE 2
AO_SIZE 1

/* Crystal funtion op code */

OP_CODE control [0]
IN_LEN control[1]
OUT_LEN control[2]
AIN_LEN control[3]

RET_CODE int_out[0]

/* application 1lib parameters */

AP_VERSION global[0]
AP_COUNT globall[1]
AP_ID global[2]
AP_LOPRIVATE globall[3]
AP_HIPRIVATE globall[4]
AP_LOPNAME global[6]
AP_HIPNAME globall[6]
AP_LO1RESV global[7]
AP_HI1RESV global[8]
AP_LO2RESV globall[9]
AP_HI2RESV global[10]
AP_LO3RESV global[11]
AP_HI3RESV global[12]
AP_LO4RESV global[13]
AP_HI4RESV global[14]

AP_GLSIZE int_out[1]
AP_RWID int_in[0]
AP_LENGTH int_in[1]
AP_PBUFF addr_in[0]
AP_PNAME addr_in[0]
AP_TBUFFER addr_in[0]
AP_TLENGTH int_in[0]
AP_TSCALE int_in[1]
SCR_MGR 0x0001

AP_NMSG 0
MN_SELECTED 10

WM_REDRAW 20
WM_TOPPED 21
WN_CLOSED 22

/* long ptr. to tree base in rsc*/
/* long address of memory alloc.*/

/* length of memory allocated */
/* colors available on screen */

/* pid of the screen manager*/

Appendix E: Header Files 601

#define WN_FULLED 23
#define WN_ARROWED 24
#define WN_HSLID 26
#define WN_VSLID 26
#define WN_SIZED 27
#define WN_NOVED 28
#define WN_NEWTOP 29

#define AC_OPEN 40
#define AC_CLOSE 41

#define CT_UPDATE 60
#define CT_MOVE b1
#define CT_NEWTOP 62

/* event lib parameters */
#define IN_FLAGS int_in[0]

#define B_CLICKS int_in[0]
#define B_MASK int_in[1]
#define B_STATE int_in[2]

#define NO_FLAGS int_in[0]
#define NO_X int_in[1]
#define NO_Y int_in[2]
#define NO_WIDTH int_in[3]
#define NO_HEIGHT int_in[4]

#define NE_PBUFF addr_in[0]

#define T_LOCOUNT int_in[0]
#define T_HICOUNT int_in[1]

#define NU_FLAGS int_in[0]
#define EV_NX int_out[1]
#define EV_NY int_out[2]
#define EV_NB int_out[3]
#define EV_KS int_out[4]
#define EV_KRET int_out[6]
#define EV_BRET int_out[6]

#define NB_CLICKS int_in[1]
#define MB_NASK int_in[2]
#define NB_STATE int_in[3]

#define NNO1_FLAGS int_in[4]
#define NMO1_X int_in[5]
#define NMO1_Y int_in[6]
#define NMO1_WIDTH int_in[7]
#define NMO1_HEIGHT int_in[8]

602 Appendix E: Header Files

#define MMO2_FLAGS int_in[9]
#define MM02_X int_in[10]
#define MMO2_Y int_in[11]
#define MMO2_WIDTH int_in[12]
#define MMO2_HEIGHT int_in[13]

#define MME_PBUFF addr_in[0]

#define NT_LOCOUNT int_in[14] !
#define MT_HICOUNT int_in[15]
/* mu_1lags */
#define NU_KEYBD 0x0001
#define NU_BUTTON 0x0002
#define NU_N1 0x0004
#define NU_N2 0x0008
#define NU_MESAG 0x0010
#define MU_TIMER 0x0020

#detine EV_DCRATE int_in[0]
#define EV_DCSETIT int_in[1]
/* menu library parameters */
#define MN_ITREE addr_in[0] /* ienable,icheck,tnorm */
#define NN_PSTR addr_in[0]

#define NN_PTEXT addr_in[1]

#define SHOW_IT int_in[0] /* bar */
#define ITEN_NUN int_in[0] /* icheck, ienable */
#define MM_PID int_in[0] /* register */
#define CHECK_IT int_in[1] /* icheck */
#define ENABLE_IT int_in[1] /* ienable */
#define TITLE_NUN int_in[0] /* tnorm */
#define NORMAL_IT int_in[1] /* tnormal */

/* form library parameters */
#define FN_FORN addr_in[0]
#define FN_START int_in[0]
#define FN_TYPE int_in[0]
#define FN_ERRNUN int_in[0]

#define FN_DEFBUT int_in[0]
#define FN_ASTRING addr_in[0]

Appendix E: Header Files 603

#define FN_IX int_in[1]
#define FN_IY int_in[2]
#define FN_IW int_in[3]
#define FN_IH int_in[4]
#define FN_X int_in[6]
#define FN_Y int_in[6]
#define FN_W int_in[7]
#define FN_H int_in[8]

#define FN_XC int_out[1]
#define FN_YC int_out[2]
#define FN_WC int_out[3]
#define FN_HC int_out[4]

#define FND_START O
#define FND_GROW 1
#define FND_SHRINK 2
#define FND_FINISH 3

/* object library parameters */
#define OB_TREE addr_in[0] /* all ob procedures */
#define OB_DELOB int_in[0] /* ob_delete */
#define OB_DRAWOB int_in[0] /* ob_drawv, ob_change */

#define OB_DEPTH int_in[1]
#define OB_XCLIP int_in[2]
#define OB_YCLIP int_in[3]
#define OB_WCLIP int_in[4]
#define OB_HCLIP int_in[6]

#define OB_STARTOB int_in[0] /* ob_find */
#define OB_NX int_in[2]
#define OB_NY int_in[3]

#define OB_PARENT int_in[0] /* ob_add */
#define OB_CHILD int_in[1]
#define 0B_OBJ int_in[0] /* ob_offset, ob_order */

#define OB_XOFF int_out[1]
#define OB_YOFF int_out[2]
#define OB_NEWPOS int_in[1] /* ob_order */

/* ob_edit */
#define OB_CHAR int_in[1]
#define O0B_IDX int_in[2]
#define OB_KIND int_in[3]
#define 0B_ODX int_out[1]

#define OB_NEWSTATE int_in[6] /* ob_change */
#define OB_REDRAW int_in[7]

604

Appendix E: Header Files

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

#define
#define
#define
#define
#define

#define

#define
#define

#define
#define

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

#define
#define

/* graphics library parameters */
GR_I1 int_in[0]
GR_I2 int_in[1]
GR_I3 int_in[2]
GR_I4 int_in[3]
GR_I6 int_in[4]
GR_I6 int_in[6]
GR_I7 int_in[6]
GR_I8 int_in[7]

GR_01
GR_02

int_out[1]
int_out[2]

GR_TREE addr_in[0]
GR_PARENT int_in[0]
GR_OBJ int_in[1]
GR_INSTATE int_in[2]
GR_OUTSTATE int_in[3]

GR_ISVERT int_in[2]

N_OFF 266
N_ON 2567

GR_NNUNBER int_in[0]
GR_MADDR addr_in[0]

GR_WCHAR int_out[1]
GR_HCHAR int_out[2]
GR_WBOX int_out[3]
GR_HBOX int_out[4]

GR_NX int_out[1]
GR_NY int_out[2]
GR_NSTATE int_out[3]
GR_KSTATE int_out[4]
/* scrap library parameters */
SC_PATH addr_in[0]
/* file selector library parms */

FS_IPATH addr_in[0]
FS_ISEL addr_in[1]

FS_BUTTON int_out[1]
/* window library parameters */
XFULL O
YFULL gl_hbox
WFULL gl_vidth
HFULL (gl_height - gl_hbox)

Appendix E: Header Files 605

#define NAME 0x0001
#define CLOSER 0x0002
#define FULLER 0x0004
#define NOVER 0x0008
#define INFO 0x0010
#define SIZER 0x0020
#define UPARROW 0x0040
#define DNARROW 0x0080
#define VSLIDE 0x0100
#define LFARROW 0x0200
#define RTARROW 0x0400
#define HSLIDE 0x0800

#define WF_KIND 1
#define WF_NANE 2
#define WF_INFO 3
#define WF_WXYWH 4
#define WF_CXYWH b
#define WF_PXYWH 6
#detine WF_FXYWH 7
#define WF_HSLIDE 8
#define WF_VSLIDE 9
#define WF_TOP 10
#define WF_FIRSTXYWH 11
#define WF_NEXTXYWH 12
#define WF_IGNORE 13
#define WF_NEWDESK 14
#define WF_HSLSIZ 16
#define WF_VSLSIZ 16

/* arrov message */
#define WA_UPPAGE
#define WA_DNPAGE
#define WA_UPLINE
#define WA_DNLINE
#define WA_LFPAGE
#define WA_RTPAGE
#define WA_LFLINE
#define WA_RTLINE

NOoOoThs WO

/* wm_create */
#define WN_KIND int_in[0]

/* wm_open, close, del */
#define WN_HANDLE int_in[0]

/* wm_open, wm_create */
#define WN_WX int_in[1]
#define WN_WY int_in[2]
#define WN_WW int_in[3]
#define WH int_in[4]

/* wm_2ind */

int_in[0]
int_in[1]

WN_
#define WN_
WN_

NX
#define NY

606

Appendix E: Header Files

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

#define

#define

#define

#define

#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define

#define
#define

#define

/* wm_calc
WC_BORDER 0
WC_WORK 1
WN_WCTYPE int_in[0]
WN_WCKIND int_in[1]
WN_WCIX int_in[2]
WN_WCIY int_in[3]
WN_WCIW int_in[4]
WN_WCIH int_in[6]
WN_WCO0X int_out[1]
WN_WCOY int_out[2]
WN_WCOW int_out[3]
WN_WCOH int_out[4]

/* wm_update
WN_BEGUP int_in[0]

WN_WFIELD int_in[1]
WN_IPRIVATE int_in[2]

WN_IKIND int_in[2]

*/

*/

/* for name and info */

WN_IOTITLE addr_in[0]

WN_IX int_in[2]
WN_IY int_in[3]
WN_IV int_in[4]
WN_IH int_in[6]

_0X int_out[1]
_0Y int_out[2]
OV int_out[3]
_OH int_out[4]
WN_ISLIDE int_in[2]

WN_IRECTNUM int_in[6]

/% resource library parameters */

RS_PFNAME addr_in[0]
RS_TYPE int_in[0]
RS_INDEX int_in[1]
RS_INADDR addr_in[0]
RS_OUTADDR addr_out[0]

RS_TREE addr_in[0]
RS_O0BJ int_in[0]

R_TREE 0

/* rs_init, */

Appendix E: Header Files

607

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define

#define

#define
#define

R_OBJECT 1
R_TEDINFO 2
R_ICONBLK 3
R_BITBLK 4
R_STRING b
R_IMAGEDATA 6
R_OBSPEC 7

R_TEPTEXT 8 /* sub ptrs in TEDINFO */

R_TEPTNPLT 9
R_TEPVALID 10

R_IBPMASK 11 /* sub ptrs in ICONBLK

R_IBPDATA 12
R_IBPTEXT 13
R_BIPDATA 14 /* sub ptrs in BITBLK

R_FRSTR 16 /* gets addr of ptr to free
R_FRING 16 /* gets addr of ptr to free

/* shell library parameters */
SH_DOEX int_in[0]
SH_ISGR int_in[1]
SH_ISCR int_in[2]
SH_PCMD addr_in[0]
SH_PTAIL addr_in[1]

SH_PDATA addr_in[0]
SH_PBUFFER addr_in[0]

SH_LEN int_in[0]

SH_PATH addr_in[0]
SH_SRCH addr_in[1]

#endif DL_GEMBIND

A T T T YY)
/* GEMDEFS.H Common GEM definitions and miscellaneous structures.

