

Laser C

Laser Shell and Editor

C Compiler

Linker

Disassembler

Archiver /Linker

Symbol Namer

Make Utility

Resource Construction Program

Compile and Link

Egrep

Disk Utilities

UNIX Compatible Routines

GEM AES

VDI

BIOS, GEMDOS, XBIOS Routines

Line-A Graphics Routines

Utility Routines

File Formats

System Globals

DOS Error Codes

Key Codes

Header Files

Index

-

-

IIIII
DJI
011

Preface

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic ,
mechanical, photocopying , recording, or otherwise, without the prior written
permission of Megamax, Inc. Printed in the United States of America.

Megamax, Inc. makes no warranty of any kind in respect to this manual
or the software described in this manual. The user assumes any risk as to the
quality, performance, and accuracy of this product. In no event will Megamax,
Inc. be liable for direct , indirect, incidental, or consequential damages resulting
from any defect in the performance or use of this product.

This manual was formated with Y.TEYC running on an lSI V16S computer
and printed on an Apple Laserwriter. The fonts used are "Almost Computer
Modern" roman and typewriter.

Megamax C and Laser C are trademarks of Megamax, Inc. UNIX is a trade­
mark of AT&T, Inc. Atari ST is a trademark of Atari Corporation. GEMDOS
is a trademark of Digital Research Corp .

Copyright © 1986, 1987, 1988 by Megamax Inc.

11

Contents

Preface

1

2

3

Laser C Package
1 . 1
1 .2
1 .3

Components . 0 0 • • • • •

Update Policy
Defective Media Warranty

Introduction
2 . 1
2 . 2
2 . 3

Implementation .
Hardware Requirements
System Setup 0

2 .3 . 1 S ingle-sided Drive Installation .

2 .4

2 .5
2 .6

2 .3 . 2 Double-sided Drive Installation
2 .3 .3 Hard Disk Installation
Conventions
2 .4 . 1 Scroll Bar Usage . . .
2 .4 .2 Selector Usage • 0 • •

2 .4 .3 File Name Conventions
Development Steps
Sample Session

Laser C
3 . 1 Language

3 . 1 . 1 Data Types . .
3 . 1 . 2 C Preprocessor
3 . 1 . 3 External Names
3 . 1 . 4 Enumeration Types
3 . 1 .5 Structure Assignment

lll

II

1
1
2
2

3
3
4
4
4
4
4
5
6
7
8
8
9

13

. ,•
13
13
13
14
15
15

iv

3 . 1 . 6 Character Constants
3 . 1 . 7 Scope of ldentifiers
3 . 1 . 8 Forward Pointer References
3 . 1 . 9 Assembler

3 .2 Language Implementation . .
3 .2 . 1 S ize of Data Elements
3 .2 .2 Code Generation . . .
3 .2 .3 Switch Statement . . .
3 .2 .4
3 .2 .5
3 .2 .6
3 .2 .7

Function Call Conventions .
Register Variable Support .
Assembler
Storage Allocation/Initialization

4 Laser Shell and Editor
4 .1 Shell Startup
4 .2 Shell Configuration .

4.2 . 1 Tools
4 .2 .2 Environment Variables .
4 .2 .3 Save Configuration
4.2 .4 Disk Cache

4.3 Text Editor
4.3 . 1 Editor Menu Usage .
4 .3 .2 Choosing A File . .
4.3 .3 Mouse Usage
4.3 .4 Scrolling the Window
4.3 .5 Insertion Point Keys
4.3 .6 Text Entry
4.3 .7 Block Operations .
4.3 .8 Editor Options
4.3 .9 Finding Text . . .
4.3 . 10 Text Marks
4.3 . 1 1 Rearranging Windows
4.3 . 12 File Information . . .

4.4 Running Programs
4.4. 1 Menu Command Execution
4.4.2 Command Line Execution .

4.5 Disk Operations
4 .6 Project Management (Make)
4. 7 Debugging
4 .8 Menu Summary

CONTENTS

15
16
16
17
18
18
18
19
20
21
21
26

27
27
28
28
30
32
32
33
34
34
35
36
36
37
37
39
40
42
42
43
43
43
45
47
48
49
51

CONTENTS v

4.9 Keyboard Summary . 52

5 C Compiler
5 . 1 Command Line Usage
5 .2 Compiler Errors
5 .3 Memory Usage

6 Linker
6 .1 Command Line Usage
6.2 Linker Errors
6.3 The Linking Process
6.4 Desk Accessory Support

7 Disassembler
7 . 1 Command Line Usage
7 .2 Disassembler Errors

8 Archiver /Librarian
8 . 1 Command Line Usage
8 .2 Random Library
8 .3 Archiver Errors

9 Symbol N amer
9 .1 Command Line Usage
9.2 Namer Errors

10 Make Utility
10. 1 Command Line Usage
10.2 A Simple "Makefile"
10.3 Makefile Structure

10. 3 . 1 Entries
10 .3 .2 Comments . .
10 .3 .3 Macro Definition
10 .3 .4 Implicit Macros .
10 .3 .5 Dynamic Dependency
10 .3 .6 Suffixes Table
10 .3 .7 Transformation Rules

10.4 Examples

. '

55
55
56
56

57
58
59
60
61

63
63
64

65
65
66
66

69
70
70

71
72
73
74
74
75
75
77
77
77
78
78

vi

11 Resource Construction Program
1 1 . 1 Definition of Resource Files
1 1 .2 RCP Usage

1 1 . 2 . 1 Tree Types . . .
1 1 .2 .2 Visual Hierarchy
1 1 .2 .3 Menu usage .
1 1 .2 .4 Mouse usage . .
1 1 .2 .5 Resizing
1 1 .2 .6 Keyboard Usage

1 1 .3 Menu Functions . .
1 1 . 3 . 1 Edit Menu . .
1 1 .3 .2 File Menu . . .
1 1 .3 .3 Options Menu

1 1 .4 Object Dialogs .
1 1 .5 The Icon Dialog
1 1 .6 The Bit Image

1 1 .7 Using RCP as a Resource Editor

12 Compile and Link
12 . 1 Command Line Usage
12 .2 CC Errors .
12 .3 Examples

13 Egrep
13 . 1 Command Line Usage
13 .2 Egrep Errors . . .
13 .3 Example Searches .

14 Disk Utilities
14. 1 LS .
14.2 CP .
14.3 MV
14.4 RM
14 .5 RMDIR
14.6 MKDIR
14.7 CAT . .
14.8 DUMP .
14.9 SIZE . .

CONTENTS

81
81
83
84
84
85
85
86
86
86
86
87
87
88
89
91
91

93
93
94
94

95
96
97
97

99
99

. 100

. 101

. 101

. 102

. 102

. 103

. 103

. 103

CONTENTS

15 UNIX Compatible Routines
15 . 1 Line Separators .
15 .2 File I/0
15 .3 I/0 Redirection .
15 .4 Device I/0 . . .
15 . 5 Memory Allocation .
15 .6 Program Parameters
15 .7 Summary of Routines

16 GEM AES
16. 1 Creating a GEM Application
16.2 Applications Manager
16.3 Event Manager
16 .4 Form Manager
16 .5 File Selector Manager
16 .6 Graphics Manager
16 .7 Menu Manager . .
16 .8 Object Manager . .
16 .9 Resource Manager
16. 10Scrap Manager . .
16. 1 1Shell Manager . . .
16. 12Window Manager .

17V DI
17 . 1 VDI Examples

18 BIOS, GEI\IDOS, XBIOS Routines
18 . 1 BIOS Interface . . .
18 .2 XBIOS Interface
18 .3 GEMDOS Interface
18 .4 GEM Run-time Structure

19 Line-A Graphics Kernal
19. 1 Line-A Graphics Routines
19 .2 Graphics Modes

19. 2 . 1 High-resolution Mode
19 .2 .2 Medium-resolution Mode
19 .2 .3 Low-resolution Mode .

19 .3 Line-A Port
19.4 Line-A Data Structures . . .

105
. 105
. 106

106
. 106
. 107
. 107
. 108

163
. 165

171
. 179
. 197
. 209
. 2 13
. 225
. 237
. 261
. 271
. 275
. 281

307
. 3 10

417
. 417
. 418
. 418
. 418

531
. 531
. 532
. 532
. 532
. 533
. 533
. 534

vii

viii CONTENTS

20 Utility Routines 557

A File Formats 511
A. l Laser Object File Format 577
A.2 DRI Object File Format 579
A.3 G EMDOS Application File Format . . 580

B System Globals 581

c DOS Error Codes 587

D Key Codes 589

E Header Files 593

Chapter 1

Laser C Package

1 . 1 Components

The Laser C Development System includes this manual, a warranty card which
should be filled out and returned, and three single-sided diskettes, labeled "SYS­
TEM" , "WORK" , and "UTILITY" . The SYSTEM diskette contains:

MEGAMAX Folder

CCOM.TTP

LD.TTP

LASER.CFG

LASER.RS C

C compiler

Linker

Configuration file

Required by LASER.PRG
MAKE. TTP Make utility

LASER.PRG Laser development shell (includes editor)
The WORK diskette contains:

EXAMPLES Folder of example programs

MEGAMAX Folder

HEADERS
INIT.O

Folder of C header files
C initialization code

LIBC.A C function library

CC.TTP Compile and link utility

The UTILITY diskette contains:

1

2

AR.TTP

CAT.TTP

CP.TTP

CHAPTER 1 . LASER C PACKAGE

Archi ver /Librarian

File display utility

File copy utility

DIS. TTP Disassembler

EGREP. TTP Multi-file string search utility

LS. TTP File list utility

MKDIR. TTP Create folder utility

MV.TTP

NM.TTP

RCP.PRG

RCP.RS C

RM.TTP

File move utility

Symbol Table Dumper

Resource Construction Program

Required by RCP.PRG

File remove utility
Rl\IDIR. TTP Folder remove directory
DUMP.TTP Hex file display utility
SIZE.TTP File size utility

1.2 Update Policy

Updates to this product, when released, are made available to registered users
by sending the original diskettes along with $20 to Megama�. Updates include
new disks along with a copy of the new documentation. Please fill out and
return the warranty registration card to Megamax. Megamax user services,
such as B.B.S . access, update announcements, and the Megamax newsletter
depend on the purchaser having done this. The update policy is subject to
change without notice.

1.3 Defective Media Warranty

If any physical defects are discovered with the magnetic media within a period
of 60 days after purchase, assuming normal use of the diskette, Megamax, Inc.
will replace the diskette free of charge . The original diskette must be returned
to Megamax, Inc.

Megamax, Inc
Box 851521
Richardson, TX 75085
(214) 987-4931

Chapter 2

Introduction

Laser C is a complete, professional quality C language development system for
Atari ST computers . It includes a compiler, a linker, an integrated shell and
editor, header files, a library of UNIX compatible routines, and a complete
interface to the Atari ST ROM routines. In addition, the package includes an
archiver, a resource construction program, a project manager (Make) utility,
and a catalogue of example source programs.

The Laser Shell has a multi-window mouse-based text editor, a built-in disk
cache, a facility for making system programs RAM resident, and many other
special features which aid program development.

2.1 Implementation

The C compiler was implemented according to the book "The C Programming
Language" (also known as K&R) written by Brian W. Kernighan and Dennis
M. Ritchie. This manual does not attempt to restate the principles of their
book, but rather provides the programmer with information about the Laser C
implementation . Numerous language extensions have been included which are
beyond K&R, such as enumeration types, structure passing and assignment,
and in-line assembly of Motorola 68000 instructions.

To make full use of the in-line assembly feature, it will be necessary to
obtain the Motorola M68000 Programmer's Reference Manual, published by
Prentice-Hall, Inc.

3

4 CHAPTER 2. INTRODUCTION

2.2 Hardware Requirements

Laser C may be used on an Atari ST with a single-sided disk drive. However,
for the most efficient development, it is suggested that an Atari ST with one
megabyte of memory and a double-sided BOOK disk drive be used.

IMPORTANT: Make working copies of each of the three original diskettes
and put the originals in a safe place.

2.3 System Setup

2.3.1 Single-sided Drive Installation

If a single-sided drive system is to be used it is suggested that the duplicate
SYSTEM be inserted to start "LASER.PRG" , which will load the compiler
and linker into RAM. Once loaded, the SYSTEM disk can be replaced with the
duplicate WORK disk, which should have sufficient room for development . If
a second drive is available, it may be used to run programs on the UTILITY
disk, or it may be used for extra storage.

2.3.2 Double-sided Drive Installatio n

If a double-sided drive system is to be used, copy the contents of the WORK
disk to the duplicate SYSTEM disk and use it disk for development. If a second
drive is available, it may be used to run programs on the UTILITY disk, or it
may be used for extra storage.

2.3.3 Hard Disk Installation

When installing the Laser Development System onto a hard disk it is suggested
that a folder called "MEGAMAX" be created, into which all files in the
"MEGAMAX" folders on the SYSTEM and WORK disks be placed. The
remaining files on the SYSTEM, WORK, and UTILITY disks can then be
placed on the root of the drive. Creation of this folder is not required ; however,
the Laser Shell and the Resource Construction Program will both look for
necessary files in this folder if not found in the folder in which the programs
reside. Since the Laser Shell uses path names and search paths to locate and
run programs, other configurations are possible.

NOTE: The MEGAMAX folder may not be placed inside of another folder,
it must remain at the top level of the disk on which it is created.

2.4 CONVENTIONS

2.4 Conventions

The following conventions apply to the remainder of this document.

Cursor

Insertion point

Press/type

Click

Double-click

Shift-click

Control-click

Choose

Drag

Shift-Drag

Control-Drag

Select

The mouse cursor.

The blinking text cursor in an editor window.

Keyboard entry is required .

Position the cursor over an item and press the
left mouse button.
Like click except the mouse button is pressed
twice in rapid succession.

Click while holding down the "Shift" key.

Click while holding down the "Control" key.

Make a menu selection by moving the mouse
into the menu bar and clicking on an item.

Indicates that the mouse is moved while the
mouse button is held down.
A mouse drag in which the "Shift" key is held
down (before the drag is begun) .

A mouse drag in which the "Control" key is
held down (before the drag is begun) .

Often text or other graphical items are se­
lected so that subsequent operations may ap­
ply only to the selected items. Selected items
are hilighted in some manner. Selected text
is often printed in white-on-black. Extended
or multiple selections are typically made by
Shift-clicking.

5

6 CHAPTER 2. INTRODUCTION

2. 4.1 Scroll Bar Usage

Scroll bars are typically used to position a window or selector box over text
which will not fit entirely within the window or box. The white area of a scroll
bar (the thumb) indicates the relative size of the window to the content of the
window. Thus, an entirely white scroll bar indicates that �he entire contents
of the window are visible and that no scrolling is necessary. The thumb may
be dragged to directly position the window anywhere over the file. Clicking
and holding down the left-hand mouse button on an arrow moves the window
over its contents in the indicated direction. Clicking on a grey area moves the
window over its contents by a larger amount, typically one-half of the visible
content of the window.

Scroll arrow

Thumb

Grey (pege) oreo

Figure 2 . 1 : Scroll Bar Components

2.4 CONVENTIONS

2. 4.2 Selector Usage

The Laser Shell often displays lists in what are called "selector boxes" . A
selector box is an interactive device which allows the display and selection of
items (names or strings) . If the list of items in a selector box is too long to fit in
the box, a scroll bar becomes active with which the list may be scrolled. Some
selector boxes allow multiple selections while others allow only one item to be
selected at a time. Multiple selections, when allowed, are made by clicking on
the first item to be selected and then dragging across other items to be selected,
or by shift-clicking on each item to be selected .

Selett a file

I CANCEL I �

Figure 2 .2 : Open F ile Selector Dialog

A special variety of selector box is the "file selector box" . A file selector box
displays a sorted list of file names and folder names. Folder names are preceded
by a graphical character and are sorted to the top of the list . Selections and
multiple selections (when allowed) are performed for the standard selector box.
A folder is opened by double-clicking on the folder name, and a folder is closed
by clicking on the graphical character in the upper left-hand corner of the
selector box. Closing the root (the disk drive name) causes a list of available
drives to be displayed . Double-clicking on a drive name changes to the root of
that drive.

7

8 CHAPTER 2. INTRODUCTION

2.4.3 File Name Conventions

A G EMDOS file extension is the optional one to three characters ending a file
name, separated from the rest of the file name by a period. File name extensions
are typically used to indicate the type of the file. The following file name
extensions are recognized by the Laser Shell and the Resource Construction
Program:

.ACC

. PRG

. TOS

.TTP

• CFG

.LNK

. RS C

• DEF

.c

. H

. 0

. A

Desk accessory.

GEM (graphic) application program .

Character based application program .

TOS program which takes program parameters.

Shell configuration file .

Shell linker dialog configuration .

GEM resource file.