/*

/ttti#ttti‘i‘i#ttt'i#*tti#*‘ti##ttit#ttiitttiittttit‘ttit‘ttit‘tti#‘ttitt/

#ifndef
#define

/* EVENT Manager Definitions

#define
#define
#define
#define
#define

gemdefs.h

Copyright 1986 Atari Corp.

DL_GENDEFS
DL_GEMDEFS

/* multi flags */
MU_KEYBD 0x0001
NU_BUTTON 0x0002
NU_M1 0x0004
NU_N2 0x0008
NU_NESAG 0x0010

*/

*/
strings */
images */

*/

608 Appendix E: Header Files

#define MU_TIMER 0x0020
/* keyboard states */

#define K_RSHIFT 0x0001

#define K_LSHIFT 0x0002

#define K_CTRL 0x0004

#define K_ALT 0x0008

/* message values */

#define MN_SELECTED 10

#define WN_REDRAW 20

#define WN_TOPPED 21 .
#define WN_CLOSED 22

#define WN_FULLED 23

#define WN_ARROWED 24

#define WN_HSLID 26

#define WN_VSLID 26

#define WN_SIZED 27

#define WN_MOVED 28

#define WN_NEWTOP 29

#define AC_OPEN 40

#define AC_CLOSE 41

/* FORN Manager Definitions */
/* Form 1lags */

#define FMD_START O

#define FMD_GROW 1

#define FMD_SHRINK 2

#define FMD_FINISH 3

/* RESOURCE Manager Definitions +f
/* data structure types */

#define R_TREE 0

#define R_OBJECT 1

#define R_TEDINFO 2

#define R_ICONBLK 3

#define R_BITBLK 4

#define B_STRING 6 /% gets pointer to free strings */
#define R_INAGEDATA 6 /% gets pointer to free images */
#define R_OBSPEC 7

#define R_TEPTEXT 8 /* sub ptrs in TEDINFO */

#define R_TEPTMPLT 9
#define R_TEPVALID 10
#define R_IBPMASK 11 /* sub ptrs in ICONBLK */
#define R_IBPDATA 12
#define R_IBPTEXT 13

#define R_BIPDATA 14 /% sub ptrs in BITBLK */
#define R_FRSTR 16 /* gets addr of ptr to free strings */
#define R_FRIMG 16 /+ gets addr of ptr to free images */

/* used in RSCREATE.C */
typedef struct rshdr

Appendix E: Header Files 609

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
} RSHDR;

rsh_vrsn;

rsh_object;

rsh_tedinfo;

rsh_iconblk; /* list of ICONBLKS */
rsh_bitblk;

rsh_1rstr;

rsh_string;

rsh_imdata; /* image data */
rsh_1rimg;

rsh_trindex;

rsh_nobs; /* counts of various structs */
rsh_ntree;

rsh_nted;

rsh_nib;

rsh_nbb;

rsh_nstring;

rsh_nimages;

rsh_rssize; /* total bytes in resource */

#define F_ATTR O /* 1ile attr for dos_create */

/* WINDOW Manager Definitions. */

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

WF_KIND
WF_NANE
WF_INFO
WF_WORKXYWH
WF_CURRXYWH
WF_PREVXYWH
WF_FULLXYWH
WF_HSLIDE
WF_VSLIDE
WF_TOP 10

/* Window Attributes */

NAME 0x0001
CLOSER 0x0002
FULLER 0x0004
MOVER 0x0008
INFO 0x0010
SIZER 0x0020
UPARROW 0x0040
DNARROW 0x0080
VSLIDE 0x0100
LFARROW 0x0200
RTARROW 0x0400
HSLIDE 0x0800

/* vind_create flags */

WC_BORDER 0
WC_WORK 1

/* wind_get flags */

O OO W -

610 Appendix E: Header Files

#define WF_FIRSTXYWH 11
#define WF_NEXTXYWH 12
#define WF_RESVD 13
#define WF_NEWDESK 14

#define WF_HSLSIZE 16
#define WF_VSLSIZE 16
#define WF_SCREEN 17
/* update flags */

#define END_UPDATE O
#define BEG_UPDATE 1
#define END_NCTRL 2
#define BEG_MCTRL 3

/* GRAPHICS Manager Definitions */
/* Mouse Forms */

#define ARROW
#define TEXT_CRSR
#define HOURGLASS
#define POINT_HAND
#define FLAT_HAND
#define THIN_CROSS
#define THICK_CROSS 6
#define OUTLN_CROSS 7
#define USER_DEF 256

b W= O

#define MN_OFF 266
#define N_ON 267
/*+ MISCELLANEOUS Structures */

/* Memory Form Definition Block */
typedef struct fdbstr

long fd_addr;

int fd_v;

int fd_h;

int £d_wdwidth;
int fd_stand;
int 1d_nplanes;
int fd_r1;

int 1d_r2;

int 1d_r3;

} NFDB;

/* Mouse Form Definition Block */
typedef struct mfstr

int mf_xhot;

int mf_yhot;

int mf_nplanes;
int mf_1g;

int mf_bg;

int mf_mask[16];

Appendix E: Header Files

int
} MFORN;

mf_data[16];

#endif DL_GEMDEFS

#ifndetf

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

Miscellaneous Data Structure

*/

typedet
int

} point;

typedet
int
int
int
int
} rect;

/*

Lna_INIT

Lna_INIT
Lna_PUTPIXEL
Lna_GETPIXEL
Lna_LINE
Lna_HLINE
Lna_FILLRECT
Lna_FILLPOLY
Lna_BITBLIT
Lna_TEXTBLIT
Lna_SHOWMOUSE
Lna_HIDEMOUSE
Lna_NEWMOUSE
Lna_UNSPRITE
Lna_DRAWSPRITE
Lna_COPYRASTER
Lna_SEEDFILL

struct {
X, Yy

struct {
top;
left;
bottom;
right;

0xa000
0xa001
0xa002
0xa003
0xa004
0xa00b
0xa006
0xa007
0xa008
0xa009
Oxa00a
0xa00b
0xa00c
0xa00d
0xa00e
0xa00%

Font Header Data Structure

*/

typedef struct _fontform {
/* Font Identifier

/* Font 8ize in points
/* Font name

int
int

fontid;
fontsize;

char fontname[32];

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Initialize Line-A data structures
Put Pixel onto graphics screen
Get Pixel value on graphics screen
Drav a Line

Drav a Horizontal Line

Drav a filled box (rectangle)
Drav a line polygon and £ill it
Bit Block Transfer

Text Block Transfer

Shov Mouse Cursor

Hide Mouse Cursor

Change Mouse form

Undrav sprite

Drav sprite

Copy Raster Form

Do Seed fill on polygon

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
+/
*/
*/

611

612 Appendix E: Header Files

int lovascii; /* lovest displayable ASCII char */
int highascii; /* highest displayable ASCII char */
/*
Character draving offsets (see vst_alignment())

*/

int top; /* offset from baseline to top */
int ascent; /* offset from baseline to ascent */
int half; /* offset from baseline to half */
int descent; /* offset from baseline to descent */
int bottom; /* offset from baseline to bottom */
int largechar; /* widest character in font */

int largeboxchar; /* widest character cell in font */

int kern; /* kerning offset */
int rightoffset; /* right offset for italics */
/*

Text Effects masks
*/
int boldmask;
int underlinemask;
int litemask;
int skewmask;

struct {
unsigned system :1; /+ is it a system font? */
unsigned horiz : 1; /% horiz offset table? */
unsigned swapbytes : 1; /* integers are reversed? */
unsigned monospace : 1; /+# is font monospace? */

} flags;

int *horztable; /* pointer to horizontal offset table */

int *chartable; /* pointer to character offset table */

int *fonttable; /* pointer to font bit-image data */

int formwidth;
int formheight;

struct _fontform *nextfont; /* pointer to next font def */
} fontform;

/*
Text Data Structure
*/
typedef struct {
int xdda; /* draving work variable 74

Appendix E: Header Files 613

int ddainc; /+ drawving vork variable
int scaledir; /* drawving work variable
int mono; /* monospaced font flag
int fontx; /* character (x, y) in font def
int fonty;
int scrnx; /* charcter (x, y) on screen */
int scrny;
int charheight; /# width of character */
int charvidth; /* height of character */
char sfontdata; /* pointer to font bit-image data */
int fontwidth; /* width of font form */
int fontstyle; /* font style */
int litemask; /* mask for dehilited text */
int skevmask; /* mask for italics text */
int boldmask; /* mask for bold text */
int fsuper; /* offset for superscript text */
int fsub; /* offset for subscript text */
int scaleflag; /* 0 = no scaling */
int textdir; /* text orientation flag */
int forecolor; /* foreground text color */
int textefx; /* pointer to start of text special */
/* effects buffer */
int scalebuf; /* offset for scale buffer in textefx */
int backcolor /* background text color */

} textblock;

typedef struct {

/*
Draving Environment
*/
int vplanes; /* Number of video planes */
int vwrap; /* Number of bytes per video scan */
int *cntrl; /* pointer to VDI contrl array */
int *intin; /* pointer to VDI intin array */
int *ptsin; /* pointer to VDI ptsin array */
int *intout; /* pointer to VDI intout array */
int *ptsout; /* pointer to VDI ptsout array */
int plane0; /* color bit mask for plane 0 */
int planel; /* color bit mask for plane 1 */
int plane2; /* color bit mask for plane 2 */
int plane3; /* color bit mask for plane 3 */
int minusone; /% -1 used in XOR mode */
int linemask; /* VDI line style */
int writemode; /* VDI write mode */
int x1, y1, x2, y2; /* drawving rectangle */
int *patptr; /* pointer to current VDI fill patter */
int patmask; /* size of fill pattern mask */
int planefill; /* number of planes to £ill (0 = 1 plane) */

int clipflag; /* clipping flag (0 = no clipping) */

614

Appendix E: Header Files

int omminclip, yminclip;

int omaxclip, ymaxclip;

/*
*/

Font Information

textblock thetext;

int

copymode;

int (*seedabort)();
} lineaport;

typedef struct {
rect source;
rect destin;
} copyblock;

typedef struct {

int x;

int y;

int *base;

int offset;

int width;

int plane_offset;
} bitblock;

typedef struct {

int
int
int
int
int
char

/*
*/

width; /*
height; /*
Planecount; /*
ForeColor;
BackColor;
table[4];

Bit blocks to Blit

bitblock source;
bitblock destin;

/*
*/

int

*patbuf;

/* Text Drawing Block

Miscellaneous Drawing Variables

/* clipping rectangle */

*/

/* copy mode for raster operations */
/* pointer to seed fill abort routine */

width of bit block
height of bit block

number of planes

Pattern Information

s/
+/
Y,

Appendix E: Header Files

615

int
int
int
int

int

pat_offset;
pat_vwidth;
pat_plane_offset;
pat_mask;

Temp Work space

work[12];

} blitblock;

typedetf struct {
int x; /* x offset of hot spot */
int y; /* y offset of hot spot */
int format; /* 0 = Copy, 1 = XOR */
int forecolor; /* background color */
int backcolor; /* foreground color */
int image[32]; /* bit-image of sprite */

} sprite;

typedef sprite mouse;
Save area for area behind Sprite. Needs to be

4 * sizeof(Sprite) so that all four color
planes can be saved.

typedef sprite spriteback[4];

extern lineaport *a_init();

/*

Used by Line-A routines

*/

-lnaport == pointer to line-a variables.
_fonthdrs == pointer to three pointers to system font headers

extern lineaport *_lnaport;

extern fontform

#endif

#ifndef DL_MATHSTUFF
#define DL_MATHSTUFF

extern double dc_e; /* e
extern double dcpi; /* pi
extern double dcph; /* pi/2
extern double dcpq; /* pi/4

**_fonthdrs;

*/
*/
*/
*/

616

Appendix E: Header Files

extern
extern
extern
extern
extern
extern
extern

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

#define
#define

#endif

double dcln2;

double dcin; /#
double dcsu; /*
double dchif; /*
double dcl; /#
double dcih; /*
double dc10; /+#

double sin();
double cos();
double tan();
double asin();
double acos();
double atan();
double exp();
double exp_();
double exp2();
double exp_2();
double log();
double 1log2();

/# 1n 2 %/
infimum */
supremum */

0.6 */
1.0 */
1.6 */
10.0 */

double mulpower2();

double powerd();
double poweri();
double power10()
double sqr();
double sqrt();
double dabs();
double dint();
double drand();
double fac();
double lngamma()
double matinv();

INF dcin
SUP dcsu

#ifndetf
#define

#define

#define

#define

#define

DL_OBDEFS
DL_OBDEFS

ROOT O

MAX_LEN 81

MAX_DEPTH 8

IP_HOLLOW O

obdefs.h

/* max string length */
/* max depth of search or drawv */

/* inside patterns */

Appendix E: Header Files 617

#define IP_1PATT
#define IP_2PATT
#define IP_3PATT
#define IP_4PATT
#define IP_BPATT
#define IP_6PATIT
#define IP_SOLID

NO s W

#define MD_REPLACE 1
#define MD_TRANS 2
#define MD_XOR 3
#define MD_ERASE 4

/* gsx modes */

#define ALL_WHITE O /* bit blt rules */
#define S_AND_D 1
#define S_AND_NOTD 2
#define S_ONLY 3
#define NOTS_AND_D 4
#define D_ONLY b
#define S_XOR_D (]
#define S_OR_D 7
#define NOT_SORD 8
#define NOT_SXORD 9
#define D_INVERT 10
#detine NOT_D 11
#define S_OR_NOTD 12
#define NOTS_OR_D 13
#define NOT_SANDD 14
#define ALL_BLACK 16

#define IBM 3 /* font types */
#define SMALL b

#define G_BOX 20 /* Graphic types of obs */
#define G_TEXT 21
#define G_BOXTEXT 22
#define G_IMAGE 23
#define G_PROGDEF 24
#define G_IBOX 26
#define G_BUTTON 26
#define G_BOXCHAR 27
#define G_STRING 28
#define G_FTEXT 29
#define G_FBOXTEXT 30
#define G_ICON 31
#define G_TITLE 32

#define NONE 0x0 /* Object flags */
#define SELECTABLE Ox1
#define DEFAULT 0x2

618 Appendix E: Header Files

#define EXIT 0x4
#define EDITABLE 0x8
#define RBUTTON 0x10
#define LASTOB 0x20
#define TOUCHEXIT 0x40
#define HIDETREE 0x80
#define INDIRECT 0x100

#define NORMAL 0x0 /* Object states */

#define SELECTED Ox1 .
#define CROSSED 0x2

#define CHECKED 0x4

#define DISABLED 0x8

#define OUTLINED 0x10

#define SHADOWED 0x20

#define WHITE 0 /* Object colors */
#define BLACK 1
#define RED 2
#define GREEN 3
#define BLUE 4
#define CYAN b
#define YELLOW 6
#define MAGENTA 7
#define LWHITE 8
#define LBLACK 9
#define LRED 10
#define LGREEN 11
#define LBLUE 12
#define LCYAN 13
#define LYELLOW 14
#define LMAGENTA 156

#define EDSTART O
#define EDINIT 1
#define EDCHAR 2
#define EDEND 3

/* editable text field definitions */

#define TE_LEFT 0 /* editable text justification */
#define TE_RIGHT 1
#define TE_CNTR 2

/* S8tructure Definitions */

typedef struct object {

int ob_next; /* -> object’s next sibling */
int ob_head; /* -> head of object’s children */
int ob_tail; /* -> tail of object’s children */

unsigned int ob_type; /* type of object- BOX, CHAR,... */
unsigned int ob_flags; /* flags */

Appendix E: Header Files

619

unsigned int ob_state;

char *ob_spec; /*

int ob_x; /*

int ob_y; /*

int ob_width; /*

int ob_height; /+
} OBJECT;

typedef struct orect {
struct orect *o_link;
int o_x;
int o_y;
int o_v;
int o_h;

} ORECT;

typedef struct gpoint {
int p_x;
int p_y:

} GPOINT;

typedef struct grect {
int g_x;
int g_y:
int g_v;
int g_h;
} GRECT;

typedef struct text_edinfo
char *te_ptext; /*
char *te_ptmplt; /*
char *te_pvalid; /*
int te_font; /*
int te_junki; /*
int te_just; /*
int te_color; /*
int te_junk2; /*
int te_thickness; /*

int te_txtlen; /*
int te_tmplen; /*
} TEDINFO;

/* state- SELECTED, OPEN, ... */
"out"- -> anything else */
upper left corner of object */
upper left corner of object */
width of obj */
height of obj */

{

ptr to text (must be 1st) */
ptr to template */

ptr to validation chrs. */
font */

junk word */

justification- left, right... */
color information word */
junk word */

border thickness */

length of text string */
length of template string */

typedef struct icon_block {

int *ib_pmask;
int *ib_pdata;

620 Appendix E: Header Files

char *ib_ptext;
int ib_char;
int ib_xchar;
int ib_ychar;
int ib_xicon;
int ib_yicon;
int ib_wvicon;
int ib_hicon;
int ib_xtext;
int ib_ytext; :
int ib_wtext;
int ib_htext;

} ICONBLK;

typedef struct bit_block {
int *bi_pdata; /* ptr to bit forms data */
int bi_wb; /* width of form in bytes */
int bi_hl; /* height in lines */
int bi_x; /* source x in bit form */
int bi_y; /* source y in bit form */
int bi_color; /* 1g color of blt */

} BITBLK;

typedef struct appl_blk {
int (*ub_code)();
long ub_parm;

} APPLBLK;

typedef struct parm_blk {
OBJECT #*pb_tree;
int pb_obj;
int pb_prevstate;
int pb_currstate;
int pb_x, pb_y, pb_w, pb_h;
int pb_xc, pb_yc, pb_wc, pb_hc;
long pb_parm;
} PARMBLK;

#endif DL_OBDEFS

osbind.h

P T T T T T ST TN T T T T T T TI I T T ITIIIIITITILY
/* OSBINDS.H #defines for GEMDOS,BIOS & XBIOS binding */

/* started 6/2/86 .. Rob Zdybel */

/* Copyright 1985 Atari Corp. */

JHFRERREER R E R R R R R R R R R R R RNt/
#ifndef DL_OSBIND

#define DL_OSBIND

extern long bios();

Appendix E: Header Files 621

extern long xbios();
extern long gemdos();
/*

These are the data structures that are used by some of the
BIOS functions. rpt
*/
typedef struct {
int (*midivec)(); /* NIDI-input */
int (*vkbderr)(); /* keyboard error */
int (*vmiderr)(); /* NIDI error */
int (*statvec)(); /* ikbd status packet
int (*mousevec)(); /* mouse packet */
int (*clockvec)(); /* clock packet */
int (*joyvec)(); /* joystick packet */
int (*midisys)(); /* system NIDI vector
int (*ikbdsys)(); /* system IKBD vector

} kbdvecs;
/*

Used in function Iorec()
*/

typedef struct {
char *ibuf; /+ pointer to queue */
int ibufsiz; /* size of queue in bytes */
int ibufhd; /* head index of queume */
int ibuftl; /* tail index of queume */

int ibuflow; /% low water mark */
int ibuthigh; /* high vater mark */
} iorec;
/*
Used by function Dfree().
*/
typedef struct {
long b_free; /* no. of free clusters on drive #*/

long b_total; /* total no. of clusters on drive */
long b_secsiz; /* no. of bytes in a sector */
long b_clsiz; /* no. of sectors in a cluster */

} disk_info;

/%
Used by function Getmpb().
*/
typedef struct md {
struct md *m_link; /* next memory block */

long m_start; /* start address of block */

622 Appendix E: Header Files
long m_length; /* No. of bytes in block */
long m_own; /* Memory block’s owner ID */
} md;
typedef struct {
md *mp_mfl; /* memory free list */

md *mp_mal;
md *mp_rover;

} mpb;

/*

Used by function Getbpb().