File of resource name definitions (used by "RCP.PRG") .
C language source file .

C header file .

Object code file .

Archive file .

2.5 Development Steps

In general, the sequence of steps taken to develop a C program, known as the
development cycle, are:

Edit

Compile

Link

Create the program source with a text editor.

Run the compiler on the program source. If the pro­
gram contains errors, as reported by the compiler, re­
turn to the edit step. If no errors occur, the compiler
will output a linkable object file.

Run the linker supplying as input the names of object
files (or archives of object files) . If the linker reports
any errors, return to the edit step. Barring any link
errors, an executable program will be output by the
linker.

2.6 SAMPLE SESSION

Run/Debug Running the executable program may reveal errors.
Repeat these steps until the program runs as desired.

The Resource Construction Program may be utilized to create resources for
applications. This step is independent of the above process.

The Laser Shell serves as both a source editor, and a utility from which
the compiler and other development programs may be run . These programs
may alternately be run from the GEM desktop or from a command line shell;
however, the Laser Shell has facilities which greatly decrease development time.

2.6 Sample Session

In the following example, a simple C program is created.

• Follow the installation procedure described above. A RAM disk may be
used with the Laser Shell, but will not improve performance due to the
automatic disk cache within the Shell.

• From the GEM desktop, double-click on the file "LASER.PRG" . After
a few seconds the menu bar will change to the editor's menu bar. An alert
box should be presented which proclaims "Loading RAM Resident Pr�
grams" . If this alert is not seen, the Shell did not find a configuration file
in which case the Shell should be terminated (by choosing Quit from the
File menu) . The configuration file, named "LASER.CFG" should then
be copied to either the same location (drive and folder) as the program
"LASER.PRG" , or to the "MEGAMAX" folder, if present.

9

10 CHAPTER 2. INTRODUCTION

• When the RAM resident programs are loaded properly, choose New from
the File menu. An empty editor window will appea�.

F igure 2 .3 : New File Item

• Enter the following program verbatim by typing it into the window. If
a typing mistake is made, erase with the "Backspace" key. The 'inser­
tion point may be moved by clicking on the desired character. Press the
"Return" key to create a blank line at the insertion point.

inO {
printfC11Hel lo, world\n11);
gettharO;
}

X

Figure 2 .4: Example Program

2.6 SAMPLE SESSION

• Now choose Save or Save as . . . from the File menu. When a dialog
appears, press the "ESC" key, type "HELLO.C" , and press "Return" .
The file has now been saved to disk and given a name with the " .C"
extension, which is necessary for the Run command.

Info

Figure 2 . 5 : Save F ile Item

• Next, choose Run from the Execute menu. The Shell will compile, link,
and run the program in the front window. If the program contains any
errors, correct them and select Run again. When run, the program should
print directly onto the screen and then wait for a "Return" . When the
"Return" is typed, the program will terminate and return to the Shell.

nO {
printf(11Hell
getchar 0;
}
I

Figure 2 .6: Run Program Item

11

12 CHAPTER 2. INTRODUCTION

• Finally choose Quit from the File menu. The program "A.PRG" should
appear on the desktop as a stand-alone application.

Save
Save as 1 1 1

Close
Close all
Revert

Ouit

Morld\n11);

Figure 2 .7 : Quit Laser Shell Item

Chapter 3

Laser C

3.1 Language

3.1 .1 D ata Types

The C compiler supports all of the standard scalar types of the C language:
char, int , short , long, unsigned, :float , and double , as well as pointers
to all types. Also unsigned char, unsigned long and enum are supported.
Bitfields are supported but the fields must only be unsigned.

Void Data Type

The keyword void is used to tell the compiler that a function does not have a
return value. For example

void foo ()
{

printf ("Hello world\n") ;
}

The void type can not be used in an expression .

3.1 .2 C Prepro cessor

The Laser C preprocessor follows the specification given in K&R. There are
some extensions, however.

13

14 CHAPTER 3. LASER C

The restriction of having the '#' in the first column of a line has been lifted.
There can also be any amount of white space between the '#' and the pre­
processor command but the command an the '#' must be on the same line. If
there is no command on the same line following a '#' that li�e is skipped. e.g.

define TRUE 1
#ifdef TRUE

#endif

Note that there is white space prior to the define and that there is no
command on one of the lines with a '#' on it .

Include File Processing

The #inc 1 ude feature of the standard C preprocessor allows file names to be
given within either double quotes or angle brackets. File names in double quotes
make the compiler search the directories in this order:

1 . The directory of the source file that contains the include command.

2 . Any files given to the compiler with the - I option (see section 5 . 1) .

F ile names in angle brackets cause the compiler t o start searching at step 2
above.

Include files may be nested to a depth of 6 levels, including the main module
level. An attempt to nest beyond this maximum (if an include file inadvertently
#inc luded itself) results in an error message.

3.1.3 External Names

Identifiers (names of variables and functions) may contain up to 255 characters
each. As per the standard for the C language, both upper and lower case
letters are allowed in identifiers, and are distinct from each other. That is,
the names myvar and MyVar are different . The underscore character (_) is also
legitimate within identifiers, as are digits. Identifiers, though, may not begin
with a digit . It should be noted that various internal functions, such as floating
point routines and support for long integers, have names beginning with an
underscore. The programmer should therefore avoid using identifiers which
begin with an underscore if possible.

3.1 LANGUAGE

3. 1 . 4 Enumeration Types

Laser C supports enumeration types using 16-bit representatic>n of the enumer­
ation constant. An example of an enumeration type is :

enum { apples , oranges , bananas } fruits ;

main()
{

fruits = oranges ;
}

The values assigned by the compiler start at 0 and are incremented for each
identifier. In the example above fruits will have the value 1 . Enumeration
constants can also be assigned values when they are declared. The compiler
will use that value to increment from.

enum { green = 6, orange , yellow = 10 } colors ;

main ()
{

}

c olors = orange ;
c olors = yellow ;

In the above example orange has the value 6 and yellow has the value 10.

3.1 .5 S tructure Assignment

Laser C supports structure and union assignment and passing. If x andy are
struc tures of type stype then the following statements are legal :

X = y ;
foo (x) ;
struct stype bar () ;

I* c ontents of y are c opied to x *I
I* x is passed by value to foo () *I
I* function returning struct *I

GEM routines that have structures as parameters must be passed the ad­
dress of the structure (using the "&" operator) .

3. 1 .6 Character Constants

The definition of character constants has been extended in Laser C to allow int
and long size as well as char. The syntax is a single quote followed by 1 , 2 or

15

16 CHAPTER 3. LASER C

4 characters and a closing single quote. The resultant type will be a char, i nt
or long respectively. An example of a character constant is:

long a = 'ABCD' ; I* a will have the value Ox41424344 *I

3.1. 7 Scope of Identifiers

In general, name scoping within the C compiler is as per standard C. One
exception to this standard is the treatment of identifiers of structure members.
In Laser C, structure member names need not be unique across struct bound­
aries. Therefore it is valid for two different structures to contain members at
different relative offsets with identical names. e .g .

struct {
int number ;
char *name ;

} struc t_one ;

struct {

I* name is at offset 2 *I

char *name ; I* name is at offset 0 *I
char *address ;

} struc t_two ;

3.1.8 Forward Pointer References

A problem arises when two structures must refer to each other: the reference in
the first structure causes an undefined type error because the second structure
hasn't been defined yet. This mutual referencing almost invariable arises with
some kind of linked data structure. The C compiler has been extended to allow
pointer references to structs or unions that have not yet been defined. Note
that this only works with pointers to structs or unions with a tag name (typedefs
will not work) . Additional errors will be generated later in the compile if the
struct or union is never defined. e .g .

struct node {
char *symbol_name ;
struc t type_node *type ; I* type_ node is not defined *I

} ;

struc t type_node {
int type ;

} ;

3.1 LANG UAGE

3.1 .9 Assembler

The C compiler allows the addition of assembly language code to a C program
directly in-line with the C code. The C language has been extended to include
the construct :

asm {

MC68000 Assembler Instruc tions

}

The code within the braces after the keyword asm is assembled and included
in-line with code generated from surrounding C statements. In-line assembly
may appear anywhere in your program; it is not necessary to place it inside a
function.

The in-line assembler obviates the need for a separate assembler. General
control structure, input/ output, and complex data structures can be imple­
mented in C , while certain low-level routines can be coded in assembly lan­
guage within the same module . The problem of interfacing C functions to
assembly language functions and vice-versa is eliminated, because calling se­
quences can be written in C for functions coded in assembler. Programs can
first be developed in C to debug algorithms and to quickly generate a working
prototype. Functions which comprise the most time consuming sections of the
program (generally less than 10% of the code) can then be re-coded in assem­
bly language. Because of the efficiency of the C code generator, such a hybrid
approach yields execution speeds favorably comparable with pure assembly lan­
guage code while retaining the ease of modification and maintenance of a pure,
high-level language approach.

However, the use of assembly language decreases readability, exacerbates
debugging headaches, and drastically reduces portability. Discretion must be
used when considering functions for hand translation. There are some situations
where speed is critical, most notably graphics. Such applications frequently
involve system or machine dependencies anyway, so portability is not an issue.
In such cases, the availability of in-line assembly language is a great benefit .

See section 3 .2 .6 for the syntax of the assembler.

11

18 CHAPTER 3. LASER 0

3.2 Language Implementation

3.2.1 Size of Data Elements

The amount of space allocated for each data type (in terms of 8-bit bytes) is as
follows:

char: 1 unsigned char: 1
unsigned: 2 unsigned long: 4
short: 2 float: 4
int: 2 double: 8
long: 4 Pointer type: 4
en urn: 2

Floating point types are stored in IEEE standard format (although non­
IEEE standard routines are used to perform floating point calculations. In
particular, the 80-bit temporary is not supported) .

Space for variables of type char is allocated on the next available byte
boundary in memory if the variable is within a struct or union or is of storage
class auto, or on the next available word boundary if the variable is extern
or static . Space for all other variables, including those of any other storage
class as well as arrays, struc ts and unions, is always allocated on the next
available word boundary, regardless of storage class. Bit fields within struct 's
are allocated in unsigned units, starting from the least significant bit . The
maximum size of a string constant is 255 bytes.

3.2.2 Code Generation

The C compiler, including preprocessor, syntax check, and code generation, is
one-pass. In other words, all work which needs to be done by the compiler is
finished after looking at the contents of the source file once. The compilation
process is thus quite fast .

Linkable object code is generated directly by the compiler; there is no as­
sembly post-pass. The compiler performs many processor specific "strength
reduction" optimizations, such as using MC68000 "quick" instructions, replac­
ing multiplies by powers of two with shifts, and avoiding intermediate register
loads when possible. Simple statements such as increments and assignment op­
erations involving constants frequently generate only one machine instruction.
For example, the statement

i++ ;

3.2 LANGUAGE IMPLEMENTATION

will compile into a single instruction to increment the variable i , and the state­
ment

i = 50 ;

will compile to a single MOVE instruction. The statement

*p++ = *q++ ;

where p and q are register variables, will also compile to a single MOVE instruc­
tion.

Certain expressions involving constants will be evaluated at compile time.
Therefore, the statement

i += 5 * ARRAYSIZE ;

will generate one ADD instruction, assuming ARRAYSIZE is a constant which was
#defined.

3.2.3 Switch Statement

The C compiler will generate one of three types of code for a given switch
statement, depending on the values of three internal variables. The simplest
type of code it can generate is a linear search of the case values. A faster method
is a binary search of the case values. The fastest method employed is a jump
table. A jump table is always as large as the range (maximum - minimum) of
the case values, regardless of the number of cases, and is best used when the
range is no greater than twice the number of cases (i .e. when half or less of
the space in the table is wasted) . To prevent this waste, a search method is
used. The choice of linear or binary search is made on the basis of the number
of cases. A linear search uses in-line code rather than a function call; however,
a binary search can be faster where a large number of cases are used. The
compiler can be given options to force it to generate code in any of the three
ways (see section 5 . 1) . The -S option to the compiler specifies three numbers:
a, b and c . The compiler's code generator decides which code to generate by
the following method:

,

if (num_c ases < a and c ase_density <= b)

else
generate a j ump table

if (num_c ases < c)
generate c omparison code

else
generate a binary search

19

20 CHAPTER 3. LASER C

Where:

c ase_density � (max_case_val - min_case_val) I num_cases

3.2. 4 Function Call Conventions

Parameter expressions encountered in function calls are evaluated and then
passed to the function on the stack. The parameters are pushed in the reverse
of the order given in the parameter list. Reversal of the parameter list is
necessary for functions with variable numbers of parameters. Such functions
may access lists of parameters as follows:

I* Return max of list of ints ; n gives list length *I
max(n , p) ;
int n , p ;
{

}

int *pp , max = - 32768 ;
for (pp = kp; n; pp++, n--)

if (max < *pp)
max = *pp ;

return max ;

The above function max() returns the maximum of an arbitrary number of
integers. The number of integers is passed as the first parameter, followed by
the list of values:

m = max(5, i , j , k * 2, 87, f (abc)) ;

Note that the pointer variable pp is incremented in the for loop of the above
function. The pointer will move down through the stack towards higher mem­
ory locations retrieving each parameter in turn. Any functions which use this
method of obtaining parameters are not necessarily portable to other imple­
mentations of C.

Values are returned from functions in processor register DO, or in the case
of double values, in the global variable _fpregO. It is the responsibility of the
calling environment to remove parameters from the stack after return from a
function call . Each function must ensure that any registers used to hold register
variable values are saved and then restored when the function terminates.

Struc ts may be passed by value. See section 3 . 1 . 5 for details .

3.2 LANGUAGE IMPLEMENTATION

3.2.5 Register Variable Support

Each function in a Megamax C program can expect up to eight registers avail­
able for register storage class variables. Four data registers are available for
integral types (char, short , int , long, and unsigned) , and four address reg­
isters are available for pointer variables. Judicious use of register variables can
substantially increase execution speed and decrease code size. Data register 07
is allocated first , then 06, 05 , and 04. Address register A5 is allocated first,
then A4, A3, and A2.

3.2.6 Assembler

Syntax

The syntax for a line of assembly code is:

<label : > opcode<size> <effective address>

Anything enclosed with < . . . > is optional. There can be more than one
instruction per line. Opcodes can be in lower or upper case. Register names
must be in uppercase. Comments take two forms. There is the standard C type
comment /* . . . * / or the assembly language comment which starts with a '; '

and continues to the end of the line. e .g .

asm {
c lr . l DO this is a c omment

a line with only a c omment
c lr . l Dl I* this is also a c omment *I

}

The effective address calculation follows the syntax of the Motorola 68000
manual. Addressing modes are not completely orthogonal in the Motorola 68000
instruction set . For complete information on addressing modes and instruction
forms, consult a Motorola databook. ,

The size field can be any one of . B, . W, or . L for byte, word and long sizes
respectively. Branch instructions can also have . S for short branches.

There can be zero or more labels on a line. e .g .

asm {
label_l :

}

label_2 : label_3 : rts
; label_l , label_2 , label_3 are at the same address

21

22 CHAPTER 3. LASER C

The identifiers CCR, USP and SR are also recognized by the assembler.
They stand for the Condition Code Register, the User Stack Pointer and the
Status Register respectively.

Note that #defines can be used to create simple macros, using the multiple
statement per line feature. Within macros, C style comments must be used
instead of the normal semicolon-to-end-of-line assembly language comments.

Expressions which give displacement values are restricted in that only one
identifier may be involved. A constant expression may be added to or subtracted
from this identifier. In such expressions, the identifier must be placed first in
the expression; in other words, the statement

move DO, x+2 (A6)

is legal, but the instruction

move DO, 2+x(A6)

is not.

Defaults

If no size specifier is given for an instruction which can operate on more than
one size, the assembler defaults to word. If a size specifier is not applicable to
a particular instruction, no specifier may be given. All labels default to local
code labels unless declared as extern previously. This means that all functions
called, for example, must be declared or defined previously in C . e .g .

extern void foo () ;

asm {
foo :

end :

}

bra end

rts

foo is global

end is local

Branches default to word-sized displacements. A short branch can be forced by
using a " . s" , but no warning message will be given if the necessary displacement
is too large for a short branch.

Pseudo Ops

The pseudo ops DC . B , DC . W and DC . L will emit data inline with assembly
language. The syntax for a pseudo op is :

3.2 LANGUAGE IMPLEMENTATION

DC . <size> [constant expression OR string c onstant] ,

The size field can be either . B , . W or . L. There can be any amount of
expressions or string constants separated by commas. For example :

asm {
DC . B
DC . W
DC . L

}

"Hello world\0"
5 , 10 * 15
Ox80000000

None of the pseudo ops will align data on a word boundry. This means that
That the user must ensure that all the data given in a pseudo op ends on an
even byte. String constants are not NULL terminated.

Accessing C Variables

External and static variables from the C environment are accessed using the
name of the variable (Absolute Long Addressing Mode) . Auto variables are
accessed as a displacement to address register A6 (Address Register Indirect
with Displacement Mode) . Register variables may be accessed by name from
within in-line assemble. The first four non-pointer register variables are placed
in data registers; the first four pointer register variables are placed in address
registers (see Available Registers below) .

foo (p)
register int *p ;
{

}

register int i ;

i = 5 ;
asm {

move . w i , (p)
}

generates move . w D7 , (A5)

Any excess register variables must be accessed relative to A6. The assembler
will not report misuse of some variable names.

Functions in the C program can be referred to by name. Arguments are
passed to functions on the stack in reverse of the order they are written in C .
Values are returned from functions in data register DO, o r in global _fpregO if
the value is double .

23

24 CHAPTER 3. LASER C

Available Registers

Registers DO-D3 and AO and Al may be used without saving them. Regis­
ters D4-D7, A5-A2 are used for register variables, and are allocated in reverse
numeric order. Each of these registers not used for a register variable within
a function containing in-line assembly language must be saved by the assem­
bly code if modified therein. Register A6 is used to access auto variables and
register A7 is used as the stack pointer.

Creating Global Symbols

This section is not for the casual user of the in-line assembly and discusses the
use of a construct that is very dangerous. It is almost never needed and should
be avoided if at all possible .

The normal functions in C start with a link instruction to make room for
local variables and then end with a corresponding unlink instruction. These
instructions can be avoided by making a label inside assembly to be called
instead of the C function name. An rts instruction must also be placed at
the end of the routine to avoid the unlink instruction. To indicate that this is
an extern or static symbol it must be declared before it is used as a label.
This is done by declaring it as an extern or static function in C. Remember,
by overriding the normal entry point a lot of nice things that C does about
parameter passing and setting up local variables is lost. For example

extern int sqr() ;

foo(i)
int i· '

{
asm {

sqr : sqr is a global func tion
move 4(A7) , DO load i into DO
muls DO, DO leave the result in DO
rts

}
}

Since the link is not performed the variable i can only be referenced using the
stack pointer.

Expansion of #defined macros is performed within sections of assembly
language, so the programmer is free to rename instructions or registers.

3.2 LANGUAGE IMPLEMENTATION

Assembly Language Examples

Program to invert the sc reen 50 times

#inc lude <osbind . h>
#define LENGTH 80*400
#define N 50

main()
{

int j ;
char *s creen ;

screen = (char *) Physbase() ;
for (j = 0 ; j < N ; j++)

asm {
move . l s creen(A6) , AO
move #(LENGTHI4) - 1 ,

loop:
not . l (AO) +
dbf DO , loop

}
}

I* XBIOS routine *I

DO

Function to do a block move from the first pointer to the
sec ond . The routine moves one char at a time to allow
odd addresses . This also shows macro usage
for assembly language .

#define DEC(x) subq #1 , x

block_move(sourc e , dest , count)
register char *sourc e , *dest ; I* plac ed in address registers *I
register int c ount ; I* plac ed in a data register *I
{

asm {

25

26

lp :

}
}

CHAPTER 3. LASER C

DEC (c ount) bec ause dbf c ounts to - 1
DEC will generate subq #1 , c ount

move . b (sourc e) + , (dest) +
dbf count , lp

3 . 2 . 7 Storage Allocation/Initialization

The compiler places all code into the TEXT segment , all initialized global vari­
ables, initialized static variables (both global and local) , and string constants
into the DATA segment (see F ile Formats, section A. l) . Uninitialized global
variables are not allocated by the compiler. Instead, special symbol informa­
tion is placed into the object file containing the name of the variable and its
size (called a common symbol) . When the object code is linked, the linker
collects all common names and allocates in the BSS segment enough space to
accommodate the largest of each common symbol found . Uninitialized static
global variables are placed into the BSS segment. Initialization code is required
for auto variables so that the initialization may be carried out each time the
function is executed.

Chapter 4

Laser S hell and Editor

Introduction

The Laser Shell allows integration of all phases of program development, from
editing through debugging . It has a built-in mouse based editor, a dynamic
disk cache which buffers disk access, a facility for running the compiler, linker,
and other Laser programs directly from RAM, a file operations facility (copy,
move, etc.) , a project management system (Make) , and debugging facilities.

Commands in this chapter are presented according to their functionality,
rather than their order on the menu bar. At the end of this chapter a Menu
Sununary briefly presents each menu item in menu-bar order. It is assumed
that the documentation conventions discussed in the introduction are under­
stood (see section 2 .4) .

4. 1 Shell Startup

To start the Laser Shell, double-click on the file "LASER.PRG" from the
GEM desktop. The Laser Shell will only run in high or medium resolution
modes (set by choosing Set Preferences . . . from the GEM desktop's Options
menu) . Once started, the Shell tries to open a file called "LASER.CFG" ,
which contains configuration information. This configuration information in­
cludes editor settings, environment variables, tool locations and attributes, and
RAM residency attributes (discussed below) . If found, the file is read, all editor
settings are restored, and any RAM resident programs are loaded from disk into
RAM residency. The Shell then waits for user interaction.

27

28 CHAPTER 4. LASER SHELL AND EDITOR

4.2 Shell Configuration

Before the Laser Shell can be used, it must be configured. The configuration
file shipped with the Laser C package will suffice for most installations, al­
though other configurations are possible. As mentioned above, the L'aser Shell
attempts to load a configuration file called "LASER.CFG" . When attempting
to load this file, the Shell looks in two places, loading the first "LASER.CFG"
found. First in the same folder that "LASER.PRG" is in , and then in the
":MEGAMAX" folder on the same drive as "LASER.PRG" .

4 .2. 1 Tools

Tools are programs which are used for development, such as the compiler, the
linker, etc. Tool configuration serves three purposes; showing the Shell the
names and locations (path names) of its tools, telling the Shell which of the
located tools are to be made RAM resident, and specifying how the file I/0 of
each tool is handled by the disk cache.

The Shell has the ability to preload certain programs and keep them RAM
resident until they are run. RAM resident programs are executed directly, with
no time wasted loading the program from disk and no memory wasted keeping
a duplicate on a RAM disk . This mechanism is ideal for development system
programs, such as the compiler and linker, which are typically run many times
during the course of program development. Only specially produced programs
may be made RAM resident:

AR.TTP

CC.TTP

CCOM.TTP

DIS.TTP

EGREP.TTP

LD.TTP

MAKE.TTP

NM.TTP

RCP.TTP

LS .TTP

Archiver

Compile and link utility

C compiler

Disassembler

Multiple file regular expression search

Linker

Make utility

Symbol table dumper

Resource construction program

All disk utilities mentioned in the chapter Disk Utili­
ties may be made RAM resident .

The Tool Locate . . . command displays the dialog with which tools are con-
figured .

4.2 SHELL CONFIGURATION

� m:mm:::A : \M EGAMAXV::::: :m: Too 1 Conf i gurat i on
•l H EA D ER S (t

L ASERC . TTP OK
L D . T T P
M AKE I T T P

I » AOD »

I ReMove I
: ; : : : : : : :::::::::::;:; :;: ;:;:;:;:;:;:;:;:;:;:;:;:;:; : ; : ; :;: ;:;:;:;:;:::::;:;:::::;: ;:; :;: ;::

��,��l�����j ��� ������ 111�1[(,�1 11� ll�l,l ��� ii�i�:l �111111
Figure 4. 1 : Tool Configuration Dialog

There are two selector boxes and some buttons on this dialog . The left
selector box is a file selector box and the right selector box (Tool List) is for
located tools.

The procedure for performing tool configuration is:

• Using the left selector box, locate the program for each of the tools which
is to be used. Multiple selections are allowed in both selector boxes. As
a program is located, it should be selected and then added to the "Tool
List" by clicking on the "» ADD »" button. A minimum tool list should
contain a compiler, and a linker. For the Shell's Make menu to function,
the Make utility should also be added. Other programs which are added
will have their names appended to the Execute menu. A name may be
removed from the tool list by choosing it and clicking on the "Remove"
button.

• For each of the predefined tools located, the C compiler, the linker, and the
Make utility, select the name in the tool list and click on the corresponding
button below the tool list.

• Next, make some or all of the tools RAM resident by selecting the program
name in the tool list and clicking on the "RAM Res" button. If using an
Atari with 512K bytes of RAM, make only the compiler and linker RAM

29

30

-

CHAPTER 4. LASER SHELL AND EDITOR

resident . If using a one megabyte computer, make all three tools RAM
resident . Other Laser programs may be made RAM resident if desired
(see the list given above) . Only the Flush Resident Progs. command
under the Options menu can remove currently resident programs from
RAM.

• The "Write Thru" button affects the way a program which is run from
the Shell uses the disk cache. A program which has the write through
attribute set will write both to the cache and to the disk, where nor­
mally output is written only to the cache. The cache is written to disk
only when necessary (see section 4.2 .4 for more details) . To safeguard
against possible loss of data, give tools such as the Resource Construction
Program and the archiver the write-through attribute.

• Press the "OK" button to close the dialog with its present state. Any
RAM resident programs will be loaded at this time.

4 .2.2 Environment Variables

Environment variables allow a more general configuration mechanism, and also
allow information to be supplied in the Shell and accessed by programs which
are run from the Shell. An environment variable is a name to which is assigned a
string value. For example, "computer=Atari 520ST" assigns "Atari 520ST" to
the environment variable named "computer" . The C library function getenv()
returns the value portion of a named environment variable to a user program.

The Shell and some other development system programs use the following
environment variables:

C C The path name (name and location) of the CC (com­
pile and link) utility. This variable is used by Make to
define the $(CC) macro.

CCOM The path name (name and location) of the C compiler.
Used by the Shell to run the compiler. This variable is
set by the Tool Locate command and does not need
to be set manually.

LINKER The path name of the linker. Used by the Shell to run
the linker. Set by the Tool Locate command.

MAKE The path name of the Make utility. Used by the Shell
to run Make. Set by the Tool Locate command.

CINCL UDE The location of the folder which contains the C header
files. Used by the Shell and the CC utility to pass "-I"
options to the compiler.

4 .2 SHELL CONFIG URATION

CINIT

C LIB

LIBPATH

PATH

The path name of the C initialization code. Used by
the Shell and the CC utility pass the name of the ini­
tialization code to the linker.
The path name of the C library. Used by the Shell and
the CC utility pass the name of the C library to the
linker.
A comma separated list of folders . Used by the linker
to find libraries specified as " -L" . These folders are
searched in order for the library.
A comma separated list of folders . These folders are
searched in order by the Shell when executing a pro-
gram command line style (see section 4.4) . A " . " may
be included in the path to indicate the current direc­
tory.

Environment variables may be edited by selecting Environment Vars . . . from
the Options menu . A dialog with a single large selector box, some buttons,
and a text entry box will appear .

Env i r onM ent Var i ab l es

C C DH = A : \HE G AH A X \ L A SERC . TTP p I R eM o v e I I OK I
L I HKER=R : \M E GRM A X \ L D . TT P

IiI: I>� ;a-: R.� i I ;t 11: IiI: t:t.� i I: I>� ;fill�
C I H C L U D E = A : \HE G AM A X \ H E A DERS
C I H I T = A : \ME G AM A X \ I H I T A . O
C L I B = A : \ME G AM A X \ C L I B . A
L I B P A T H = . , \H E G AH A X \ , A : \ME G AH A X \
P A T H = . , \M EG AM R X\ , A : \MEGAMAX\

v Emil
IHAKE= A : \HE 6 AH R X \M AK E . TT P�----------------------------------- j (forM a t : HaMe= Ua l ue)

Figure 4 .2 : Environment Variable Dialog

To add a new environment variable, type it in. Typing appears in the long
box at the bottom of the dialog . The format is "name=value" . Press the
"Return" key or click on the "ADD" button to copy the typed line into the
selector box. To edit an existing line, select it with the mouse. It will be copied
into the typing line. The "Esc" key will clear the typing line, and the left and

31

32 CHAPTER 4. LASER SHELL AND EDITOR

right arrow keys move the insertion point within the line. Remember to press
the "Return" key or click on the "ADD" button to save any changes. The
"Remove" button deletes the line selected in the selector box. Click on "OK"
to close the dialog .

If the Shell cannot find its configuration file , these variables will not be
set . The distribution disk on which "LASER.PRG" is located contains a
configuration file with all the variables set to typical values (see the beginning
of this section) .

4 .2.3 Save Co nfiguration

The Save Configuration item under the Options menu allows the editor
settings of the top window, the tool list, and the environment variables to be
saved. A file save dialog is issued to allow a choice of file name and file location .
The current configuration should always be saved after any changes are made.
The Read Configuration . . . option allows any configuration file to be read.
When chosen, file selector dialog is presented. Only folders and " .CFG" files
are shown. Select the desired configuration file and click on "Open" to resore
configuration settings.

4 .2. 4 D isk Cache

The Laser Shell has a built-in dynamic disk cache which buffers all disk access.
Disk files are organized as a series of blocks which contain the actual file data.
The disk cache can dramatically decrease file access time by keeping in memory
a copy of last read or written blocks, so that subsequent reads are from memory,
rather than disk . The Shell's cache is dynamic in that its size will change to
fit available RAM. As programs request memory, the cache will flush enough
blocks to the disk to accommodate the request. Any program which has the
write-through attribute set will write to disk and cache, while programs which
are not write-through will write only to the cache. All read operations are from
the cache, provided the requested blocks are in-cache. The disk image of the file
will only be updated to match the cache when the cache is flushed. Automatic
flushing of cache blocks is done whenever memory is needed, either by the Shell
or a program run from the Shell, or when file 1/0 overfills the cache with fresh
blocks. The blocks are flushed in order of least-recently-used. Quitting the
Shell will flush the entire cache.

In addition to automatic flushing, selective flushing may be done through
the "Cache Management" dialog, selected from the Options menu.

The dialog contains a selector box showing which files have blocks in the

4.3 TEXT EDITOR

Cathe ManageMent

A \M EGAMAX\CLIB . A
A \M EGAMAX\HE ADERS\STDIO . H
A \M EGAMAX\INITA . O
A \M EGAMAX\LASER . Cf6
A \M EGAMAX\LA SER . RS C
A \M EGAMAX\LASER C . T T P
A \M EGAMAX\LD . TT P

CD= D i rty) I De l et e froM RAM I
Bytes In Cathe : 11'K
H i t Rat i o : 32:<

f l ush to D i sk

OK J

Figure 4 .3 : Cache Management Dialog

cache. A letter "D" precedes those files which have changed in the cache but
have not been updated on the disk . The "Bytes In Cache" item shows how much
of the disk is in RAM, and the "Hit Ratio" item shows the percentage cache
reads to disk reads. When one or more items in the selector box are selected,
the two buttons directly below become active. The "Delete from RAM" button
removes the selected file's blocks from RAM without saving them to disk . The
"Flush to Disk" button causes the selected blocks to be written to disk.

The Flush Resident Progs. command removes all RAM resident pro­
grams and deallocates their memory. This command is useful to force a RAM
resident program to be reloaded from disk, should it change after being made
RAM resident.

4. 3 Text Editor

The Shell's editor provides a simple yet powerful means of creating program
source or any other text-only files. Editing is performed in up to four individu­
ally sized and positioned windows. The mouse is used to position the insertion
point and select text for removal or duplication . Most editing functions can be
selected from the menu, and many can be initiated by keyboard command as
well. The editor also includes some special features to assist with C program­
ming.

33

34 CHAPTER 4. LASER SHELL AND EDITOR

4 . 3 . 1 Editor Menu Usage

Menu commands are used to invoke all editor functions except text selection ,
scrolling , and the Help function (activated by the Help key on the keyboard) . If
a menu selection is preceded by a single separate character, then that command
can also be invoked by pressing that character on the keyboa�d while holding
down the "Control" key. The command operates no differently when selected
from the keyboard . For example , a new file may be created (the New menu
command) by holding down the "Control" key while striking the "N" key.

The current editing situation dictates which editing commands are available .
For example , if no files are currently open, none of the Save commands of the
file menu will be available. Those commands which are available are printed
in normal black-on-white lettering . Those commands which are unavailable
are printed in gray-on-white lettering. Clicking the mouse on an unavailable
command has no effect , other than to cause the selected window to disappear.

The Info menu contains some items which are actually information about
the current file. Although these items are printed in black-on-white lettering ,
they can never be selected .

4 . 3 . 2 Choosing A File

The File menu contains all operations related to opening existing files, creating
new files, and saving work .