*/

typedef
int
int
int
int
int
int
int
int
int

} bpb;

/*

struct _bpb {
sector_size_bytes;
cl_sectors;
cl_bytes;
dir_length_sectors;
FAT_size_sectors;
FAT_sector;
data_sector;
total_data_clusters;
flags;

/*
/*
/*
/*

/* memory allocated list */
/* roving pointer (woof!) */

sector number of the second FAT. */
sector number of the first data cluster */
number of data clusters on the disk */
Miscellaneous Flags. */

This structure is a bit field that represents the different components of

the

date and time words.

A union structure vas used so that a long

could be used for the assignment from the gettime() function and the
bit-field structure could be used to easily decode the long word.

Note:

+/
typedet

This data structure vas designed to work with Megamax C. Not all

compilers allocate bit-fields in the same manner. rpt

union {

struct {

unsigned day b
unsigned month 4
unsigned year : T
unsigned seconds : b
unsigned minutes : 6
unsigned hours : b

} part;
long realtime;
} datetime;

typedet

union {

struct {

Appendix E: Header Files 623

unsigned day + b
unsigned month : 4;
unsigned year 7
} part;
unsigned realdate;
} dateinfo;

typedef union {
struct {
unsigned seconds : b;
unsigned minutes : 6;
unsigned hours HH
} part;
unsigned realtime;
} timeinfo;

/* BIOS (trapi3) +*/

#define Getmpb(a) bios(0, a)

#define Bconstat(a) (int)bios(1,a)
#define Bconin(a) bios(2,a)

#define Bconout(a,b) bios(3,a,b)
#define Rwabs(a,b,c,d,e) bios(4,a,b,c,d,e)
#define Setexc(a,b) bios(b,a,b)
#define Tickcal() bios(6)

#define Getbpb(a) (bpb *)bios(7, a)
#define Bcostat(a) bios(8,a)

#define Mediach(a) bios(9,a)

#define Drvmap() bios(10)

#define Kbshift(a) bios(11,a)

/+*+ XBIOS (trapid) */

#define Initmous(a,b,c) xbios(0,a,b,c)

#define Physbase() xbios(2)

#define Logbase() xbios(3)

#define Getrez() (int)xbios(4)

#define Setscreen(a,b,c) xbios(6,a,b,c)

#define Setpalette(a) xbios(6,a)

#define Setcolor(a,b) (int)xbios(7,a,b)

#define Floprd(a,b,c,d,e,?,g) (int)xbios(8,a,b,c,d,e,f,g)
#define Flopwr(a,b,c,d,e,f,g) (int)xbios(9,a,b,c,d,e,?,g)
#define Flopfmt(a,b,c,d,e,f,g,h,i) (int)xbios(10,a,b,c,d,e,f,g,h,i)
#define Midiwvs(a,b) xbios(12,a,b)

#define Mfpint(a,b) xbios(13,a,b)

#define Iorec(a) (iorec *)xbios(14,a).

#define Rsconf(a,b,c,d,e,f) xbios(16,a,b,c,d,e,t)

#define Keytbl(a,b,c) xbios(16,a,b,c)

#define Random() xbios(17)

#define Protobt(a,b,c,d) xbios(18,a,b,c,d)

#define Flopver(a,b,c,d,e,f,g) (int)xbios(19,a,b,c,d,e,f,g)

624

Appendix E: Header Files

#define Scrdmp()

#define

#define Settime(a)
#define Gettime()
#define Bioskeys()
#define Ikbdws(a,b)
#define Jdisint(a)
#define Jenabint(a)

#define

#define 0ffgibit(a)
#define Ongibit(a)

#define

#define Dosound(a)
#define Setprt(a)
#define Kbdvbase()
#define Kbrate(a,b)
#define Prtblk()
#detine Vsync()
#define Supexec(a)
#define Puntaes()

/*

GEMDOS (trapl)

#define Pterm0O()
#define Cconin()
#define Cconout(a)
#define Cauxin()
#define Cauxout(a)
#define Cprnout(a)
#define Cravio(a)
#define Crawcin()
#define Cnecin()
#define Cconws(a)
#define Cconrs(a)
#define Cconis()
#define Dsetdrv(a)
#define Cconos()
#define Cprnos()
#define Cauxis()
#define Cauxos()
#detine Dgetdrv()
#define Fsetdta(a)
#define Super(a)

#define Tgetdate() (int)gemdos(0x2a)
#define Tsetdate(a) gemdos(0x2b,a)
#define Tgettime() (int)gemdos(0x2c)
#define Tsettime(a) gemdos(0x2d,a)
#define Fgetdta() gemdos(0x2f)

#define Sversion() (int)gemdos(0x30)
#define Ptermres(a,b) gemdos(0x31,a,b)

#define Dfree(a,b)

Cursconf(a,b)

Giaccess(a,b)

Xbtimer(a,b,c,d)

xbios(20)

xbios(22,a)
xbios(23)
xbios(24)
xbios(26,a,b)
xbios(26,a)
xbios(27,a)

xbios(29,a)
xbios(30,a)

xbios(32,a)
(int) xbios(33,a)

(kbdvecs *)xbios(34)

(int)xbios(36,a,b)
xbios (36)

xbios (37)

xbios (38, a)

xbios (39)

*/
gemdos(0x0)
(int) gemdos(0x1)
gemdos(0x2, a)
(int) gemdos(0x3)
gemdos(0x4,a)
gemdos (0x5, a)
(int) gemdos(0x6,a)
(int)gemdos (0x7)
(int)gemdos (0x8)
gemdos(0x9,a)
gemdos(0x0a, a)
(int)gemdos (0x0b)
gemdos(0xOe , a)
(int)gemdos (0x10)
(int)gemdos(0x11)
(int)gemdos (0x12)
(int) gemdos(0x13)
(int)gemdos (0x19)
gemdos(0Oxia,a)
gemdos(0x20,a)

gemdos (0x36,a,b)

/* WARNING: This Bind Incomplete */
(int)xbios(21,a,b)

(char)xbios(28,a,b)

xbios(31,a,b,c,d)

/* NOTE:This name may change */

Appendix E: Header Files 625

#define Dcreate(a) (int)gemdos(0x39,a)

#define Ddelete(a) (int)gemdos(0x3a,a)

#define Dsetpath(a) (int)gemdos(0x3b,a)

#define Fcreate(a,b) (int)gemdos(0x3c,a,b)
#define Fopen(a,b) (int)gemdos(0x3d,a,b)
#define Fclose(a) gemdos(0x3e, a)

#define Fread(a,b,c) gemdos(0x3f,a,b,c)
#define Fwrite(a,b,c) gemdos(0x40,a,b,c)
#detine Fdelete(a) (int)gemdos(0x41,a)

#define Fseek(a,b,c) gemdos (0x42,a,b,c)
#detine Fattrib(a,b,c) (int)gemdos(0x43,a,b,c)
#define Fdup(a) (int)gemdos(0x46,a)

#define Fforce(a,b) (int)gemdos(0x46,a,b)
#define Dgetpath(a,b) (int) gemdos (0x47,a,b)
#define Malloc(a) gemdos (0x48,a)

#define Mfree(a) (int)gemdos(0x49,a)

#define Mshrink(a,b) (int) gemdos (0xda,0,a,b) /* NOTE:Null parameter added */
#detine Pexec(a,b,c,d) gemdos(0Ox4b,a,b,c,d)
#define Pterm(a) gemdos (0x4c,a)

#define Fsfirst(a,b) (int)gemdos (0Ox4e,a,b)
#detine Fsnext() (int)gemdos (0x41)

#define Frename(a,b,c) (int)gemdos(0x56,a,b,c)
#define Fdatime(a,b,c) (int)gemdos(0x67,a,b,c)

#endif

/#**#****************************#*************#*******************#***#*/

/* PORTAB.H Pointless redefinitions of C syntax. */

/* Copyright 1985 Atari Corp. */

/* */

/* WARNING: Use of this file may make your code incompatible with */
/* C compilers throughout the civilized world. */

/#*##**#***t#*t#*ﬁ##t*#*#########**#**#*#*#t*##*######****#*ﬁ######***#*#/

#ifndef DL_PORTAB
#define DL_PORTAB /* rpt 8-21-87 */

#define mc68k O

#define UCHARA 1 /* if char is unsigned +/
/*

* Standard type definitions

*/
#define BYTE char /* Signed byte */
#define BOOLEAN int /* 2 valued (true/false) */
#define WORD int /% S8igned word (16 bits) */
#define UWORD wunsigned int /* unsigned word */
#define LONG long /* signed long (32 bits) */

#define ULONG long /* Unsigned long */

626

Appendix E: Header Files

#define REG register
#define LOCAL auto
#define EXTERN extern
#define NLOCAL static
#define GLOBAL /*#/
#define VOID /*%/

#ifndef DEFAULT /*
#define DEFAULT int
#endif

#ifdef UCHARA

#define UBYTE char

#else

#define UBYTE unsigned char
#endif

#ifndef FAILURE

/% register variable */
/* Local var on 68000 */
/* External variable */
/* Local to module */
/% Global variable */
/* Void function return */

This means that default is defined in obdefs.h */

/* Default size . %/
/* Unsigned byte */
/* Unsigned byte */

/#*i‘#‘t‘#““#‘#‘t‘#‘“#"“"‘##"ﬁ“‘#‘““"‘t"t“t“t“t“t“t“t“t‘#*/

/*+ Niscellaneous Definitions:

*/

/t““"““‘t““"““"“"“““"““‘t““““"“"“t“““"‘tt““‘/

#define FAILURE (-1)

/* Function failure return val */

#define SUCCESS (0) /* Function success return val */
#define YES 1 /* "TRUE" */
#define NO O /* "“FALSE" */
#define FOREVER for(;;) /* Infinite loop declaration */
#define NULL 0 /* Null pointer value */
#define NULLPTR (cher *) O /* */
#define EOF (-1) /* EOF Value */
#define TRUE (1) /* Function TRUE value */
#define FALSE (0) /* Function FALSE value */
#endif
#endif DL_PORTAB

stdio.h

#ifndef DL_STDIO
#define DL_STDIO

#define _BUFSIZE 6512
#define BUFSIZ _BUFSIZE
#define _NFILE 20

typedet struct _iobuf {
char *_ptr;
int _cnt;
char *_base;
int _flag;
int _1d;