Open . . . allows a file residing on disk to be loaded into the editor for inspec­
tion and modification. When chosen, a dialog which contains a file selector
box and some buttons will appear. The file selector box behaves in the
usual manner (see Introduction, Conventions) . Clicking on the "Open"
button causes the editor to open the selected file. Double-clicking on a
file name will also open it . The "Cancel" button should be used if the
Open . . . command was issued accidentally. The group of buttons like
"* .C" are filters. Clicking on a filter causes the currently displayed list to
be filtered and then redisplayed, leaving only those names which match
the filter. The "* . *" filter displays all files while the "* .C" filter dis­
plays only those files which end with " .C" . As a file is opened, a window
displaying the file will appear.

New is used when a new file is to be created. An empty window will appear
on the screen. The initial title of the window will be "Untitled" .

Save causes the contents of the top window to be saved on disk . The name
displayed in the title bar of the window is the name of the file which will

4.3 TEXT EDITOR

be saved. If an attempt is made to save a file whose name is "Untitled" ,
the Save as . . . command will be invoked (see below) .

Save as . . . is used whenever the contents of a window must be saved to a
file whose name is different from the the name in the window title . A
dialog which looks much like the one used by the Open . . . command is
presented. The file selector box behaves similarly, with the exception that
none of the file names listed are selectable. There is also a typing line into
which the new file name may be entered . Pressing the "Esc" key erases
the entire typing line. After the file is saved, the name of the window will
be changed to the new file name.

Close causes a window to disappear. If changes were made to the window's
contents since last saved, an opportunity is given to save the file. The
Close command can also be activated by clicking on the graphic character
in the upper left-hand corner of a window.

Close all performs the Close command on all open windows, except for the
"STDIO" window.

Revert causes the most recently saved version of the current file to be reloaded.
If the file has not yet been saved, the version of the file originally loaded
will be used.

4.3.3 Mo use Usage

The mouse is used to manipulate windows, to position the insertion point, and
to select text within a window. The position of the mouse on the screen is
indicated by the mouse cursor, which is either an arrow, a vertical bar "text"
cursor, or a busy bee. When the mouse is over the work area of the top window,
the cursor always a "text" cursor.

The left-hand button of the mouse is the only button which has any effect.
There are four basic operations available with the mouse button:

Click If the cursor is within the top window, the insertion point is placed on
the character nearest the location of the mouse. If the cursor is over an
element of a scroll bar, the window is scrolled appropriately. If the cursor
is over another window, then that window is made the top window.

Drag The drag can be used to select a range of text. If the initial click is
within the top window, text will be selected as the mouse is dragged over
it.

35

36 CHAPTER 4. LASER SHELL AND EDITOR

The drag can also be used to move and resize the window. If the Drag
starts on the gray bar atop the window, it can be dragged to any desired
position. If the drag starts within the small box in the lower right corner
(the "sizebox") , the lower right corner can be dragged to change the size
of the window.

The white areas of the scroll bars can be dragged to reposition
'
the window

over the file. For example, the thumb of the vertical scroll bar can be
dragged to the very bottom to move the window to the very end of the
file.

Double-click If the mouse is initially over an alphabetic or numeric charac­
ter in the current window, all alphabetic and numeric characters of the
"word" surrounding that character are added to the current selection . If
the mouse is initially over an open or close parenthesis (one of " (" , "{" ,
" [" , ") " , "}" , "] ") , all text up to the matching close or open parenthesis
(if it exists) is selected.

Shift-click By shift-clicking, text is selected as if a drag had been done from
the old insertion point to the cursor position. As an example, all text in a
file can be selected by clicking first at the very top line, then dragging the
vertical scroll bar thumb all the way to the bottom, and then shift-clicking
on the last character of the file.

4 .3. 4 Scrolling the Window

Scroll bars run along the right side and along the bottom of each window. The
vertical scroll bar is used to position the window over lines of text, with the
thumb size representing the size of the window relative to the number of lines
of text in the window. The horizontal scroll bar always positions the window
over columns 1-255, regardless of the actual number of columns of text.

The window may also be scrolled up or down one line at a time, by holding
down the "Control" key while pressing the up or down arrows.

4 .3.5 Insertion Point Keys

In addition to using the mouse, the insertion point can be repositioned from
the keyboard. The four arrow keys move the insertion point in the indicated
direction . Shifted left and right arrow keys move the insertion point by words.
Control left and right arrows move the insertion point to the beginning and
end (respectively) of the current line. The "Home" key positions the insertion
point on the first character in the file.

4 .3 TEXT EDITOR

4. 3 . 6 Text Entry

An open window may have text inserted by selecting an insertion point with
either the mouse or the arrow keys, and then typing characters on the keyboard.
Typing mistakes may be corrected by pressing the "Backspace" key to erase
the character to the left of the insertion point, or the "Delete" key to erase the
character to the right of the insertion point. "Control-Delete" erases the entire
current line and the "Clr" key (shifted "Home" key) erases from the current
insertion point to the end of the current line.

The "Return" key inserts a line break into the file at the current insertion
point. All text on the current line to the right of the insertion point is redrawn
on the next line of the window. If the insertion point was at the end of the line
when the "Return" key was struck, the new line will be blank . The "Insert" key
inserts a blank line after the current line and the shifted "Insert>' key inserts a
blank line before the current line.

The "Tab" key inserts a single character into the file, but prints as a field of
white space (unless the V isible tabs option has been selected) . The amount
of space allotted a tab depends on the column in which the tab was inserted ,
and always moves to a column number evenly divisible by the current "tabsize" .
The tabsize is four spaces when a window is first opened . The tabsize can be
changed with the Options menu.

If a substantial number of characters must be changed or removed, the
text should be selected with by dragging . Once the text has been selected,
replacement text can be typed over it, or it may be removed by a "Backspace"
or "Delete" .

4 .3 . 7 Blo ck Operations

The Edit menu contains commands for moving text from one place to another
within a window and between windows, reversing mistaken changes, and shifting
text horizontally within the window.

Cut copies the current selection to the scrap (a cut/paste buffer) , and then
erases the selection . Note that Cut is different from a "Backspace" or
"Delete" where the selected text is removed from the window but is not
copied into the scrap .

Copy copies the current selection to the scrap but does not remove the se­
lection. If the shift key is held down when a Cut or Copy command
is issued , the selected text will be appended to the scrap, rather than
replacing the old buffer contents.

37

38 CHAPTER 4. LASER SHELL AND EDITOR

Paste adds the contents of the scrap to the current window at the current
insertion point . The effect is exactly the same as manually typing the
contents of the scrap. Note that if a range of text is selected , the contents
of the scrap replace the selection ; the selection is deleted just as if the
text had been typed over it.

'

Erase is functionally identical to a "Backspace" or "Delete" , except that it
works only when text is selected. The selection erased is not copied to
the scrap.

Undo reverses the effect of the last operation which changed the file or the
scrap. The Undo command reverses one or more instances of the same
type of operation. For example, typing several characters and choosing
Undo will undo the effect of all characters typed. A new undo sequence
is started each time a new type of operation is performed. Types of
operations which constitute undo groups are :

• Typing including "Backspace" , "Delete" , and "Return" .

• Blank line insertions (both before and after the current line) .

• Clear to end-of-line.

• Line deletions.

• Left and right shift operations on one selection.

• Any Cut , Copy, Paste, Erase, Revert , or Undo.

• Any Find & change.

Note that, while repositioning the insertion point does terminate the last
operation performed, it does not prevent the last changes from being un­
done.

The Undo command may also be issued by pressing the "Undo" key on
the keyboard.

Shift left is used to realign text horizontally. The shift affects all lines within
the confines of the current selection . If the beginning of the selection is
at the very left edge of the file, each entire line is shifted so that the first
non-blank character is positioned one tabstop left . If the beginning of the
selection is somewhere within a line, then only the characters to the right
of that column on each line are shifted left one tabstop. The Shift right
command shifts selected text to the right instead of to the left .

4 .3 TEXT EDITOR

4 . 3 . 8 Editor Options

Under the Options menu are commands for modifying the editor environment.
These options may be either set (a check mark appears before those options
which are set) or not set , and apply only to the current window. Each window
remembers its own editor settings.

Tabsize . . . is used to set the width of the tab character . When selected, the
Tabsize . . . command issues a dialog box. The new tabsize can be typed
in the space provided , and the window will be redrawn reflecting the new
size. Note that the tabsize value has no effect upon the actual size of a
file; each tab is always just one character.

Autoindent sets a flag indicating that whenever a line break is added to the
file, space and tab characters from the previous line , up to the first non­
blank character, will be copied to the new line. This feature is very useful
when creating indented C source files .

Autosave sets a flag indicating that the file should be saved automatically at
an assigned frequency and when a program is run. A dialog is presented in
which the interval between saves may be assigned. Clicking on the "off''
button removes the Autosave feature for the current file . Clicking on
the "Make Backup" button allows a backup copy of the file to be saved,
in case , after a few autosaves, it is decided that the original version was
actually correct . Autosave is useful for those whose power supply is
unreliable and to ensure that no source changes are lost in the event that
a program run from the Shell crashes.

A u t o s a v e w i l l cause the s he l l t o
p e r i od i ca l l y s a v e th i s f i l e to d i sk .

(A n d b e f o r e e x e c u t i ng pro graMs)

Frequency in M i nutes : (appro x i M a t e)

C a n c e l Make Ba ckup

Figure 4.4 : Autosave Dialog

39

40 CHAPTER 4. LASER SHELL AND EDITOR

Note that after a Save as . . . command, the Autosave feature will there­
after save the file to the new file name.

Visible tabs causes the tabsize to be set to one space, and tabs to print
as "diamond-in-a-square" characters. Visible tabs is sometimes useful
when examining files created by some means such that ,tabs are mixed
heavily with spaces. The tabsize cannot be changed while tabs are visi­
ble.

Ignore case sets a flag indicating that all searches should be done without
regard to the case of alphabetic characters. The Ignore case flag also
affects the way Find & Change works; for more information, see the
section which describes searching .

No Undo disables the Undo command in the Edit menu. Invoking this op­
tion will deallocate the undo buffer, which is as large as the file being
edited, thus leaving more free memory for programs. This option is auto­
matically set if there is not enough free RAM to accommodate the undo
buffer. If the configuration file "LASER.CFG" is not found, all flags
except No Undo are off, and tabs are set to four spaces.

4 . 3 . 9 F inding Text

The Search menu contains commands used to find and change strings in a file.

Find . . . is the basic entry to the searching mechanism. When issued, the
Find . . . command puts a dialog box on the screen (see figure 4.5 below) .

In the dialog box, there are two boxes into which strings may be typed .
The top box is for the "target" string, which the editor will attempt to
locate in the file when one of the Find commands is given. The bottom
box is for the "replacement" string, which the editor will substitute for an
occurrence of the target string if one of the Find & Change commands
is given. A typing box is chosen by clicking on the desired box, or by
pressing the up or down arrow keys. The "Esc" key clears the entire line
and the right and left arrow keys can be used to position the insertion
point within a line. The search and replace function can be used to delete
occurrences of the "target" by leaving the "replacement" box empty.

There are five sub-commands available from the "Find" dialog box:

Forward The editor will search for the target string in the file, start­
ing with the character after the current selection or the insertion

4.3 TEXT EDITOR

Target str i ng IHe l l oh----------------------------------1

Rep l aceAent 6---------------------------------------1

Cance l

Figure 4 .5 : Search Dialog

point and on towards the end of the file . If an occurrence of the
target string is found, the insertion point position becomes the first
character of that occurrence. If no occurrence is found, the current
selection or insertion point is not changed .

Backward The editor will search for the target string beginning with
the first character of the current selection or the character under
the insertion point (unless the target contains only one character,
in which case the search begins one character before the current
selection) and on towards the beginning of the file. If an occurrence
of the target string is found, the insertion point becomes the first
character of that occurrence. If no occurrence is found, the current
selection or insertion point is not changed .

Once The editor will search for the target string in the file, starting with
the character after the current selection or insertion point and on
towards the end of the file. If an occurrence of the target string
is found, it is replaced by the replacement string . See below for a
description of replacement behavior when the Ignore case flag is
set .

All The above procedure is executed repeatedly until no more occur­
rences of the target string are found. The entire sequence of changes
is considered a single undoable event.

All with verify Similar to All, except that each change must be verified
before it is made. Each occurrence of the target string is highlighted .
If the "Y" key is pressed, the change is made. If the "N" key is

41

42 CHAPTER 4. LASER SHELL AND EDITOR

pressed , the change is not made. The process repeats until no more
occurrences of the target string are found, or until the "Q" key is
pressed in response to a verification . The entire sequence of changes
is considered a single undoable event .

When the Ignore case flag is set , the case (upper or lower) of alphabetic
characters is ignored when searching . Therefore, the ta

'
rget "abc" will

match "ABC" and "aBc" as well as "abc" .

Find next causes the editor to search for the next occurrence of the most
recent target string . The search is performed in the same direction as the
most recent search .

Change next performs a Find & Change once using the most recent target
and replacement strings.

Goto line . . . is used to move the current insertion point to any line of the
file. When issued, the Goto line . . . command creates a dialog box into
which the desired line number is typed. The insertion point is set to the
first character on the given line.

4 . 3 . 10 Text Marks

The current line of the current window can be marked by holding down the
"Shift" key and pressing any function key from "F3" to "F lO" . Then, while
editing on any other line in any other window, pressing the same function
key (not shifted) will reposition the insertion point at the beginning of the
marked line . Two special marks, "F l" and "F2" are predefined to reposition
the insertion point one page up or down, respectively, in the current window.

4 . 3 . 1 1 Rearranging Windows

The Windows menu contains commands for arranging currently open wm­
dows.

Overlap arranges all open windows so that they overlap one another. The size
of each window will be nearly that of the screen . A small part of each
inactive window is left visible.

Side-by-side arranges all open windows so that they form columns which fill
the screen .

Over /Under causes all open windows to be stacked vertically on the screen .

4.4 RUNNING PROGRAMS

Show Stdio causes the special "STDIO" window to appear. This window is
like any editor window, except that tools, such as the compiler, print
messages directly into the window. (see section 4.2 . 1 } . If the window is
currently visible, the menu will read Hide Stdio. Note that the contents
of the "STDIO" window may not be saved.

4 .3 . 12 F ile Information

The Info menu contains general information concerning the top window. It also
contains a handy reference chart of C operators . The operators are listed top­
to-bottom in order of precedence.

The information presented in the Info menu concerns the size of the current
file and the current position in the file.

4.4 Running Programs

Programs may be run from the Shell by one of two methods; either by making
a choice from the Execute menu, or by typing a command line (a program
name followed by program parameters) into a window.

4.4 . 1 Menu Co mmand Execution

The Execute menu has commands for running the compiler, the linker, per­
forming an automatic compile, link, and run, and for running any other pro­
gram. In addition, the names of user defined tools (see section 4.2) will appear
in the Execute menu, and may be run by choosing them.

The Compile . . . and Link . . . options will not be selectable if they have
not been located (see section 4.2) . The Run item will only be selectable if both
the compiler and linker have been located, and the top editor window contains
a " .C" file .

Compile . . . brings up a file selector box like the one used to open a file for
editing. This box however will only display files which have an extension
of " .C" . One or more files may be selected to compile . The usual file
selector usage applies. Clicking on the "OK" button runs the C compiler
on the selected source files. "CANCEL" aborts the compile. Compiler
messages, including syntax errors, are sent to the "STDIO" window, which
will automatically appear if hidden .

Pressing "Control-K" on the keyboard will run the compiler on the current
window, provided it is named with the ".C" extension.

43

44 CHAPTER 4. LASER SHELL AND EDITOR

F i l e (s) to toAp i l e

C A N C E L 1 ..

Figure 4.6 : Compile Dialog

Link . . . invokes the linker dialog , which contains two selector boxes, some
buttons, and a typing entry box. The left file selector box is used to
locate object files. As each file is located, it should be added to the
"To be Linked" selector box by selecting it with the mouse and then
pressing the ">> ADD >>" button. Inadvertantly added names may be
removed by selecting them and pressing the "Remove" button. The name
of the linker output file may be changed from the default "A.PRG" by
pressing the "Esc" key then retyping the new name. Executable programs
should have extensions of ".PRG" , " .TOS" , " .TTP" , or " .ACC" (see
section 2 .4.3) . Desk accessories are GEM applications which are named
with the " .ACC" extension. When the computer is started, any ".ACC"
files which appear on the root are loaded into RAM and started. A desk
accessory should call evnt_mul ti () to share processor time with the main
application and other desk accessories.

The "Save . . . " button allows the list of "To be Linked" files to be saved
to disk, so that the next time the Shell is used to link the current program,
the component object files will not need to be re-added. The default saved
file will be named after the executable, but with an extension of " .LNK" .
The name of the file may be changed, but the ".LNK" extension is re­
quired. To restore the "To be Linked" list from a " .LNK" file, locate and
select the file in the left selector box. The "Save . . . " button will change
to "Load" , which when clicked on will perform the restore.

Run checks the dates of the " . 0 " files and the coresponding " .C" files used
in the last Link dialog, and compiles any " .C'' files which have been
changed since their ". 0" files were produced. Then all " . 0 " files are

4.4 R UNNING PROGRAMS

MegaMax L i nker U2 . 0

.....___.o,_u_i t ___ __.l i•tj '\

I Renove I

[] Inc l ud e syMbo l s i n executab l e (for stack d UMP)

Figure 4 .7 : Linker Dialog

linked, using the last specified executable name. F inally, the executable
program is run. If any compiler or linker errors occur, the run is aborted .
If no previous link was performed and the file name in the top window
has the " .C" extension, the above procedure is applied only to that file.
The executable file , in this case, will be the default "A.PRG" . If the
name of the top " .C" file was not represented in the last link dialog , the
contents of the last link are erased.

4 . 4 . 2 Co mmand Line Execution

The alternate method of running programs is similar to that of a command line
shell , except that commands need not be retyped . A command line may be
typed into any window and executed by pressing the "Enter" key while the en­
tire line is selected. If the command to be executed is in the "STDIO" window,
the insertion point may simply be positioned at the end of the command line be­
fore pressing the "Enter" key. Multiple commands may be executed by selecting
several lines, thus creating a simple batch mechanism. A file of commonly used
commands may be written to disk, thus, saving the trouble of retyping them
each time the Shell is started. In place of the "Enter" key, "Control Return"
may instead typed . Note that while the contents of the "STDIO" window may
never be saved, part or all of these contents may be copied to another window
which may then be saved .

45

46

-

CHAPTER 4. LASER SHELL AND EDITOR

The Shell supports some built-in commands which may only be executed
via command line:

cd Change current working directory (folder) . As a conve­
nience, files in the current folder need not be specified
with a full path name. A file name with no path is
assumed to be in the current directory.

pwd Print the current working directory.

pushd path l -n Push the named directory onto the directory stack.
The Shell maintains a stack of directories, so that when
constantly switching among several working directo­
ries, the directory names need not be retyped. To add
a directory to the stack, type pushd path, where path
is the directory name. The current directory is always
the top of the stack. To change to a directory in the
stack, type pushd -n, where n is the ordinal number
in the stack (from the top, starting with zero) of the
desired directory. The current directory is swapped
with the desired directory in the stack, and the de­
sired directory becomes current. The -n option may
be omitted to mean pushd - 1 .

popd Pop the top of the directory stack, changing the cur­
rent working directory to that of the next item in the
stack.

dirs Print the directory stack. The top of the stack is the
left-most item.

tos line By default, executing a " .TOS" program from a com­
mand line causes the program's output to go to the
"STDIO" window. The tos command followed by a
command line will cause a " .TOS" program to use
the entire screen, as it would if run from the GEM
desktop.

4. 5 DISK OPERATIONS

rehash Rehash the search path table. It is often desired that
programs other than those in the current directory be
executed. To save the inconvenience of typing in a full
path name, the Shell searches for the program name
using the search path given in the environment vari­
able "PATH" (see section 4.2 .2) . To avoid having to
search the disk each time the search path is used, it
is searched once , saving the names of all programs in
the path. If a program is added to a folder in the
search path (other than the current folder) , it will not
be found until rehash is done .

See the chapter Disk Utilities for the names and usages of the disk-based com­
mand line utilities .

4 . 5 Disk O p erations

Files may be copied, moved, deleted, or renamed from the Laser Shell by choos­
ing Disk ops . . . from the File Menu. The "Disk Operations" dialog contains
two file selector boxes and some buttons.

11369 t ot a l b y t e s
i n 3 f i l e s ,

f i l e Operat i on s

» C opy »

» Move »

D e l e t e I I T o u c h

R e naM e . , •

H e ... fo l der , , .

J.�.·-�.JJ . . � ... �.YJ . . �·-� . . F
]:::;:�:tl: :t ::-tr:P:I{(j'[:::n::::::::::_::::::::::::

[q A : \HE G AH A X \
•J H E A D ERS

C L I B . A
I N I T A . O
L A S ER . C f G
LASER . D E f
L A SER . H
L ASER . R SC
L ASERC . TTP
L D . TTP
H AKE . TT P

Q u i t

Figure 4 .8 : F ile Operations Dialog

f--

-

Using the "Disk Operations" dialog involves basically two steps; selecting
desired folders and/ or file names, then clicking on a button to perform the
desired file operation . Each of the two file selector boxes may be manipulated

47

48 CHAPTER 4. LASER SHELL AND EDITOR

independently. Only one file selector box is active at a time, indicated by
the grey stripes in the bar at the top . An inactive selector box is activated
by clicking the mouse anywhere inside the box. The filter buttons filter the
contents of the currently active selector box, exactly as in the file open dialog .
The lists may be scrolled with the scroll bars if the list of file names is longer
than the space allowed by the selector box. Multiple selections

'
are allowed in

both selector boxes.
Once folders and/ or files are located , operations may be performed . A

file name must be selected for the buttons to become active. The following
operations are supported:

Copy

Move

Delete

Touch

Rename

New Folder

Copy the file or files selected in one box to the directory
located in the other box. The ">>" or "<<" characters
indicate the direction of the copy.
Move the file or files selected in one box to the direc­
tory located in the other box. The ">>" or "<<" char­
acters indicate the direction of the move.
Delete the selected file or files from the disk .

Touch updates the modification time of the selected
file or files . This is useful to force recompilation of a
program (see section 4.6 below) .

Rename the selected file or files on the disk . The re­
name will fail if there is an attempt to rename a file
to an existing name.
Allows creation of a new folder. A prompt is supplied
to get the name.

Click on "Quit" or pressing the "Return" key to close the dialog box.

4 . 6 Project Management (Make)

The Laser Shell has an advanced project management facility which uses the
separate program Make (see chapter lO) ,compatible with the UNIX Make util­
ity. Using Make involves creating a text file, called the '�Makefile" , which speci­
fies what files are used to create a program (the target) , and how those files are
converted into that program (the transformation rules) . Make checks the mod­
ification times of the specified files and performs the transformations necessary
to update the target program. The detailed discussion of the Make program
should be read before attempting to use the Shell's Make command.

The steps involved in using Make from the Shell are :

4. 7 DEB UGGING

• Assure that the Make program has been located (see section 4 .2) . If not
located, the Set Make . . . menu command will be disabled.

• Create, using the editor, the "Makefile" . See Make for information on
what this file should contain .

• From the Make menu, select Set Make A file selector box is dis­
played. Locate and select the "Makefile" and click on "OK" . The "Make­
file" will be processed by Make generating a list of targets. Any syntax
errors are reported to the "STDIO" window. If no syntax errors are found,
the list of targets is inserted into the Make menu.

• Selecting a target reads the "Makefile" and updates the selected target.

4. 7 Debugging

Should a user program cause a processor exception (a crash) during execution,
a dialog is presented. The dialog explains the type of crash that occurred and
allows one of three choices to be made . Clicking on the "Reboot" button resets
the machine. Clicking on the "Shell" button cleans up GEM and returns to
the Shell . Clicking on the "Dump" button also returns to the Shell, but upon
return, a stack dump is performed. The stack dump lists the names of functions
in their activation order, from the currently active function down to the first
main() call . If the program was not linked with the "Include symbols . . . "
option, "Unknown" is printed in place of function names. Beside each name,
an offset into the code from the function start is printed.

The Shell will usually be intact when a user program crashes. Certain
processor exceptions are more likely to have been caused by a program error
which corrupted GEM or some other memory. The dialog will have a message
indicating "Probably should reboot" when; a GEM checksum error occurs while
returning from a user program, a processor exception occurs in the Shell, or the
disk cache has been corrupted. The message "Probably safe to go to the shell"
will appear otherwise.

If a program is caught in an infinite loop, it may by stopped by typing
"Control-Delete" . When typed, a dialog similar to the processor exception
dialog is will be presented, except that the "Reboot" button is replaced by
"Continue" . Clicking on the "Continue" button will close the dialog and resume
program execution.

If an external debugger is installed (usually when the computer is started) ,
it may be used from the Shell by choosing External Debugger from the

49

IDI

5 0 CHAPTER 4. LASER SHELL AND EDITOR

Options menu. When chosen, the external debugger will be invoked as a
result of a processor exception, rather than the dialog box discussed above .

The following program will cause a processor exception:

I* Example of a divide -by-zero proc e ssor exc eption
*I
main()
{

int a = 1 ;

a = divide (a , 0) ;
}

I* Divide m by n
*I
int divide (m , n)

int m , n ;
{

return min ;
}

When the above program is compiled, linked (using the "Include symbols
. . . " option) , and then run, it will crash (see figure 4 . 9 below) . Clicking on
"Dump" will terminate the program and print the following information into
the "STDIO" window .

• 68000 Except i on OS i n prog . :
A : \ CRASH . PR6

Probab l y safe to go to she l l
�

I R e b o o t I I Sh e l l I I D uMp I

Figure 4 .9 : Processor Exception Dialog

_divide + OxE
main + Ox16
main + Ox70

4.8 MENU SUMMARY 51

The underscores are added to each name by the compiler. The name _..main
is name of the initialization code and the entry point into the program.

4 . 8 Menu Summary

The following summary lists menu items in their actual order in the menu bar
and their function.

Fuj i

File

Edit

About . . .

Open
New
Disk Ops . . .
Save
Save as . . .
Close
Close all
Revert
Quit

Cut
Copy
Paste
Erase
Undo
shift left
shift right

Execute
Compile
Link

Make

Run
Other . . .

"Makefile name"
Set Make

Shell version and copyright information .

Open an existing text file.
Create a new text file.
Open the Disk operations dialog.
Save the file which is in the front editor window.
Save under a new name (front window) .
Close the front window.
Close all open file windows.
Revert to the last saved changes (front window) .
Quit the Laser Shell.

Cut the current text selection to the scrap .
Copy the current text selection the scrap.
Paste the contents of the scrap at the insertion point .
Erase the current selection without affecting the scrap.
Undo the last editing change.
Shift the currently selected line left by one tab.
Shift the currently selected line right by one tab.

Run the C compiler.
Run the Linker.
Compile, link, and run . Based on the last link performed.
Run any program.

Currently set "Makefile" .
Set the name and targets for the current "Makefile" .

-

52

Options
Tabsize
Autoindent
Autosave
Visible tabs
Ignore case
No Undo
Tool Locate . . . ·
Environment Vars . . .
External Debugger
Cache Management . . .
Flush Resident Progs.
Save Configuration

Search
Find . . .
F ind Next
Change next
Goto line . . .

Windows

Info

Overlap
Side-by-side
Over/Under
Show /Hide Stdio

C Operators

CHAPTER 4. LASER SHELL AND EDITOR

Set tab width in spaces.
Toggle autoindent.
Engage or disengage the au tosa ve feature.
Make tabs visible or invisible.
Ignore case when searching.
Disable the Undo command and free the undo buffer.
Configure compiler, linker, etc.
Set environment variables dialog .
Allow an external debugger to be used from the Shell.
RAM cache operations dialog .
Flush dirty RAM cache blocks to disk .
Save the current editor settings, environment .

Search for text dialog .
Find last searched text again.
Change to last replacement text.
Go to a specific line number.

Overlap all windows.
Arrange windows as columnar "tiles . "
Arrange windows as horizontal "tiles."
Show or hide the special standard 1/0 window.

Show C operator precedence.

4.9 Keyboard Summary

A list of keyboard commands is presented below:

Backspace
Delete
Insert
Shift-Insert

Erase the character left of the insertion point .
Erase the character right of the insertion point.
Insert a blank line after the current line.
Insert a blank line before the current line .

4 .9 KEYBOARD S UMMARY 53

Control-Delete
Up Arrow
Down Arrow
Left Arrow
Right Arrow
Shift-Up arrow
Shift-Down Arrow
Shift-Left Arrow
Shift-Right Arrow
Control-Right Arrow
Control-Left Arrow
Help
Undo
Clr
Home
Fl
F2
Shift-F3-F10
F3-F10

Delete the current line .
Move the cursor up one line.
Move the cursor down one line.
Move the insertion point left one character.
Move the insertion point right one character.
Scroll up one line.
Scroll down one line.
Move the insertion point left one word.
Move the insertion point right one word.
Move the insertion point to the end of the current line.
Move the insertion point to the start of the current line.
Display keyboard help.
Undo the last change.
Clear from the insertion point to the end of line .
Move the insertion point to line one, column one.
Move the cursor up one page.
Move the cursor down one page.
Mark a line in a window.
Position the insertion point on a set mark.

-

C hapt er 5

C C ompiler

lntrod uction

The C compiler i s a fast single pass compiler generating absolute MC68000 ma­
chine code. The compiler reads a single C source file and outputs a relocatable
object code file (see File Formats, section A. l) . The source file must have a file
name extension of " .C" , and the resultant object file will have the extension
" . 0 " .

The compiler will place the object file on the same disk as the source file.
For this reason , the programmer should ensure that sufficient space is available
on the disk for both the source and the object .

5 . 1 C ommand Line Usage

While the compiler may be run from the GEM desktop, it will normally be run
from the Laser Shell. The command line syntax is :

c c o m . ttp [-Dname [=value]] [-Uname] [- Ipath [, path , . . .] J
[- S [a [, b [. c]]]] f ile . c

-Dname [=value]

-Uname

Define name with optional value option. This
option adds name to the compiler's preproces­
sor symbol table as if, in the source being com­
piled, the line #define name value had been
inserted. The value is optional.

Undefine a predefined name as #undef name .

55

56

-
- I path [. path , . . .]

-S [a [. b [. c]]]

CHAPTER 5. C COMPILER

Include path option. This option tells
the compiler in which directories (folder(s))
i t should look to find include files, as in
#inc lude <stdio . h> . There can be up to 13
paths given and the compiler will look in each
directory in the order given. As a default,
the compiler uses only the directory that the
source file resides.

Alter the compiler's choice of switch state­
ment code generated . See section 3 .2 .3 for a
description of this option. The default values
are; a = 10, b = 2, and c = 12 . Omission of
any of these parameters leaves the default .

5 .2 Compiler Errors

Error messages generated during compilation are reported to the screen, ac­
companied by the line of source code containing the error. Error messages are
of the form:

" file-name " , line line -number : error message text.

1/0 redirection may be used to save the error messages to a file if desired.

5 .3 Memory Usage

The C compiler dynamically allocates memory on an as-needed basis while
compiling a program. The only limit on the size of a program is available
RAM, thus extremely large programs may be compiled.

C hapt er 6

Linker

Introduction

Separate compilation of program source can greatly decrease development time
by eliminating the need to recompile all code necessary to create an executable
program. For example, the program:

main()
{

printf (" Hello , world\n") ;
}

calls the function printf(). Without separate compilation, the source code for
printf(), as well as that of any functions which printf() may call , would have
to be recompiled each time the function main() is compiled. Instead, prin tf()
can be compiled into object code. The function main() need only reference
printf() by name (known as an external reference) . The task of combining
separately compiled object files into a single executable program is performed
by the linker. The linker reads multiple object and archive files (collections of
object code) , resolves external references, and produces an executable program.

The linker must be used even if a program doesn't contain a�y external
references because an object file created by the compiler is not executable.

57

5 8 CHAPTER 6. LINKER

6 . 1 C ommand Line Usage

The linker can be run from GEM desktop, the Laser Shell, or a command line
shell. Normally, the linker is run from the Laser Shell .

When the linker is run from a command line shell , the usage syntax is :

ld . ttp [- G] [-Lx] [-M] [-V] [- Txxx] [- 0 output] [obj e c t . . .]
[library . . .]

- G

- v

-M

- Lx

- Txxx

- 0 output

obj e ct

Global symbol include. The GEMDOS executable file
will contain symbol entries for function names . If the
program run from the Laser Shell terminates abnor­
mally, a stack dump can be printed for debugging
purposes. Static functions begin with tilde C) while
global functions begin with an underscore (_) .
Verbose option. The linker will print to the standard
error the names of object files as they are included by
the linker. This option is useful to see which object
files are included from an archive .

Map option . Setting this option will cause the linker:
to print names and addresses of globals which are in­
cluded in the executable program.

Library name option. The linker will look in the di­
rectories given in the LIBPATH environment variable
for a library named libx.a . X is a single character. For
example -Lc will search the directories for libc .a

Text base option. The text base option causes the
linker to adjust references within the program as if the
program were at hex memory location xxx. Normally,
the program is linked as if it were based at location
zero, and relocation information is included so that
when a program is run , the references may be adjusted
for the actual memory location. Setting this option
also prevents this relocation information from being
included .

Output file name. The linker 's output is named out­
put. Without this option the output is named a . prg.

Object files produced by the compiler .