/* Unix compatable */

Appendix E: Header Files 627

int _bufsize; /* buffer size for this file */
} FILE;
extern FILE _iob[_NFILE];

#define stdin (&_iob[0])
#define stdout (&_iob[1])
#define stderr (&_iob[2])
#define STDIN 0
#define STDOUT 1

#define STDERR STDOUT
#define STDAUX 2
#define STDPRT 3

#define _READ 01

#define _WRITE 02

#define _APPEND 04

#define _UNBUF 010

#define _BIGBUF 020

#define _EOF 040

#define _ERR 0100

#define _DIRTY 0200 /+ buffer was changed */
#define _LINBUF 0400

#define _IFLUSH 01000 /+ (ONLY STDIN) Flush stdout vhen filling */
#define _RDWR 02000

#define NULL OL /* must be long since it can be passed as a parameter */
#define EOF (-1)

#define getc(p) (--(p)->_cnt >= 0 ? *(p)->_ptr++ & 0377 : _£illbuf(p))

#define getchar() getc(stdin)

#define putc(x,p) (--(p)->_ent >= 0 ? (*#(p)->_ptr++ = (x)) & 0377 : \
_11lushbuf ((x),p))

#define putchar(x) putc(x,stdout)

#define feof(p) ((p)->_flagk_ EOF)

#detine ferror(p) ((p)->_flagk_ERR)

#define clearerr(p) ((p)->_flag &= ~“(_ERR | _EOF))

#define fileno(p) ((p)->_1d)

#define rand() (int)(_seed = _seed * 6907 + 130253)

#define srand(x) _seed = x;

extern FILE *fopen(), *fdopen(), *freopen();
extern long ftell();

extern char *gets();

extern char *fgets();

extern long _seed;

/*
* These are not normally part of stdio.h, but are included here to help
* reduce errors made by beginning programmers.

+/

628 Appendix E: Header Files

extern char *sprintf(), *malloc(), *lmalloc(), *calloc(), *1lcalloc();
extern char *alloca(), *realloc(), *1lrealloc();
extern long labs(), lseek();

extern int errno; /* defined in exit.c */
typedef long jmp_buf[10];
#endif /* DL_STDIO */

strings.h

/* string.h 4.1 83/06/26 */
#ifndef DL_STRINGS
#define DL_STRINGS

/*
* External function definitions
* for routines described in string(3).

*/

extern char *index();
extern char *rindex();
extern char *strcat();
extern char *strcpy();
extern char #*strncat();
extern char *strncpy();
extern char *xtrcat();
extern char *xtrcpy();
extern char *xtrncpy();
extern int stremp();
extern int strlen();
extern int strncmp();

#endif /+ DL_STRINGS */

Index

preprocessor, 14
68901 MFP, 493, 506, 525

A

.A extension, 8
a_bitblit(), 540
abs(), 110

.ACC extension, 8
AC_CLOSE, 183
AC.OPEN, 164, 183
a_copyraster(), 541
acos(), 134

address registers, 24
a_drawsprite(), 542
AES, 163
afillpoly(), 543
afillrect(), 545
a_getpixel(), 546
a_hidemouse(), 547
a_hline(), 548
a-init(), 549
aline(), 550
alloca(), 132

angles, 309
APPLBLK, 245
appl_exit(), 165, 172
appl find(), 173
application ID, 165
appldnit(), 165, 174
appl.read(), 175
appl_tplay(), 176

appl_trecord(), 177
appl_write(), 178
a_putpixel(), 551
argc, 106, 107

argv, 106, 107
a_showmouse(), 552
asin(), 134

asm, 17

assembly language, 17
atan(), 134
a_textblit(), 553
atof(), 111

atoi(), 159

atol(), 159
a_transformmouse(), 554
a_undrawsprite(), 556
auto, 18

auto variables, 23
AUX:, 106, 422

B

base page variable, 419
batch, 45

bemp(), 112

Bconin(), 422
Bconout(), 422
Bconstat(), 422
beopy(), 112
Bcostat(), 422
BEG_MCTRL, 282
binary mode, 105, 124

629

630

INDEX

BIOS 1/0, 106
Bioskeys(), 489

Bit fields, 18
BITBLK, 244

BSS segment, 26, 577
buffered I/O, 106
BUFSIZ, 153
bzero(), 112

C

C extension, 8
calloc(), 107, 132
carriage return, 105
cat utility, 99
Causout(), 420
Cauxin(), 420
Cauxis(), 420
Cauxos(), 420

CC environment variable, 30
CCOM environment variable, 30
Cconin(), 425
Cconis(), 425
Cconos(), 425
Cconout(), 425
Cconrs(), 425
Cconws(), 425

.CFG extension, 8
change_aux(), 559
change_item(), 559
char, 18

char type, 13
character constants, 15
CHECKED, 250
choose, 5

CINCLUDE environment variable, 30

CINIT environment variable, 31
clearerr(), 122

clear_tree(), 559

CLIB environment variable, 31
click, 5

clipboard, 271

close(), 113

Cnecin(), 425
command line execution, 45
comments, 21

CON;, 106, 422
constant expression, 22
control-click, 5
control-drag, 5

cos(), 134

cp utility, 99

Cprnos(), 499
Cprnout(), 499
Crawcin(), 425
Crawio(), 425

creat(), 115, 147
CROSSED, 250
ctype.h, 593
Cursconf(), 427

cursor, 5

D

dabs(), 134

data registers, 24
DATA segment, 26, 577
DC pseudo op, 22
Dcreate(), 428
Ddelete(), 429

.DEF extension, 8
DEFAULT, 248
#define, 14, 24

define value option, 55
define.h, 594

desk accessory, 61, 164
desktop window, 282
development cycle, 8
device I/O, 106
Dfree(), 430
Dgetdrv(), 435
Dgetpath(), 436

INDEX

631

dint(), 134
DISABLED, 250
disk cache, 32
Dosound(), 432
double type, 13
double-click, 5
drag, 5
Drvmap(), 434
Dsetdrv(), 435
Dsetpath(), 436
DTA, 460

DTA (Disk Transfer Address), 446

dump utility, 99
E

EDITABLE, 249
effective address, 21
enum type, 13

enumeration types, 15

environ, 118
event_multi(), 164
evnt_button(), 186
evnt_dclick(), 188
evnt_keybd(), 189
evnt_mesag(), 190
evnt_mouse(), 191
evnt_multi(), 193
evnt_timer(), 196
execv(), 118
execve(), 118
exit(), 120, 121
EXIT, 249
_exit(), 120

exp(), 134
expl0(), 134
exp2(), 134
extern, 18, 24

external reference, 57
external variables, 23

F

fac(), 134
Fattrib(), 437
fclose(), 121
Fclose(), 439
fentl.h, 594
Fcreate(), 440
Fdatime(), 442
Fdelete(), 441
fdopen(), 123
Fdup(), 444
feof(), 122
ferror(), 122, 143
fllush(), 121
Fforce(), 445
fgetc(), 127
Fgetdta(), 446
fgets(), 129
filefmt.h, 594
fileno(), 122
float type, 13
Flopfmt(), 447
Floprd(), 447
Flopver(), 447
Flopwr(), 447
FMD_FINISH, 287
fopen(), 123
Fopen(), 452

form_alert(), 199, 200, 202

form_center(), 203

form_dial(), 198, 204, 287

form_do(), 198, 206

form_error(), 200, 207
forward pointer reference, 16

Afpreg0, 20, 23
fprintf(), 140
fprintf(), 140
fputc(), 143
fputs(), 144
fread(), 125
Fread(), 456

632

INDEX

free(), 107, 132
Frename(), 457
freopen(), 123
fscanf(), 150
fseek(), 126
Fseek(), 458
fsel_input(), 211
Fsetdta(), 446
Fsfirst(), 460
Fsnext(), 460
ftell(), 126
function arguments, 23
fwrite(), 125
Fwrite(), 456

G

G_BOX, 247
G_BOXCHAR, 247
G_BOXTEXT, 241, 247
G_BUTTON, 247
gembind.h, 597
gemdefs.h, 281, 607
Getbpb(), 463

gete(), 127

getchar(), 127

getenv(), 128
Getmpb(), 464
Getrez(), 510

gets(), 129

Gettime(), 466

getw(), 127
G_FBOXTEXT, 241, 248
G_FTEXT, 241, 248
Giaccess(), 469
G_IBOX, 247

G_ICON, 242, 248
G_IMAGE, 244, 247
global array, 261
G_PROGDEF, 245, 247
graf_dragbox(), 214

graf_growbox(), 215
graf_handle(), 216
graf_mkstate(), 217
graf_mouse(), 218
graf_movebox(), 219
graf_rubberbox(), 220
graf_shrinkbox(), 221
graf_slidebox(), 222
graf_watchbox(), 223
G_STRING, 247
G_TEXT, 241, 247
G_TITLE, 248

H

.H extension, 8
handle, 307
heap, 418
HIDETREE, 249

I

ICONBLK, 242
identifiers, 14

IEEE, 18

Ikbdws(), 475
#include, 14

include path option, 56
index(), 157
INDIRECT, 249
Initmous(), 480

in-line assembler, 17
insertion point, 5

int type, 13

I/O redirection, 106
Iorec(), 482

isalnum(), 116
isalpha(), 116

isascii(), 116

isatty(), 130

iscntrl(), 116

isdigit(), 116

INDEX

633

islower(), 116
isprint(), 116
ispunct(}, 116
isspace(), 116
isupper(), 116
isxdigit(), 116

J

Jdisint(), 493
Jenabint(), 493
Jump table, 19

K

Kbdvbase(), 485
Kbrate, 484
Kbshift(), 488
Keyboard port, 422
Keytbl(), 489
K&R, 3

L

label, assembly, 22

labels, 21

labs(), 110

LASER.CFG, 27

LASTOB, 249

IATRX, i

lcalloc(), 132

LIBPATH environment variable, 31
line feed, 105

line separator, 105

line-A graphics routines, 531
linea.h, 611

LINKER environment variable, 30
Imalloc(), 132

.LNK extension, 8

log(), 134

log10(), 134

log2(), 134

Logbase(), 510

long type, 13

longjmp(), 155
Irealloc(), 132
Is utility, 99
Isbrk(), 149
Iseek(), 131

M

main(), 490

MAKE environment variable, 30
malloc(), 107, 132
Malloc(), 490

math.h, 615

matinv(), 134

max(), 560

Mediach(), 492
menu_bar(), 225, 226, 230
menu_icheck(), 231
menu_ienable(), 232
menu_register(), 164, 183, 233
menu_text(), 234
menu_tnormal(), 235
message event, 179
MFDB, 308, 375, 378, 380
MFP, 493