6.2 LINKER ERRORS

library

Example :

Library of object files. The Laser library of UNIX func­
tions and Atari ST ROM interface routines is named
libc . a .

ld . ttp \megamax\init . o myprog . o - Lc

Link myprog . o with the Laser initialization code and the Laser system library.
The final program produced is written to a . prg. Note that the inclusion of
the initialization code, ini t . o , is required as the first file for any application
program.

6 . 2 Linker Errors

Should an error occur during the link, the link is aborted and no output program
is written. Error messages and possible causes are:

Usage: ld. ttp . . . Either an invalid link option was specified, or no object or
library files were given.

File open error: name
The object or library file name was not found. Check to see that the file
name and path name are given correctly and that the file actually exists.

File read error: name
Likely a problem with the disk. Try a newly formatted disk.

File write error: name
Either the disk onto which the linker output is being written is full, or
there is a physical problem with the disk . Check to see that adequate
space for the output is available.

Unable to open output file: name
/

Check to see that the disk is not write protected, and that the path given
the output, if any, is correct. (May also be the result of a problem with
the disk) .

File format error: name
The named input file is not a Laser or DRI format object or library file
or it has been corrupted. (Assure that only object and library files are
specified) .

59

-

60 CHAPTER 6. LINKER

Undefined symbol(s) :
The linker found references to function name(s) or global variable name(s)
for which there is no definition. Make sure that the listed globals are actu­
ally defined, and that references to library functions are spelled correctly.
Note that a leading underscore (_) is added to each global by the compiler
and should be ignored by the user .

Duplicate name definition: name

The global name has been defined in more than one place. Eliminate or
rename one of the functions/variables.

No name list : f i le

F i l e is missing symbol table information. Object files must have at least
one global name to be linked .

No string table: f i le

File is missing it 's string table, a list of the actual names referred to by
the symbol table .

6 . 3 T he Linking Pro cess

The linker examines each argument in the order given . Object code· files are
always included , but libraries are searched by the linker and only the obj ect
code modules needed are actually included in the final executable program.
The linker is capable of linking obj ect code produced by the Laser C compiler,
as well as object produced by the DRI (Digital Research Inc.) C compiler or
assembler. The linker will also read library files produced by either the Laser
archiver or the DRI archiver.

Since libraries frequently contain many object code modules and may there­
fore be rather large, a mechanism, known as randomization , has been imple­
mented by which the archiver may be used to add an index of global function
and variable names to the beginning of a library. Using this index, the linker
can quickly resolve external references, thus greatly speeding the linking pro­
cess . The index, if it exists, is loaded into memory and searched repeatedly
until either no more undefined names need resolving , or a complete pass of the
index is made and no additional object code modules are extracted . If the li­
brary does not contain this index, the linker will make only one sequential pass
of the library, including code modules only if they are needed . Thus, without
the index, references must refer to object modules which appear further in the
file or in a subsequent file in the command line.

6.4 DESK ACCESSORY S UPPORT

Symbols defined in user specified object files and libraries will override def­
initions of the same symbol in the libraries provided they are encountered by
the linker first . The programmer may make use of this feature by writing his
own versions of system library functions (such as malloc() for instance) while
still using other procedures from the library.

6 . 4 D esk A cces sory S upp ort

Desk accessories are GEM applications which are named with the " .ACC"
extension. When the computer is started, any " .ACC" files which appear
on the root are loaded into RAM and started . A desk accessory should call
evnt_mul t i () to share processor time with the main application and other
desk accessories.

61

C hapt er 7

D isassembler

lntrod uction

The disassembler prints the assembly language equivalent of either a Laser for­
mat object code file (see File Formats , section A. l) , a DRI (Digital Research,
Inc.) format object file, or an executable (G EMDOS) format file . If the file
contains symbol information, it is used where possible, otherwise actual refer­
ence values are printed . S ince references internal to an object file are resolved
by the compiler, there will be instances where no name is associated with a
reference. In these instances, the disassembler attempts to make an educated

guess as to the name of a reference and if possible print it rather than just a
value. All numeric values are printed in hexadecimal .

7. 1 C ommand Line Usage

When used from a command line shell the usage syntax is :

di s . ttp [- N] [- I] [- R] [- Fname] obj e c t . . .

- N Suppress reference names. Actual reference values are printed.
By default , symbol names are printed when available . Also,
addresses are not printed with this option.

- I Instruction print. The hex value of each instruction is printed
before the instruction is disassembled.

63

64

-R

CHAPTER 7. DISASSEMBLER

Relative branches. Normally branch instructions, which spec­
ify addresses relative to the program counter, are converted to
absolute addresses. This option suppresses the conversion.

- Fname Disassemble the named function only.

7. 2 D isas sembler Errors

Error messages and possible reasons are:

Usage: dis. ttp [-N] [-I] [-R] [-F function] object . . .
When run from a command line either an invalid option was specified, or
no object or program files were given.

File open error: name
The input file name was not found. Check to see that the file name and
path name are given correctly and that the file actually exists.

Memory full while processing
Memory exhausted. Remove RAM disk .

File format error: name
The file name is not an object file or program file, or is corrupt.

Example :

laserdis . ttp myprog . o

Disassembles the object code file myprog . o

Chapt er 8

Archiver / Librarian

lntrod uction

The archiver maintains groups of files combined into a single archive file . I t is
primarily used to maintain libraries (groups of object code files) for use by the
linker, but may be used to archive any type of files (including text files) . The
archiver will maintain both Laser and DRI format archives.

8 . 1 C ommand Line Usage

The archiver can be run from the Laser Shell, or the GEM desktop. When used
from a command line, the usage syntax is:

ar . ttp key [V] [pos] archive [file] [file . . .]

key Archiver function key. One of the following keys directs the
archiver function:

D Delete from archive file f ile . . .

L Convert the archive into a randomized library.

R Replace/add to archive copies of file file . . .

RA Like the R key above except the replace/add begins after the
component in archive named in pos . Note that pos is required
with this option.

T List a table of component names in archive .

65

66 CHAPTER 8. ARCHIVER/LIBRARIAN

W Write a copy of component file in archive to the standard
output . Normally redirected to a file.

X Extract copys of file from archive .

V Optional verbose. When used with keys D (delete) , R (re­
place) , RA (replace after) , and X (extrftct) , the archiver will
print a line which verifies the operation performed. When used
with the key T (table) , The size of each component will be
printed after each name.

pas Used with key ra above .

archive The archive file upon which the operations are to be performed .

file One or more files used depending on the operation performed.

Example :

ar . ttp rv megamax\libc . a a . o b . o c . o

Replace (or add if they are not already present) in the archive li be . a the object
files a . o , b . o , and c . o .

Note : If the archive specified on the command line does not exist the archiver
will create a new archive with that name.

8 . 2 Random Library

The L (randomize) key converts an archive of object files into a random library
so that it can more efficiently be searched by the linker. The archiver performs
this randomization by examining the entire library and collecting global func­
tion and variable names, along with information about the object modules in
which they are defined , and writing a special component into the library named
-- · SYMDEF. The -- · SYMDEF will always be the first component of the library. It
is important to always randomize a newly created library. Once randomized,
the archiver will automatically re-randomize any library which is changed.

8 . 3 Archiver Errors

Error messages printed by the archiver and possible reasons:

Usage: ar.ttp key [V] [pos] archive file [file . . .]
When run from a command line either an invalid key was specified , or no
object o.r library files were given.

8.3 ARCHIVER ERRORS

File open error: name
The file name was not found. Check to see that the file name and path
name are given correctly and that the file actually exists.

File read error: name
Likely a problem with the disk . Try a newly formatted disk .

File write error: name
Either the disk is full or there is a physical problem with the disk . The
archiver writes a temporary file, called "AR _ _. TMP" to the current disk .
Check to see that adequate space is available on both the archiver's disk
and the disk on which the archive exists.

File create error: name
The archiver is unable to create a new archive. Check to see that the
disk is not write protected, and that the path given the output, if any, is
correct . May also be a disk problem.

Temporary file open error
The archiver is unable to create the temporary file. There is either a
problem with the disk or the disk from which the archiver is being run is
full. Check to see that adequate space for the temporary file, which will
be as large as the archive itself, is available.

File format error: name
File given is not an archive file.

Memory allocation error
Memory is exhausted. Remove RAM disk .

Malformed archive (OxXXX.)
The archive file is internally corrupt. Make or copy a new one. The
hex number given is the address where the archiver expected to find the
beginning of a component file but did not.

67

-

C hapt er 9

S ymb ol N a rn e r

Introduction

Object files and application files may contain symbolic information in their sym­
bol tables (see F ile Formats, section A. l) . This symbolic information may be
printed with the Symbol Namer utility. The nm program is capable of print­
ing tables of Laser format object files, DRI format object files, and GEMDOS
format executable files .

Two different formats are used to print the resultant information. If the file
is a Laser format object, each symbol is preceded by its value (in hexadecimal)
and one of the following letters:

A Absolute
B Bss segment
c Common symbol
D Data segment
T Text segment
u Undefined symbol

If the letter is lower case, the symbol is local. Otherwise the symbol is global .
If a DRI format object or GEMDOS file is printed , each symbol name is

followed by its address (in hexadecimal) and one or more of the words : global,
external, data_based, text_based , bss_based , equated , or equated_register.

69

I

-

70 CHAPTER 9. SYMBOL NAMER

9 . 1 Command Line Usage

When used from a command line shell the usage syntax is:

nm . ttp [file]

Where file is either a Laser format object file, a DRI format object file, or a
G EMDOS format executable file which has been linked such that it still has its
symbol table.

9 . 2 N amer Errors

Error messages and possible reasons are:

Usage: nm. ttp file
When run from a command line either an invalid option was specified, or
no object or application file was given.

File open error
The input file was not found. Check to see that the file name and path
name are given correctly and that the file actually exists.

File format error
The file is not a valid object or application file or program file, or 1s
corrupt.

No name list
The file has no symbol table.

Example:

nm . ttp myprog . o

Dump the object code file myprog . o

C hapt er 1 0

Make Ut ility

Int roduction

Programmers often divide large programs into smaller pieces. These smaller
units are easier to work with on an individual basis , but tracking the relation­
ships and dependencies among the pieces becomes a time consuming task . As
the program is modified, it is difficult to remember which files depend on which
others, which files have been modified, and the exact sequence of operations
needed to make or test a new version of a program.

The Make utility automates a number of program development activities so
that up-to-date versions of programs may be maintained with a minimum of
effort .

Make requires that a description file , called the "Makefile" be created which
identifies the target files , the dependencies of the targets , and command lines
used to create or update the targets. A target is a file , for example a " . 0 " file,
which depends on other files , such as a corresponding " .C" file.

The information in the "Makefile" enables Make to identify the operations
necessary to update and compile a program after modifications have been made.

The basic operation of Make is to:

• Find the name of a specified target file in the "Makefile" .

• Ensure that the files upon which the target depends (the dependency files)
exist and are up-to-date .

• Update or create the target to incorporate modifications that have been
made to the dependency files .

71

72 CHAPTER 1 0. MAKE UTILITY

In addition to the information in the "Makefile" , Make maintains a table of
built-in rules in a special table (called the suffixes table) . It uses the information
in this table to determine which file name suffixes are applicable, and how to
transform those files with specific suffixes into files with other suffixes. For
example , an built-in rule is that " .0" files are made from cc . C" files by running
the C compiler on the " .C" files.

1 0 . 1 Command Line Usage

Running Make executes command lines in a "Makefile" , causing specified target
files to be updated or created to reflect changes made to files on which they
depend.

Make executes the file with the default name "MAKEFILE" unless a dif­
ferent name is specified .

When used from a command line, the syntax for Make is:

make [opt] [target] [macro=value] [-Fname . . .]

The following options are available:

- I Ignore error codes returned by invoked programs. Alternately,
error codes can be ignored using one of two other methods:

• Enter .IGNORE as a false target in the "Makefile" .

• Enter "Tab" cc_, preceding a command line in the "Make­
file" .

-N No execute mode. Print commands lines, but do not execute
them.

-R Do not use Make built-in rules specified in the suffixes table.
Alternately, the use of the suffixes table can be inhibited by en­
tering . SUFFIXES , without a dependency list, as a false target
name in the "Makefile" .

- S Silent mode. Do not print command lines before executing .
Alternately, the silent mode may be, using two other methods:

• Enter .SILENT as a false target in the "Makefile" .

• Enter "@" as the first character of a command line in the
"Makefile" .

10. 2 A SIMPLE "MAKEFILE"

- Fname The name of the "Makefile" to use . In the absence of this
option , Make looks for the default names of "Makefile" . More
than one -f"Makefile" parameter can occur.

target The names of one or more target file names separated by a
blank space. If target files are not specified in Make, the
target (s) specified in the first line of the "Makefile" are up­
dated/ created.

- P Print all macros and targets.

- Q Question up-to-dateness of a target.

- X Prints a list of all targets in the "Makefile" .

mac ro=value Define a Make macro (see section 10 .3 .3) .

NOTE: All environment variables become defined as macros each time Make is
run.

1 0 . 2 A Simple " Makefile"

It is not necessary to fully understand Make before it can be used . The following
example may be adapted to a particular project by changing the file names used.
Note that (tab) means enter a "Tab" character into the "Makefile" .

Example Makefile

The target is the applic ation program ' ' te st . ttp ' ' , whic h
i s c reated by c ompiling ' ' f i le l . c ' ' , ' ' f ile2 . c ' ' , ' ' file3 . c ' ' ,
and then linking them with the C initialization c ode and the C
library .

test . ttp file l . o f ile2 . o f i le3 . o
(tab) c c f ile l . o f ile2 . o f ile3 . o - o test . ttp

In the above example , Make knows (by default) that the C compiler utility
CC may be used to compile any " .C" file to a corresponding " . 0 " file. The
target "TEST.TTP" depends on the three " . 0 " files and is created with the
CC utility by the command line given after the "Tab" . Note that "CC.TTP"
must be located in the current folder, unless the CC environment variable is
defined as the path of CC.

73

74 CHAPTER 1 0. MAKE UTILITY

1 0 . 3 Makefile S tructure

To use Make , a "Makefile" that specifies the target files and the files that depend
on them must be created . A "Makefile" contains the following information :

• Entries (targets + dependencies + commands)
• Comments

• Macros

10 . 3 . 1 Entries

The entry is the most important part of a "Makefile" . It consists of the target
file names, their dependencies , and command lines.

There are two types of entries:

• Dependency lines

• Command lines

A dependency line defines the target files and their dependencies (the files
that the target depends on) . Optionally, a dependency line can contain one or
more command lines. If a noncomment line is too long , it can be continued
using a backslash. If the last character of a line is a backslash, the backslash ,
return, and following blanks and tabs are replaced by a single blank space .

The form of a dependency line is :

target . . . : [:] [dependent . . .] [; c ommand . . .]

A command line contains a program name followed by program parameters .
Command lines must begin with a "Tab" . The form of a command line is :

(tab) [command . . .]

The items in a "Makefile" entry are described below.

targets The target is the name of one or more target files . These are the
files that are to be updated or created . Target names are GEMDOS file
names . Multiple target names are separated by blank spaces.

dependent The dependent is the name of one or more files that the target files
depend on. Dependent names are also G EMDOS file names. Multiple
dependent names are separated by blank spaces.

10. 3 MAKEFILE STR UCTURE

A single colon (:) or double colon can be used (: :) to separate the targets
from the dependencies. A target name can appear on more than one
dependency line but all lines that it appears on must be of the same
(single or double colon) type.

If a target appears on more than one dependency line and a single colon is
used , only one of the dependency lines can have a command sequence as­
sociated with it . If the target requires updating , and a command sequence
is specified, the command sequence is executed.

If a target appears on more than one dependency line, and a double colon
is used, each dependency line can have a command sequence associated
with it. If the target requires updating, the associated commands are
executed, including built-in rules. The double-colon form is valuable for
updating archive-type files.

command A command is a program name followed by optional program pa­
rameters (any string of characters, excluding a # or carriage return) .

Command lines can appear on a dependency line or on the line immediately
following a dependency line . If a command appears on the dependency line
it is preceded by a semicolon . If a command appears on the line following a
dependency line, the command line must begin with a tab .

A line i s printed when i t i s executed unless the -S option i s used or .SILENT
is entered as a false target name in the "Makefile" .

Commands returning nonzero status cause Make to terminate, unless the - i
option is used or .IGNORE is entered as a false target name in the "Makefile" .

Some commands return nonzero status inappropriately. For these cases, use
the -i option or begin the particular command with "Tab" "-" in the "Makefile" .

1 0 . 3 . 2 Comments

The pound sign (#) indicates a comment. All characters, from a pound sign
to the end of the line , are ignored. Blank lines and lines beginning with # are
ignored totally. Comments can appear on dependency lines or command lines.

10 . 3 . 3 Macro D efinition

Make also provides a simple macro substitution facility for substituting strings
in dependency lines and commands.

A macro line contains an equal sign (=) which is not preceded by a colon
or a tab. The macro name is the string to the left of the equal sign (trailing

75

76 CHAPTER 1 0. MAKE UTILITY

blanks and tabs are stripped) . The macro is assigned the string of characters
to the right of the equal sign (leading blanks and tabs are stripped) .

For example, to define a macro named OBJECTS as the object files, filel .o ,
file2 .o and file3 .o , enter:

OBJECTS = file l . o f ile2 . o file3 . o

A null string may be assigned as a macro value by leaving the right of the
equal sign blank . For example, to assign a null value to the macro named ZIP,
enter:

Z I P =

Macros can also be defined in the Make command itself.
A macro is invoked using a dollar sign ($) as shown below:

$ (mac ro name) or ${macro name }

If the macro name is a single character , the parentheses or braces are op­
tional . Macro names exceeding one character in length, must be enclosed in
parentheses () or braces {} ,as shown.

For example, to invoke a macro named Y, a single-character name , enter
either:

$Y or $ (Y) or ${Y}

To invoke a macro named OBJECTS , enter either:

$ (OBJECTS) or ${OBJECTS}

There is also a facility to perform translations when a macro is referenced
and evaluated. The general syntax for a macro reference is :

$ (mac ro : string! = string2)

This causes each occurrence of string! to be substituted with string2 in the
macro being evaluated, where macro is the name of the macro being evaluated.

Note that all environment variables which are defined as Make is executed ,
become macro definitions in Make.

1 0. 3 MAKEFILE STR UCTURE

1 0 . 3 . 4 Implicit Macros

If a file is generated using one of the built-in transformation rules, the following
macros can be used :

$ * Name of the file to be made (excluding the suffix)
$CO Full name of the file to be made
$< List of the dependencies
$? List of dependencies that are out of date

1 0 . 3 . 5 Dynamic Dependency

To use these implicit macros , there is a dynamic dependency parameter refer­
enced by the notation:

$$CO

It has meaning only when it appears on a dependency line . The $$CO refers
to the item(s) to the left of the colon, which is referenced by the $CO implicit
macro.

The following is an example using implicit macros and the dynamic depen­
dency parameter.

PROGS= s1 s2 s3 s4
Defines the macro PROGS as the four files s1 -s4 .

$ (PROGS) : CO . c
Invokes the PROGS macro, defining the target file names as s 1 , s2 , s3 , and
s4 . Defines their dependencies as C source files (. c) with the same file
names: s1 . c , s2 . c , s3 . c , and s4 . c .

There is also a second form of the dynamic dependency parameter which
refers to the file part of $ CO . This form is referenced using the notation $$ (<OF) .

1 0 . 3 . 6 Suffixes Table

As mentioned previously, Make maintains a table of suffixes and built-in trans­
formation rules in suffixes table . This table may be altered with the . SUFFI XES
directive . For example :

Add the suffixes . o and . c to the suffixes table
. SUFFIXES : . o . c

77

18 CHAPTER 10. MAKE UTILITY

When attempting to determine a transformation for a file which has no
explicit target mentioned in the "Makefile" , Make uses the suffixes table . Make
looks for a file with the desired suffix, and uses the associated transformation
rule to create or update the target file .

1 0 . 3 . 7 Transformation Rules

A transformation rule name is the concatenation of the two suffixes. For exam­
ple, the name of the rule that transforms .c files to .o files is .c .o. For example:

Compile (with CC) a . c file to produc e a . o file .
. c . o :

c c - c S* . c

A transformation rule is used only if the user's "Makefile" does not contain
an explicit command sequence for these suffixes.

The order of the . SUFFIXES list is significant . Make scans the list from left
to right, and uses the first name that has both a file and a rule associated with
it. To append new names to the suffix list , the word . SUFFIXES may be entered
as a special target in the "Makefile" , listing the new suffixes as dependencies.
The dependencies will be added to the suffix list.

.SUFFIX Transformation

.c.o cc. ttp file.c -c

.p.o pc. ttp file. p -c

Figure 10. 1 : Built-in Transformation Rules

For example, to transform a source file into an object(. o) file, Make calls up
the appropriate compiler. There are also transformation rules to create library
(.a) files from source files.

To delete the built-in suffix table, enter . SUFFIXES as a target, without
listing any dependents in the "Makefile" . It is necessary to do this to clear the
current list if changes in the order of the suffixes is desired.

1 0 . 4 Examples

Some example "Makefile" s are described below.
Example 1: For this example, the built-in suffixes table is used.

1 0. 4 EXAMPLES

Example 1

prog . ttp : x . o y . o z . o

(tab) c c . ttp x . o , y . o z . o . - o prog . ttp

' ' x . o ' ' and ' ' y . o ' ' depend on the he ade r f i le ' ' prog . h ' ' . The y
w i l l be re c ompi led i f the i r header i s change d .

x . o y . o : prog . h

Example 2 : This example illustrates the use of macros.

Example 2

Def ine a

f i le s by

bui lt - in

transf o rmation rule for c reating . o f i l e s f rom . c

c ompi l ing the m . Whi le thi s i s pre de f ine d as a

rul e , i t make s a good example .

. SUFFI XES . o . c

. c . 0 :

(tab) c c om . ttp $ * . c

Def ine the mac ro OBJECTS to be the three obj e c t f i l e s x . o ,

y . o , and z . o .

OBJECTS = x . o y . o z . o

De f i ne the library opt i on (given to l d . ttp) as the C library .

LIBES = - lc

Create prog . ttp (the def ault targe t) by linking the updated
obj e c t s . Use s s i lent mode on CC .

prog . ttp : $ (OBJECTS) myarc . a

(tab) @c c $ (OBJECTS) $ (LIBES) - o prog . ttp

Thi s targe t wi l l update and run prog . ttp

prog : prog . ttp

(tab) @prog . ttp

79

I lei

80 CHAPTER 1 0. MAKE UTILITY

This target j ust removes the . o files assoc iated with
the pro j ect .

c lean : $ (OBJECTS)
(tab) rm $ (OBJECTS)

Cl1apt er 1 1

Resource Const ruct ion
P rogram

Int roduct ion

The idea behind resources is that specifications for certain graphical/textual

objects may be kept separate from the program which uses them. Thus, items
such as menu bars, dialog boxes, and icons may be created and changed inde­
pendent of the actual program. This not only simplifies coding , but also makes
a program "international" , since the textual strings can easily be translated
into other languages. These object specifications are called resources or object
trees , and are stored in a type of file known as a resource file. The Atari 's
ROM provides routines which use these resource files (see section 16 .8) . The
Resource Construction Program (called "RCP.PRG") is used to create and
modify resource files.

1 1 . 1 D efinition of Resource Files

A resource file contains a number of resources stored in the "tree table" . A
resource (or object tree, the terms are used interchangeably) is a description
for either the menu bar or a dialog box. It is composed of a collection of
"objects" and their locations on the screen. An object is a basic element that
the object manager can display and manipulate . Examples include buttons,
strings, editable text, icons and boxes.

Resource files end with the extension " .RCS" . The RCP also creates two

81

8 2

liD

CHAPTER 1 1 . RESO URCE CONSTR UCTION PROGRAM

addi tiona! files for each resource file . The " .D EF" file contains some information
that the RCP needs that isn 't normally part of an " .RCS" file . The " . H" file
contains C #define commands that relate names given to the various resources
and objects to index numbers that are used internally within a resource file . If
the " .H" is included in a program that uses the resource file then these names
can be used to access the resources instead of the ind�x numbers (which may
change if the resource file is later modified) .

An example of a resource can be s3en in figure 1 1 . 1 .

f� & P l e a s e i n s e r t p a p e r i nto p r i n t e r

OK

Figure 1 1 . 1 : "TEST.RSC"

The resource contains three objects : a bit image, a string and a button . The
" .H" file looks like this :

#define PAPER 1

None of the objects have been given names . Here is a program that displays
the dialog and waits for the user to press the OK button:

#include " TEST . H"
#inc lude <obdefs . h>

main()
{

}

OBJECT *paper ;
int x , y , w , h ;

appl_init () ;
rsrc_load ("TEST . RSC ") ;
rsrc_gaddr (O , PAPER , &paper) ;
form_c enter(paper , &x , &y , &w , &h) ;

obj c_draw (paper , 0 , 10 , x , y , w , h) ;
form_do (paper , 0) ; I* Wait for OK button *I
appl_exit O ;

11 .2 RCP USAGE

appLinit and appl_exit are required calls for any program using GEM. The
resource file is loaded with rsrc_load . rsrc_load translates the resources from
the format used in the " .RSC" to that used by the object manager in memory.
rsrc....gaddr returns a pointer to a resource given its index number (which was
defined as PAPER in "TEST.H") . Object tree pointers are used by the object
and form managers. The form..center call changes the location of the dialog so
that it is centered within the screen. The RCP doesn't set the location of object
trees because the resolution of the screen may be different each time a program
is executed . The rsrc_load call also adjusts the objects within the resource to
match the screen resolution.

objc_draw draws the resource on the screen. It will look just as it does in the
RCP. This visual correspondence makes creating resources with the RCP easier.
foriiLdo handles user interaction with the dialog and returns the number of the
object that caused the dialog to exit . We are not interested in this number
since there is only one way to exit this simple dialog .

In a more complex dialog , particularly one with editable text objects, we
would have to manipulate the object tree directly with C. See the object man­
ager section for details on the format of a resource in memory.

1 1 . 2 RCP Usage

The screen is divided into two sections: a window containing the resources being
edited and a palette of objects that can be added to the window. If the user
selects New (to create a new resource file) or Open (to load an existing one)
from the File menu the window containing the tree table for the resource file
will be displayed. Any changes made will not affect the file until it is saved (by
choosing Save from the File menu) .

When the tree table is displayed the palette will contain templates of legal
tree types that can be added to the file. The window shows the type and name
of all object trees in the resource file. With the tree table displayeg one may
create, delete, copy or name entire object trees. One may also Open a tree
which will show the object structure of the tree in the window (which is called
an object display) . One should close the window (with the close box or by
choosing Close in the File menu) to return to the tree table.

The object display will show the resource as it will appear when drawn by
a program.

83

Dll

liD

8 4 CHAPTER 11 . RESO URCE CONSTR UCTION PROGRAM

1 1 . 2 . 1 Tree Types

RCP currently supports four tree types: unknown (when no " .DEF" file is
found) , free, dialog and menu.

A free tree is the most general type. Any of the other trees can be converted
to a free tree by using the Name item under Options menu. In a free tree , the
entire tree is always displayed and objects can be located at any pixel location.
Unknown trees are treated the same as free trees so th�re is really no need to
create them. Free trees might look different on the high and medium resolution
monitors.

Dialog trees are like free trees except obj ects are aligned to character cell
locations when they are moved. The alignment only happens when an object
is moved or Snap is selected from the Option menu.

Menu trees are very restricted; as a rule , a non-menu tree should not be
converted into a menu tree, since there is a good chance that GEM will crash .

The following information is useful when manipulating the tree structure of
a resource directly with C .

The palette for free, unknown and dialog tree object displays contains the
following objects in order:

G_BUTTON , G_STRING , G_FTEXT , G_FBOXTEXT , G_IBOX , G_BOX ,
G_TEXT , G_BOXCHAR , G_BOXTEXT , G_ICON , G_ IMAGE .

The palette for menu tree object displays contains the following objects:

G_TITLE , G_STRING , G_STRING (gray hyphens) , G_BOX .

These obj ect type names are defined in the file "OBDEFS .H" . See the Object
Manager section of the AES documentation for a description of the format of
each of these types.

1 1 . 2 . 2 Visual Hierarchy

The object display uses a convention called "visual hierarchy" to make edit­
ing resources easier. Assume that one object (say a box) surrounds another
obj ect (say a button) on the screen. Visual hierarchy says that any operation
performed on the box is also performed on the button. The box is called the
parent of the button and the button called a child of the box. There can be
multiple children of a parent , and those children may also have children. The
relationship can be removed by simply dragging the button outside of the box
(the Flatten command will also remove it) .

1 1 . 2 RCP USAGE

1 1 . 2 . 3 Menu usage

Some menu items may not be selectable depending on what is currently being
done with RCP. Items which are unavailable are dimmed in the menu bar .
Some commonly used items are preceded by a letter. If the "control" key is is
held down while simultaneously pressing the letter, then that menu item will
be executed .

When selecting Paste from the Edit menu, the mouse button should be
held down so that the obj ect in the clipboard can be placed in its correct place
(this is discussed further in the reference section for the edit menu) .

1 1 . 2 . 4 Mouse usage

The mouse is used in combination with the keyboard to move, select and resize
the objects and trees . See the Conventions section of the Introduction chapter
for definitions of mouse usage terms used here.

Clicking over an object in the window will select it with the effect of it being
drawn as a negative image . At this point many of the menu functions
become available . The selection may be canceled by selecting another
obj ect , clicking outside the window, or clicking in the gray region of the
window.

Control-clicking an object selects the object 's parent. This is useful for se­
lecting a box containing a bunch of buttons for instance or whenever the
child of an object overlays its parent .

Double clicking opens an object . This is always the same as clicking and
then selecting Open from the File menu .

Dragging changes an object 's location on the screen. If an object is moved
such that it is entirely enclosed by another object , then the dragged object
is made a child of the enclosing object. Dragging always makes the selected
object become the last child of whatever object it is released over. A tree
is drawn so that the last child will be drawn last (making it appear on
top of any other siblings it may partially overlap) . The effect of this is
that if two objects overlap, pressing the mouse button on the lowe'r object,
holding and then releasing will move it to the top. The main box for a
tree (called the root) cannot be dragged.

Shift-dragging makes a copy of the object before dragging . The copy will not
have a name (even if the original object did) .

85

1111

86

liD

CHAPTER 11 . RESOURCE CONSTR UCTION PROGRAM

Control-dragging or shift-control-dragging operates on the object's par­
ent (unless it is the root of the tree) .

1 1 . 2 . 5 Resizing

If the mouse is very close to the lower right corner b�t nevertheless inside an
object when dragging occurs, then only the lower right corner of the object 's box
will be tracked by the mouse. The size of the object will be changed when the
mouse button is released. The corner will not be permitted to move outside the
parent's box, nor will it be allowed to move into a child's box. Shift-dragging
works the same as dragging when re-sizing . Control-dragging is useful when
resizing an object which has a child object in the lower right corner, covering
the "resize" zone.

1 1 . 2 . 6 Keyboard Usage

With an object selected, the keyboard arrow keys may be used as follows:

arrow moves the selected object one pixel in the direction of the arrow.

shift arrow moves only the lower right corner, resizing the object.

1 1 . 3 Menu Functions

The following is a short description of all menu items under each menu title.

1 1 . 3 . 1 Edit Menu

The edit functions operate with a special holding area called the clipboard . The
clipboard can hold either a tree or an object along with its name (if it is a tree ,
then the names of all the objects in the tree are also stored) . The value in the
clipboard will remain there until it is replaced or RCP is terminated. This is
useful for copying resources between two resource files.

Cut The selected object is placed into the clipboard. The object's name will
also be placed in the clipboard.

Copy A copy of the selected object is placed into the clipboard. The copy will
not have a name.

1 1 . 3 MENU F UNCTIONS

Paste If obj ect is currently selected, then it is replaced by a copy of what is
in the clipboard . If not, then while the mouse button is down the pasted
object will be dragged. If the object in the clipboard had a name , then the
copy pasted will have that name and the clipboard object will no longer
have one. Care must be used when dragging in this case since if the mouse
button is released outside the window, the name will be lost .

Erase The selected object and its name (if it has one) is deleted.

1 1 . 3 . 2 File Menu

New Create new tree table window.

Open If no window exists at all , then read a resource file from disk . If the
tree table window is displayed and a tree is selected, open the object
display window. If the obj ect display window is displayed and an object
is selected, open the appropriate dialog box.

Merge Read in new resources from another resource file , but don' t delete the
current trees.

Close If the tree table window is displayed, delete all trees and close the win­
dow (without saving) . If the obj ect display window is shown, return to
the tree table window.

Save Write the current trees to the file with the same name as the title of the
window.

Save as . . . Write the current trees to a file to be specified in a dialog box.

Abandon Same as closing from the tree table window.

Quit Terminate the RCP program.

1 1 . 3 . 3 Options Menu

Info Displays some pertinent information about the selected object .

Name . . . If a tree is selected , display a dialog which allows the tree type and
name to be changed . If an object is selected, display a dialog which allows
the object type and name to be changed. Names must be all upper case
and are restricted to a length of 8 characters.

87

1111

88 CHAPTER 1 1 . RESO URCE CONSTR UCTION PROGRAM

Hide Set the HIDETREE flag for the obj ect, the effect of which is to hide it and
all its children . The root object cannot be hidden .

Unhide Reset the HIDETREE flag for all children of the selected obj ect, display­
ing the children.