Mfpint(), 493

Mfree(), 490

MIDI port, 422, 485
Midiws(), 495

min(), 560

mkdir utility, 99
MN_REDRAW, 180
MN_SELECTED, 180
Mshrink(), 490
mulpower2(), 134

mv utility, 99

N

name scoping, 16
NDC coordinates, 307
NORMAL, 250

634

INDEX

o

.O extension, 8
obdefs.h, 616
O_BINARY, 107, 115, 138, 147, 162
objc.add(), 251
objc_change(), 252
objc_delete(), 254
objc_draw(), 255
objc_edit(), 256
objcfind(), 258
objc_offset(), 259
objc_order(), 260
obj_draw(), 198
OBJECT, 237, 239
object format, 577
object trees, 81
O_CREAT, 138
Offgibit(), 469
onexit(), 137
Ongibit(), 469
Opcodes, 21
open(), 138, 147
optimizations, 18
O_RDONLY, 138
O_RDWR, 138
osbind.h, 620
O_TRUNG, 138
OUTLINED, 250
O_WRONLY, 138

P

parameters, 20

PARMBLK, 245

PATH environment variable, 31
perror(), 139

Pexec(), 497

Physbase(), 510

portab.h, 625

powerd(), 134

poweri(), 134

Preprocessor, 13
press, 5

.PRG extension, 8
printf(), 140
Protobt(), 500
PRT:, 106, 422
pt2rect(), 561
pt_add(), 562
pt_equal(), 563
Pterm(), 502
Pterm0(), 502
Ptermres(), 502
pt-inrect(), 564
pt_set(), 565
pt_sub(), 566
Puntaes(), 503
putc(), 143
putchar(), 143
puts(), 144
putw(), 143

Q
gsort(), 145

R

RAM resident, 28
RAM resident list, 28
rand(), 146
Random(), 504
RBUTTON, 249
RC coordinates, 307
RCP, 198

rcp.prg, 81

read(), 106, 147
realloc(), 132
rect_empty(), 567
rect_equal(), 568
rect_inset(), 569
rect_intersect(), 570
rect_offset(), 571

INDEX

rect_set(), 572
rect_union(), 573

register names, 21

register variables, 21, 23, 24
regular expressions, 95
rename(), 148

resource, 81

resource file, 81

rewind(), 126

rindex(), 157

rm utility, 99

rmdir utility, 99

RS232 port, 420

.RSC extension, 8
Rsconf(), 505

rsrc_free(), 263
rsrc_gaddr(), 167, 198, 264
rsrcload(), 165, 167, 225, 226, 261,
266

rsrc_obfix(), 267
rsrc_saddr(), 268

Rwabs(), 507

S

sbrk(), 149
scanf(), 150
Scrdmp(), 509
scroll bars, 6
scrpread(), 272
scrp_write(), 273
select, 5
SELECTABLE, 248
SELECTED, 250
selection range, 90
selector box, 7
setbuf(), 106, 153
setbuffer(), 153
Setcolor(), 513
Setexc(), 514
setjmp(), 155

setlinebuf(), 153
Setpalette(), 515
Setprt(), 516
Setscreen(), 510
Settime(), 466
SHADOWED, 250
shel_envrn(), 276
shel find(), 277
shel read(), 278
shel_write(), 279
shift-click, 5
shift-drag, 5
short type, 13
sin(), 134

size utility, 99
sprintf(), 140
_sprintf(), 140
sqr(), 134
sqrt(), 134
srand(), 146
sscanf(), 150
stack dump, 49
stack space, 107
static, 18, 24
static variables, 23
stderr, 106, 123
stdin, 106, 123
stdio.h, 626
stdout, 106, 123
stksize, 107, 133
strcat(), 157
stremp(), 157
strcpy(), 157
stream files, 106
stream I/O, 106
strings.h, 628
strlen(), 157
strncat(), 157
strncmp(), 157
strnepy(), 157

635

636

INDEX

strtol(), 159

structs, 18

structure assignment, 15
structure member names, 16
stuffbits(), 574
stuffhex(), 575

Super(), 517

Supexec(), 519
Sversion(), 520
sys_errlist, 139

sys_nerr, 139

T

tan(), 134
TEDINFO, 240

text marks, 42

TEXT segment, 26, 577
Tgetdate(), 522
Tgettime(), 522
Tickeal(), 521

timer event, 183
toascii(), 114
tolower(), 114
_tolower(), 114

tools (Laser Shell), 28
.TOS extension, 8
TOUCHEXIT, 249
toupper(), 114
_toupper(), 114

TPA, 490

TPA (Transient Program Area), 418
Tsetdate(), 522
Tsettime(), 522

.TTP extension, 8

type, 5
U

unbuffered I1/0, 106
underscore, 14
ungetc(), 160

union assignment, 15
unions, 18

UNIX, 149

unlink(), 161
unsigned, 18

unsigned char type, 13
unsigned long type, 13
unsigned type, 13
untranslated, 105
untranslated mode, 124
update policy, 2

v

v._arc(), 312
variable names, 14
v_bar(), 314
v_circle(), 315
v_clrwk(), 316
v_clsvwk(), 317
v_clswk(), 318
v_contourfill(), 319
v_curdown(), 320
v_curhome(), 320
v_curleft(), 320
v_curright(), 320
v_curtext(), 321
v_curup(), 320
VDI, 307
v_eeol(), 322
v_eeos(), 323
v_ellarc(), 324
v_ellipse(), 325
v_ellpie(), 326
v_enter_cur(), 327
vex_butv(), 328
vex_curv(), 330
v_exit_cur(), 332
vex_motv(), 333
vex_timv(), 335

v fillarea(), 337

INDEX

637

v_get_pixel(), 338
v_gtext(), 339
v_hidec(), 340
virtual workstation, 307, 342
v_justified(), 341
void type, 13
v_opnvwk(), 342
v_opnwk(), 345
v_pieslice(), 350
v_pline(), 351
v_pmarker(), 352
vq-chcells(), 354
vq-color(), 355
vq-curaddress(), 357
vq-extnd(), 358
vaf_attributes(), 360
vq key_s(), 361
vql_attributes(), 363
vgm_attributes(), 364
vg-mouse(), 365
vqt_attributes(), 366
vqt_extent(), 367
vqt_fontinfo(), 368
vqt_name(), 370
vqt-width(), 371
v_rbox(), 373
vrfbox(), 374
vro_cpyfm(), 375
vr_recfl(), 377
vrt_cpyfm(), 378
vr_trnfm(), 380
v_rvoff(), 381
v_rvon(), 381
vsc_form(), 382
vs_clip(), 287, 384
vs_color(), 385
vs_curaddress(), 386
vsf_color(), 387
vsf_interior(), 388
vsf_perimeter(), 389

vsf_style(), 390
vsf_udpat(), 392
v_show_c(), 394
vsl_color(), 395
vsl_ends(), 396
vsl_type(), 397
vsl_udsty(), 398
vsl_width(), 399
vsm_color(), 400
vsm_height(), 401
vsm_type(), 402
vsm_valuator(), 403
vst_alignment(), 404
vst_color(), 406
vst_effects(), 407
vst_font(), 409
vst_height(), 410
vst_load fonts(), 411
vst_point(), 412
vst_rotation(), 413
vst_unload fonts(), 414
vswr_mode(), 415
Vsync(), 524
v_updwk(), 416

W

WF _NEWDESK, 282
WF_WORKXYWH, 282
wind_calc(), 283, 292
wind_close(), 294
wind_create(), 295
wind_delete(), 297
wind_find(), 298
wind_get(), 282, 299
wind_open(), 302
wind_set(), 282, 303
wind_update(), 163, 282, 305
WM_ARROWED, 181
WM_CLOSED, 181
WM_FULLED, 181

638

INDEX

WM_HSLID, 182
WMMOVED, 182
WM_NEWTOP, 183
WM_REDRAW, 283, 287
WMSIZED, 182
WM_TOPPED, 181
WM_VSLID, 182
workstation, 307, 345
write(), 106, 162

write through, 30

X

Xbtimer(), 525
xstrcat(), 157
xstrepy(), 157
xstrncpy(), 157

!
5 4%
)

- [Binclude <osbind.h>

~ Mdefine 1

|/*#tdefine register

Mdefine false 8

Bdefine size 8190
X

long ¥ptr;
gettine)
#ptr = #(long ¥)0x462;

char flags[size+il;
main()

File(s) to compile

[CANCEL | [Ok |

sl Ot e

R

I >

“Don’t even think about another C compiler”
said Mike Fleischman in a review of Megamax C
for ANTIC magazine. Many others shared his
enthusiasm, making Megamax C the most popu-
lar development system for serious Atari ST
programmers. Now Megamax brings you the
next generation— Laser C.

Laser C provides the fastest and most complete
C development system for the Atari ST. With
compile and link speeds averaging over 15 times
faster than its closest competitor, *Laser C is
unsurpassed for maximizing programmer pro-
ductivity. The system tools, tightly integrated
within the Laser Shell, provide fast and powerful
editing and debugging facilities. Laser C also
includes tools to completely automate the
development cycle. With one key stroke a single
program or an entire project can be produced in
a flash.

The entire system is designed for easy and intui-
tive use. Laser C fully utilizes the ST’s GEM user
interface, eliminating the need for a long and
frustrating learning period. Just one more rea-
son why Laser C is the only development system
you will ever need.

*times based on sieve, apskel, and hello world benchmarks com-
piled on a 1040 ST. Competitors systems utilize ram disks.

Megamax Linker V2.0

Executable File: A.PRGL.. [Renave |
(Placed in dir. from the above box)

[] Include symbols in executable (for stack dump)

Features Include:

® RAM resident graphical shell

® Absolute code production compiler
(no 32k limits)

® Variable size RAM cache

® Full-featured Make facility :
® Graphical Resource Construction Program
® DRI compatible linker

® Powerful debugging facilities

® Fast and accurate floating point

B Mouse-based multi-window editor

® Complete technical documentation

® Complete GEM documentation

® Examples using GEM routines

® Telephone technical support

u Full supﬁort of GEM functions

® Large complement of Unix™ routines

	Manual_Page_001
	Manual_Page_002_1L
	Manual_Page_002_2R
	Manual_Page_003_1L
	Manual_Page_003_2R
	Manual_Page_004_1L
	Manual_Page_004_2R
	Manual_Page_005_1L
	Manual_Page_005_2R
	Manual_Page_006_1L
	Manual_Page_006_2R
	Manual_Page_007_1L
	Manual_Page_007_2R
	Manual_Page_008_1L
	Manual_Page_008_2R
	Manual_Page_009_1L
	Manual_Page_009_2R
	Manual_Page_010_1L
	Manual_Page_010_2R
	Manual_Page_011_1L
	Manual_Page_011_2R
	Manual_Page_012_1L
	Manual_Page_012_2R
	Manual_Page_013_1L
	Manual_Page_013_2R
	Manual_Page_014_1L
	Manual_Page_014_2R
	Manual_Page_015_1L
	Manual_Page_015_2R
	Manual_Page_016_1L
	Manual_Page_016_2R
	Manual_Page_017_1L
	Manual_Page_017_2R
	Manual_Page_018_1L
	Manual_Page_018_2R
	Manual_Page_019_1L
	Manual_Page_019_2R
	Manual_Page_020_1L
	Manual_Page_020_2R
	Manual_Page_021_1L
	Manual_Page_021_2R
	Manual_Page_022_1L
	Manual_Page_022_2R
	Manual_Page_023_1L
	Manual_Page_023_2R
	Manual_Page_024_1L
	Manual_Page_024_2R
	Manual_Page_025_1L
	Manual_Page_025_2R
	Manual_Page_026_1L
	Manual_Page_026_2R
	Manual_Page_027_1L
	Manual_Page_027_2R
	Manual_Page_028_1L
	Manual_Page_028_2R
	Manual_Page_029_1L
	Manual_Page_029_2R
	Manual_Page_030_1L
	Manual_Page_030_2R
	Manual_Page_031_1L
	Manual_Page_031_2R
	Manual_Page_032_1L
	Manual_Page_032_2R
	Manual_Page_033_1L
	Manual_Page_033_2R
	Manual_Page_034_1L
	Manual_Page_034_2R
	Manual_Page_035_1L
	Manual_Page_035_2R
	Manual_Page_036_1L
	Manual_Page_036_2R
	Manual_Page_037_1L
	Manual_Page_037_2R
	Manual_Page_038_1L
	Manual_Page_038_2R
	Manual_Page_039_1L
	Manual_Page_039_2R
	Manual_Page_040_1L
	Manual_Page_040_2R
	Manual_Page_041_1L
	Manual_Page_041_2R
	Manual_Page_042_1L
	Manual_Page_042_2R
	Manual_Page_043_1L
	Manual_Page_043_2R
	Manual_Page_044_1L
	Manual_Page_044_2R
	Manual_Page_045_1L
	Manual_Page_045_2R
	Manual_Page_046_1L
	Manual_Page_046_2R
	Manual_Page_047_1L
	Manual_Page_047_2R
	Manual_Page_048_1L
	Manual_Page_048_2R
	Manual_Page_049_1L
	Manual_Page_049_2R
	Manual_Page_050_1L
	Manual_Page_050_2R
	Manual_Page_051_1L
	Manual_Page_051_2R
	Manual_Page_052_1L
	Manual_Page_052_2R
	Manual_Page_053_1L
	Manual_Page_053_2R
	Manual_Page_054_1L
	Manual_Page_054_2R
	Manual_Page_055_1L
	Manual_Page_055_2R
	Manual_Page_056_1L
	Manual_Page_056_2R
	Manual_Page_057_1L
	Manual_Page_057_2R
	Manual_Page_058_1L
	Manual_Page_058_2R
	Manual_Page_059_1L
	Manual_Page_059_2R
	Manual_Page_060_1L
	Manual_Page_060_2R
	Manual_Page_061_1L
	Manual_Page_061_2R
	Manual_Page_062_1L
	Manual_Page_062_2R
	Manual_Page_063_1L
	Manual_Page_063_2R
	Manual_Page_064_1L
	Manual_Page_064_2R
	Manual_Page_065_1L
	Manual_Page_065_2R
	Manual_Page_066_1L
	Manual_Page_066_2R
	Manual_Page_067_1L
	Manual_Page_067_2R
	Manual_Page_068_1L
	Manual_Page_068_2R
	Manual_Page_069_1L
	Manual_Page_069_2R
	Manual_Page_070_1L
	Manual_Page_070_2R
	Manual_Page_071_1L
	Manual_Page_071_2R
	Manual_Page_072_1L
	Manual_Page_072_2R
	Manual_Page_073_1L
	Manual_Page_073_2R
	Manual_Page_074_1L
	Manual_Page_074_2R
	Manual_Page_075_1L
	Manual_Page_075_2R
	Manual_Page_076_1L
	Manual_Page_076_2R
	Manual_Page_077_1L
	Manual_Page_077_2R
	Manual_Page_078_1L
	Manual_Page_078_2R
	Manual_Page_079_1L
	Manual_Page_079_2R
	Manual_Page_080_1L
	Manual_Page_080_2R
	Manual_Page_081_1L
	Manual_Page_081_2R
	Manual_Page_082_1L
	Manual_Page_082_2R
	Manual_Page_083_1L
	Manual_Page_083_2R
	Manual_Page_084_1L
	Manual_Page_084_2R
	Manual_Page_085_1L
	Manual_Page_085_2R
	Manual_Page_086_1L
	Manual_Page_086_2R
	Manual_Page_087_1L
	Manual_Page_087_2R
	Manual_Page_088_1L
	Manual_Page_088_2R
	Manual_Page_089_1L
	Manual_Page_089_2R
	Manual_Page_090_1L
	Manual_Page_090_2R
	Manual_Page_091_1L
	Manual_Page_091_2R
	Manual_Page_092_1L
	Manual_Page_092_2R
	Manual_Page_093_1L
	Manual_Page_093_2R
	Manual_Page_094_1L
	Manual_Page_094_2R
	Manual_Page_095_1L
	Manual_Page_095_2R
	Manual_Page_096_1L
	Manual_Page_096_2R
	Manual_Page_097_1L
	Manual_Page_097_2R
	Manual_Page_098_1L
	Manual_Page_098_2R
	Manual_Page_099_1L
	Manual_Page_099_2R
	Manual_Page_100_1L
	Manual_Page_100_2R
	Manual_Page_101_1L
	Manual_Page_101_2R
	Manual_Page_102_1L
	Manual_Page_102_2R
	Manual_Page_103_1L
	Manual_Page_103_2R
	Manual_Page_104_1L
	Manual_Page_104_2R
	Manual_Page_105_1L
	Manual_Page_105_2R
	Manual_Page_106_1L
	Manual_Page_106_2R
	Manual_Page_107_1L
	Manual_Page_107_2R
	Manual_Page_108_1L
	Manual_Page_108_2R
	Manual_Page_109_1L
	Manual_Page_109_2R
	Manual_Page_110_1L
	Manual_Page_110_2R
	Manual_Page_111_1L
	Manual_Page_111_2R
	Manual_Page_112_1L
	Manual_Page_112_2R
	Manual_Page_113_1L
	Manual_Page_113_2R
	Manual_Page_114_1L
	Manual_Page_114_2R
	Manual_Page_115_1L
	Manual_Page_115_2R
	Manual_Page_116_1L
	Manual_Page_116_2R
	Manual_Page_117_1L
	Manual_Page_117_2R
	Manual_Page_118_1L
	Manual_Page_118_2R
	Manual_Page_119_1L
	Manual_Page_119_2R
	Manual_Page_120_1L
	Manual_Page_120_2R
	Manual_Page_121_1L
	Manual_Page_121_2R
	Manual_Page_122_1L
	Manual_Page_122_2R
	Manual_Page_123_1L
	Manual_Page_123_2R
	Manual_Page_124_1L
	Manual_Page_124_2R
	Manual_Page_125_1L
	Manual_Page_125_2R
	Manual_Page_126_1L
	Manual_Page_126_2R
	Manual_Page_127_1L
	Manual_Page_127_2R
	Manual_Page_128_1L
	Manual_Page_128_2R
	Manual_Page_129_1L
	Manual_Page_129_2R
	Manual_Page_130_1L
	Manual_Page_130_2R
	Manual_Page_131_1L
	Manual_Page_131_2R
	Manual_Page_132_1L
	Manual_Page_132_2R
	Manual_Page_133_1L
	Manual_Page_133_2R
	Manual_Page_134_1L
	Manual_Page_134_2R
	Manual_Page_135_1L
	Manual_Page_135_2R
	Manual_Page_136_1L
	Manual_Page_136_2R
	Manual_Page_137_1L
	Manual_Page_137_2R
	Manual_Page_138_1L
	Manual_Page_138_2R
	Manual_Page_139_1L
	Manual_Page_139_2R
	Manual_Page_140_1L
	Manual_Page_140_2R
	Manual_Page_141_1L
	Manual_Page_141_2R
	Manual_Page_142_1L
	Manual_Page_142_2R
	Manual_Page_143_1L
	Manual_Page_143_2R
	Manual_Page_144_1L
	Manual_Page_144_2R
	Manual_Page_145_1L
	Manual_Page_145_2R
	Manual_Page_146_1L
	Manual_Page_146_2R
	Manual_Page_147_1L
	Manual_Page_147_2R
	Manual_Page_148_1L
	Manual_Page_148_2R
	Manual_Page_149_1L
	Manual_Page_149_2R
	Manual_Page_150_1L
	Manual_Page_150_2R
	Manual_Page_151_1L
	Manual_Page_151_2R
	Manual_Page_152_1L
	Manual_Page_152_2R
	Manual_Page_153_1L
	Manual_Page_153_2R
	Manual_Page_154_1L
	Manual_Page_154_2R
	Manual_Page_155_1L
	Manual_Page_155_2R
	Manual_Page_156_1L
	Manual_Page_156_2R
	Manual_Page_157_1L
	Manual_Page_157_2R
	Manual_Page_158_1L
	Manual_Page_158_2R
	Manual_Page_159_1L
	Manual_Page_159_2R
	Manual_Page_160_1L
	Manual_Page_160_2R
	Manual_Page_161_1L
	Manual_Page_161_2R
	Manual_Page_162_1L
	Manual_Page_162_2R
	Manual_Page_163_1L
	Manual_Page_163_2R
	Manual_Page_164_1L
	Manual_Page_164_2R
	Manual_Page_165_1L
	Manual_Page_165_2R
	Manual_Page_166_1L
	Manual_Page_166_2R
	Manual_Page_167_1L
	Manual_Page_167_2R
	Manual_Page_168_1L
	Manual_Page_168_2R
	Manual_Page_169_1L
	Manual_Page_169_2R
	Manual_Page_170_1L
	Manual_Page_170_2R
	Manual_Page_171_1L
	Manual_Page_171_2R
	Manual_Page_172_1L
	Manual_Page_172_2R
	Manual_Page_173_1L
	Manual_Page_173_2R
	Manual_Page_174_1L
	Manual_Page_174_2R
	Manual_Page_175_1L
	Manual_Page_175_2R
	Manual_Page_176_1L
	Manual_Page_176_2R
	Manual_Page_177_1L
	Manual_Page_177_2R
	Manual_Page_178_1L
	Manual_Page_178_2R
	Manual_Page_179_1L
	Manual_Page_179_2R
	Manual_Page_180_1L
	Manual_Page_180_2R
	Manual_Page_181_1L
	Manual_Page_181_2R
	Manual_Page_182_1L
	Manual_Page_182_2R
	Manual_Page_183_1L
	Manual_Page_183_2R
	Manual_Page_184_1L
	Manual_Page_184_2R
	Manual_Page_185_1L
	Manual_Page_185_2R
	Manual_Page_186_1L
	Manual_Page_186_2R
	Manual_Page_187_1L
	Manual_Page_187_2R
	Manual_Page_188_1L
	Manual_Page_188_2R
	Manual_Page_189_1L
	Manual_Page_189_2R
	Manual_Page_190_1L
	Manual_Page_190_2R
	Manual_Page_191_1L
	Manual_Page_191_2R
	Manual_Page_192_1L
	Manual_Page_192_2R
	Manual_Page_193_1L
	Manual_Page_193_2R
	Manual_Page_194_1L
	Manual_Page_194_2R
	Manual_Page_195_1L
	Manual_Page_195_2R
	Manual_Page_196_1L
	Manual_Page_196_2R
	Manual_Page_197_1L
	Manual_Page_197_2R
	Manual_Page_198_1L
	Manual_Page_198_2R
	Manual_Page_199_1L
	Manual_Page_199_2R
	Manual_Page_200_1L
	Manual_Page_200_2R
	Manual_Page_201_1L
	Manual_Page_201_2R
	Manual_Page_202_1L
	Manual_Page_202_2R
	Manual_Page_203_1L
	Manual_Page_203_2R
	Manual_Page_204_1L
	Manual_Page_204_2R
	Manual_Page_205_1L
	Manual_Page_205_2R
	Manual_Page_206_1L
	Manual_Page_206_2R
	Manual_Page_207_1L
	Manual_Page_207_2R
	Manual_Page_208_1L
	Manual_Page_208_2R
	Manual_Page_209_1L
	Manual_Page_209_2R
	Manual_Page_210_1L
	Manual_Page_210_2R
	Manual_Page_211_1L
	Manual_Page_211_2R
	Manual_Page_212_1L
	Manual_Page_212_2R
	Manual_Page_213_1L
	Manual_Page_213_2R
	Manual_Page_214_1L
	Manual_Page_214_2R
	Manual_Page_215_1L
	Manual_Page_215_2R
	Manual_Page_216_1L
	Manual_Page_216_2R
	Manual_Page_217_1L
	Manual_Page_217_2R
	Manual_Page_218_1L
	Manual_Page_218_2R
	Manual_Page_219_1L
	Manual_Page_219_2R
	Manual_Page_220_1L
	Manual_Page_220_2R
	Manual_Page_221_1L
	Manual_Page_221_2R
	Manual_Page_222_1L
	Manual_Page_222_2R
	Manual_Page_223_1L
	Manual_Page_223_2R
	Manual_Page_224_1L
	Manual_Page_224_2R
	Manual_Page_225_1L
	Manual_Page_225_2R
	Manual_Page_226_1L
	Manual_Page_226_2R
	Manual_Page_227_1L
	Manual_Page_227_2R
	Manual_Page_228_1L
	Manual_Page_228_2R
	Manual_Page_229_1L
	Manual_Page_229_2R
	Manual_Page_230_1L
	Manual_Page_230_2R
	Manual_Page_231_1L
	Manual_Page_231_2R
	Manual_Page_232_1L
	Manual_Page_232_2R
	Manual_Page_233_1L
	Manual_Page_233_2R
	Manual_Page_234_1L
	Manual_Page_234_2R
	Manual_Page_235_1L
	Manual_Page_235_2R
	Manual_Page_236_1L
	Manual_Page_236_2R
	Manual_Page_237_1L
	Manual_Page_237_2R
	Manual_Page_238_1L
	Manual_Page_238_2R
	Manual_Page_239_1L
	Manual_Page_239_2R
	Manual_Page_240_1L
	Manual_Page_240_2R
	Manual_Page_241_1L
	Manual_Page_241_2R
	Manual_Page_242_1L
	Manual_Page_242_2R
	Manual_Page_243_1L
	Manual_Page_243_2R
	Manual_Page_244_1L
	Manual_Page_244_2R
	Manual_Page_245_1L
	Manual_Page_245_2R
	Manual_Page_246_1L
	Manual_Page_246_2R
	Manual_Page_247_1L
	Manual_Page_247_2R
	Manual_Page_248_1L
	Manual_Page_248_2R
	Manual_Page_249_1L
	Manual_Page_249_2R
	Manual_Page_250_1L
	Manual_Page_250_2R
	Manual_Page_251_1L
	Manual_Page_251_2R
	Manual_Page_252_1L
	Manual_Page_252_2R
	Manual_Page_253_1L
	Manual_Page_253_2R
	Manual_Page_254_1L
	Manual_Page_254_2R
	Manual_Page_255_1L
	Manual_Page_255_2R
	Manual_Page_256_1L
	Manual_Page_256_2R
	Manual_Page_257_1L
	Manual_Page_257_2R
	Manual_Page_258_1L
	Manual_Page_258_2R
	Manual_Page_259_1L
	Manual_Page_259_2R
	Manual_Page_260_1L
	Manual_Page_260_2R
	Manual_Page_261_1L
	Manual_Page_261_2R
	Manual_Page_262_1L
	Manual_Page_262_2R
	Manual_Page_263_1L
	Manual_Page_263_2R
	Manual_Page_264_1L
	Manual_Page_264_2R
	Manual_Page_265_1L
	Manual_Page_265_2R
	Manual_Page_266_1L
	Manual_Page_266_2R
	Manual_Page_267_1L
	Manual_Page_267_2R
	Manual_Page_268_1L
	Manual_Page_268_2R
	Manual_Page_269_1L
	Manual_Page_269_2R
	Manual_Page_270_1L
	Manual_Page_270_2R
	Manual_Page_271_1L
	Manual_Page_271_2R
	Manual_Page_272_1L
	Manual_Page_272_2R
	Manual_Page_273_1L
	Manual_Page_273_2R
	Manual_Page_274_1L
	Manual_Page_274_2R
	Manual_Page_275_1L
	Manual_Page_275_2R
	Manual_Page_276_1L
	Manual_Page_276_2R
	Manual_Page_277_1L
	Manual_Page_277_2R
	Manual_Page_278_1L
	Manual_Page_278_2R
	Manual_Page_279_1L
	Manual_Page_279_2R
	Manual_Page_280_1L
	Manual_Page_280_2R
	Manual_Page_281_1L
	Manual_Page_281_2R
	Manual_Page_282_1L
	Manual_Page_282_2R
	Manual_Page_283_1L
	Manual_Page_283_2R
	Manual_Page_284_1L
	Manual_Page_284_2R
	Manual_Page_285_1L
	Manual_Page_285_2R
	Manual_Page_286_1L
	Manual_Page_286_2R
	Manual_Page_287_1L
	Manual_Page_287_2R
	Manual_Page_288_1L
	Manual_Page_288_2R
	Manual_Page_289_1L
	Manual_Page_289_2R
	Manual_Page_290_1L
	Manual_Page_290_2R
	Manual_Page_291_1L
	Manual_Page_291_2R
	Manual_Page_292_1L
	Manual_Page_292_2R
	Manual_Page_293_1L
	Manual_Page_293_2R
	Manual_Page_294_1L
	Manual_Page_294_2R
	Manual_Page_295_1L
	Manual_Page_295_2R
	Manual_Page_296_1L
	Manual_Page_296_2R
	Manual_Page_297_1L
	Manual_Page_297_2R
	Manual_Page_298_1L
	Manual_Page_298_2R
	Manual_Page_299_1L
	Manual_Page_299_2R
	Manual_Page_300_1L
	Manual_Page_300_2R
	Manual_Page_301_1L
	Manual_Page_301_2R
	Manual_Page_302_1L
	Manual_Page_302_2R
	Manual_Page_303_1L
	Manual_Page_303_2R
	Manual_Page_304_1L
	Manual_Page_304_2R
	Manual_Page_305_1L
	Manual_Page_305_2R
	Manual_Page_306_1L
	Manual_Page_306_2R
	Manual_Page_307_1L
	Manual_Page_307_2R
	Manual_Page_308_1L
	Manual_Page_308_2R
	Manual_Page_309_1L
	Manual_Page_309_2R
	Manual_Page_310_1L
	Manual_Page_310_2R
	Manual_Page_311_1L
	Manual_Page_311_2R
	Manual_Page_312_1L
	Manual_Page_312_2R
	Manual_Page_313_1L
	Manual_Page_313_2R
	Manual_Page_314_1L
	Manual_Page_314_2R
	Manual_Page_315_1L
	Manual_Page_315_2R
	Manual_Page_316_1L
	Manual_Page_316_2R
	Manual_Page_317_1L
	Manual_Page_317_2R
	Manual_Page_318_1L
	Manual_Page_318_2R
	Manual_Page_319_1L
	Manual_Page_319_2R
	Manual_Page_320_1L
	Manual_Page_320_2R
	Manual_Page_321_1L
	Manual_Page_321_2R
	Manual_Page_322_1L
	Manual_Page_322_2R
	Manual_Page_323_1L
	Manual_Page_323_2R
	Manual_Page_324_1L
	Manual_Page_324_2R
	Manual_Page_325_1L
	Manual_Page_325_2R
	Manual_Page_326_1L
	Manual_Page_326_2R
	Manual_Page_327