Sort . . . Sorts the children of the selected object, changing the order in which
they are displayed. The index numbers of the children are not affected by
this operation . The sort can be done either by X-axis or Y -axis coordinate
(in ascending order) or by one then the other.

Recreate Forces physical tree structure to match logical structure by perform­
ing a preorder traversal . Useful for getting the tab and arrow keys to work

correctly with edit fields in a dialog box.

Flatten Rearrange so that children of the selected object becomes siblings of
the selected object.

Snap Aligns the selected object to a character cell boundary (this is the default
mode for all dragging operations when editing dialog trees) .

1 1 . 4 Object Dialogs

When an object is opened (by double clicking or by choosing Open from the
File menu) a dialog box will appear which allows certain attributes of the object
to be changed depending on its type. There are five such dialogs. The simplest
is for a G_BUTTDN or G..STRING (see figure 1 1 .2) .

���U�IiJil!l CHECK E D E D I T A B L E
OK

DEF AULT SHA DOWED I TOUCHEXIT I IC A N C E LI
EXIT OUTLINED DISABLED

!RADIO B UTN I CROSSED

TEXT : BUTTON�----------------------------

Figure 1 1 .2 : Object Dialog

1 1 . 5 THE ICON DIALOG

The array of eleven check boxes shows the setting for the useful ob_state

and ob..flags bits. All object dialogs have these eleven boxes . The only other
attribute for a button or string is the value of the text . If "CANCEL" is clicked
then any changes made to the obj ect will not take effect . Pressing "Return"
has the same effect as clicking the "OK" button .

Some objects allow the setting of color, shading and outline characteristics.
Those that do will have one or more of the following gizmos :

Bkgr o u n d co l or
I ¢ I D I 1 1 2 1 3 I ¢ 1 0D
Border co l or
I ¢ I D I 1 1 2 I 3 I ¢ 1 [I]
T e x t c o l o r
I ¢ I D I 1 1 2 1 3 I ¢ 1 QO

D

The color bars have the values 0-9 and A-F listed for a total of 16 colors.
Each is a different entry in the color look-up table in the ST (the actual color
displayed depends on what is stored in the table, so RCP uses the entry num­
ber) . By pressing on the arrows the bar can be rotated . The current setting is
shown in the character box offset slightly to the right of the bar. The setting
can be changed by pressing on a value in the bar. The same is true of the shade
and border style bars (except they can't be rotated) .

The text objects (G_TEXT , G_FTEXT, G..BOXTEXT and G__FBOXTEXT) include a
PTMPLT , PVALID and PTEXT field for each of the TEDINFO strings. RCP translates
the underscore ' _, character in the PTMPLT field to a tilde , _ , for display purposes
(the underscore is where the user input will go) . The tilde is also used in the
PVALID and PTEXT fields as a place holder so the non-tilde characters line up
with the tildes in the PVALID string . These place holder tildes are not actually
in the strings.

1 1 . 5 The Icon Dialog

Icons have two dialog boxes. The first dialog for the icon has the eleven bit
boxes, the value of the text field, and the "extra character" . In addition , there
are two color bars for the icon 's foreground and mask images. Clicking on the
"Edit Icon" button will display the second dialog box (see figure 1 1 .3) . It also
causes a "CANCEL" of the first box, except for color settings. The second box
operates in three modes chosen by the "Icon" , "Text" and "Character" buttons.

The icon mode allows drawing into the bit image of the icon . By clicking
the mouse on the enlarged image, the icon may be drawn. Freehand drawing

89

90 CHAPTER 1 1 . RESO URCE CONSTR UCTION PROGRAM

Figure 1 1 . 3 : Icon Dialog

C l e a r I I I n v e r t

B l atk I I Sho�

DK

may be done by holding down the mouse button. The state (set or not set) of
a drawn pixel is the opposite of that of the pixel which is first clicked on . The
size of the icon is indicated by the gray outline. The Icon may be repositioned
by dragging the gray outline. It may be re-sized by dragging the lower right
corner of this gray outline. The icon width must always be a multiple of 16
pixels (the re-size code ensures that this is so) . I f the mouse is clicked in the
drawing region for the icon but with the shift key depressed, a selection range
may be defined . By dragging the mouse, the selection range may be sized until
the mouse button is released . The pixels within the selection range may then
be moved by dragging with the mouse the entire box defining the range . By
holding down the shift key while moving the se l ection range, a copy is made of
the pixels within the box, rather than a cut . Clicking the mouse outside of the
selection range removes it .

The buttons ((Black" , ((Invert" , and ((Clear" change each pixel within the
selection range, or the entire image (either foreground or mask) if no selection
is made . ((Show" shows quickly what the icon will look like at its normal size .
The up, down, right, and left arrows shift the pixels of the icon (or the selection
range if any) . The icon can be displayed as it will appear in medium resolution
by clicking the ((Color" button.

1 1 . 6 THE BIT IMAGE

You can draw either into the foreground or mask images by clicking on the
"Show Icon" and "Show Mask" buttons. The foreground image can be copied
to the mask image by clicking "Copy to Mask" .

Text mode allows the positioning and sizing of the text string . The icon is
displayed in gray and the limits of the text string are displayed in black . The
text position can be changed by dragging the black rectangle . It can be re-sized
by dragging the lower right pixel . The text string starts out only 2 pixels tall
and will need to be resized for the text to show in your icon.

Character mode allows the positioning of the "extra character" . It can only
be moved since its size is fixed (being only one character) .

1 1 . 6 The Bit Image

Bit images (type BITBLK) also have two dialog boxes. The first has eleven
bit boxes and one color bar for the color of the image's set pixels . Clicking
on the "Edit Image" button will display the second dialog box (and causing a
"CANCEL" of the first box, except for color setting) .

The second, image edit dialog box behaves exactly as does the icon edit
dialog, except that some buttons which pertain only to icons have been hidden.

1 1 . 7 Using RCP as a Resource Editor

If the source code to the program(s) which use a resource file is not available
then extra care must be taken when modifying the resource file . In particular,
the index number must not be changed for any object that is used . RCP ensures
this is true for all objects except menus. One cannot add, delete or change the
order of menu titles and items without recompiling. One may however change
the text of the titles and items since this does not affect the structure of the
menu tree . RCP will alert the user if changes have been made that require
recompilation.

If the " .DEF" file is not available then the names and types of the resources
will be unknown . Each resource will have to be opened to determine its type .
Menu bars should be changed into menu bar resources prior to making

'
changes.

91

C hapt er 1 2

C ompile and Link

Introduction

This program simplifies the compile and link process when developing from the
GEM desktop or from a shell which does not have a built-in compile and link

mechanism. This program runs the compiler (found with the environment vari­
able CCOM) on any " .C" files, and then the linker (found with the environment
variable LINKER) on any " .0" files, as well as the " .0" files produced from
" .C" files.

The environment variable CINCLUDE is passed to the C compiler. The
environment variables CLIB and CINIT are passed to the linker. Any options
are passed to the appropriate programs. Unknown options are reported .

1 2 . 1 C ommand Line Usage

When used from a command line shell the usage syntax is :

c c . ttp [options] [-C] [file . c . . .] [file . o . . .] [file . a . . .]

options Compiler and/ or linker options are passed to the appropriate
programs.

- C Suppress the link phase .

file . c Multiple C source files to be compiled.

file . o Multiple object files to link .

93

IPJI

94 CHAPTER 12. COMPILE AND LINK

file . a Multiple archive files.

options Command line options to either the compiler or to the linker.

1 2 . 2 C C Errors

Error messages and possible reasons are :

Unknown option:
When run from a command line an invalid option was specified .

Cannot access: name
The named program could not be found. Check that the environment
variables LINKER and CCOM are the correct path names for the C com­
piler and the linker.

1 2 . 3 Examples

c c . ttp he llo . c aux . o -o hello

This will produce the following command lines:

c c om . ttp hello . c - o hello . o - I/MEGAMAX/HEADERS/
ld . ttp -o hello /MEGAMAX/ INIT . O hello . o aux . o /MEGAMAX/LIBC . A

which will compile hello . c , link hello . o and aux. o with the initialization
code specified by CINIT and the library specified by CLIB , outputting a file
called "hello" .

C hapt er 1 3

Egrep

Introduction

Egrep searches files for patterns that the user specifies . The patterns are in
the form of regular expressions . Normally, each line found is copied to the
standard output . Egrep patterns are extended regular expressions; it uses a
fast deterministic algorithm that sometimes needs exponential space . Lines are
limited to 1024 characters; longer lines are truncated.

The file name is shown if there is more than one input file . Care should
be taken when using the characters $ * [- I () and \ in the expression,
as they may also meaningful to the shell . It is safest to enclose the entire
expression argument in single quotes (') .

Egrep accepts extended regular expressions. A regular expression specifies a
set of strings of characters. A member of this set of strings is said to be matched
by the regular expression. In the following description the term "character"

excludes newline:

• A \ followed by a single character other than newline matches that char­
acter.

• The character - matches the beginning of a line.

• The character $ matches the end of a line.

• A period (.) matches any character.

• Any other character matches that character.

95

96 CHAPTER 1 3. EGREP

• A string enclosed in brackets ([]) matches any single character from the
string . Ranges of ASCII character codes may be abbreviated as in a-z0-9.
A] may occur only as the first character of the string . A literal - must
be placed where it cannot be mistaken as a range indicator .

• A regular expression followed by an asterisk (*) matches a sequence
of zero or more matches of the regular expression. A regular expression
followed by a plus (+) matches a sequence of one or more matches of
the regular expression . A regular expression followed by a question mark
? matches a sequence of zero or one matches of the regular expression .

• Two regular expressions concatenated match a match of the first followed
by a match of the second.

• Two regular expressions separated by or newline match either a match
for the first or a match for the second.

• A regular expression enclosed in parentheses matches a match for the
regular expression . The order of precedence of operators at the same
parenthesis level is as follows : [] then * + ? then concatenation, then I
and newline.

1 3 . 1 Command Line Usage

egrep . ttp [-C] [- L] [-V] [-N] [-S] pattern [files]

- C Matching line count option. This option will make egrep print
only how many lines matched the pattern .

- L File listing option . This option will make egrep print out once
the file names with matching lines.

-V Print all non matching lines option . This option makes egrep
print out all lines that do not match the pattern .

- N Print line number option. This option will make egrep print
out the line number of the matching line.

- S Silent option . This option will make egrep print only error
messages.

13. 2 EGREP ERRORS

1 3 . 2 Egrep Errors

Usage: egrep.ttp [-C] [-L] [-V] [-N] [-S] pattern [files]
No pattern or files were given.

Unable to open: name
Egrep can not open the file name .

Unknown flag: flag
Flag is not used by egrep.

Invalid regular expression
Something is wrong with the regular expression .

Unmatched (
A right parenthesis has been left off the expression.

Unmatched)
A right parenthesis has been left off the expression.

Premature end of regular expression
The expression finished before it should have .

Nesting too deep
The nesting of parentheses was to great

Regular expression too big
The expression was to big for egrep to compute

Memory Exhausted
Egrep ran out of memory

1 3 . 3 Example Searches

Suppose we have a file with the following line:

The Lazy dog j umped over the Cow with 4 big ears .

To search for the word "dog" in the file myfile use :

egrep ' dog ' myfile

The next search will list all functions in a file :

egrep ' � ([a -zA-Z] I [_]) ([a- zA-Z0- 9] I [_]) * [] *\ (' myfile2 . c

97

98

Using the above search on:

main()
{

}

int i ;
foo () ;

foo ()
{

int i ;

main() ;
}

would print:

main()
foo ()

CHAPTER 1 3. EGREP

The regular expression above searches for a beginning of a line with a character
or underscore followed by one or more characters, digits or underscores followed
by any number of spaces followed by a left parenthesis.

Chapt er 1 4

D isk Ut ilit ies

Introduction

This chapter documents the following disk utilities:

LS .TTP List files

CP. TTP Copy files

MV. TTP Move files or directories

RM. TTP Remove files

R:MDIR. TTP Remove directories

MKDIR. TTP Make directories

CAT. TTP Concatenate and print files

DUMP.TTP Print files in hex

SIZE. TTP Print size information of object files

1 4. 1 L S

LS prints a listing of files and/or directories (folders) and information about
them. If a directory (or drive specifier) is given, the name of the directory and
a count of files and folders within the directory is printed , followed by a listing
of all the files in the directory. If a file name is given, matching file names are
listed. If no file/ directory names are given, the contents of the current directory
is listed. In the absence of a sorting option , names are sorted alphabetically.

99

100 CHAPTER 14 . DISK UTILITIES

Command Line Usage

ls . ttp [-L] [-S] [-D] [-K] [f i les] [direc torie s]

Options

- L Long listing option . This will list information about the files
and directories. The information includes the name, size, date
of creation, and date of last modification . LS -1 will print out
each file on a separate line .

- S Sort by size option. This option will sort the listing by size .

-D Sort by date option . This option will sort the listing by date
of last modification .

- K Sort by kind option. This option will sort the listing by the
extension. That is, all . ttp will be together, all . c will be
together.

Errors

Unknown option: option
An option was given that LS does not recognize .

File not found: name
The file or directory name does not exist.

Drive DRIVE : not available.
The drive is not available

1 4 . 2 CP

CP copies files. There are two forms of CP . The first will copy filel to file2.
The second will copy a number of files to a specific directory.

Command Line Usage

cp . ttp file t f ile2
or
cp . ttp files direc tory

14. 3 MV

Errors

Can't copy file to itself: name
CP was given the same file name to copy to as the source file name .

name : not a directory
The name of the directory to copy to was invalid .

Can't open: name
The file that is to be copied does not exist or there is something wrong
with the disk .

1 4 . 3 M V

MV moves files. The old copies of the files are removed. The are two forms of
MV. The first will move filel to file2 . The second will move a number of files
to a specific directory.

Command Line Usage

mv . ttp f ile l f i le2
or
mv . ttp files direc tory

Errors

Can't copy file to itself: name
MV was given the same file name to move to as the soucre file name.

name : not a directory
The name of the directory to move to was invalid .

Can't open: name
The file that is to be moved does not exist or there is something wrong
with the disk .

1 4 . 4 RM

RM deletes files .

101

lEI

102 CHAPTER 14 . DISK UTILITIES

Command Line Usage

rm . ttp [-R] [- F] [- I] file (s)

Options

-R Recursive directory delete. This option wil� cause RM to re­
cursively open any directory and delete all files within the di­
rectory.

- F Force option . With this option, no errors are reported .

- I Interactive option. RM will ask for verification to delete each
file .

Errors

Usage: rm file . . .
There are no options to rm

1 4 . 5 RMDIR

RMDIR deletes directories. The directory must not contain any files.

Command Line Usage

rmdir . ttp direc tory (s)

Errors

No such directory: name
The file name does not exist or the disk is write protected .

1 4 . 6 MKDIR

MKDIR creates directories. If a partial pathname is given MKDIR creates the
directory in the current directory.

Command Line Usage

mkdir . ttp direc tory

14 . 7 CAT

Errors

Can't create directory: name
The directory name already exists or the disk is write protected .

1 4 . 7 C AT

CAT will print files to standard output.

Command Line Usage

c at . ttp f i les

Errors

File not found: name
The file or directory name does not exist.

1 4 . 8 DUMP

DUMP will print files i n hex t o standard output.

Command Line Usage

dump . ttp f i le s

Errors

File not found: name

The file name does not exist .

1 4 . 9 S I Z E

SIZE will print size information for the different segments of object o� executable
files to standard output .

Command Line Usage

size . ttp f i les

103

104 CHAPTER 14 . DISK UTILITIES

Errors

File not found: name
The file name does not exist.

File format: name
The file name is not an object or executable file .

C hapt er 1 5

UNIX Con1pat ible
Rout ines

Introduct ion

The functions described in this chapter are compatible with functions by the
same names which are available to C programmers using the UNIX operating
system. Most of these routines are available in all C implementations; even
those on micro-computers without UNIX. Use of these functions will therefore
reduce the effort involved in porting a C program to another computer.

Many of the services provided here are also available through BIOS , XBIOS
or GEMDOS functions , but these should be avoided if portability is a concern.

1 5 . 1 Line Separators

Because of the heritage of the C language, the ASCII line feed character (nu­
merically, 10 decimal) is usually considered to be the line separator character.
The ST software considers a carriage return/line feed combination to be the
line separator. In order to easily overcome this difference, the Laser C run
time library automatically converts carriage return/line feeds to line feeds on
input, and converts line feeds to carriage return/line feeds on output to files.
This conversion occurs at a very low level within the library routines. Files
may be opened in untranslated or binary mode by setting a flag when the open
procedure is called . For example fopen(" FILE . O " , "br") ; would open the
file "FILE.O" for untranslated (binary) read.

105

106

1 5 . 2 File 1/0
CHAPTER 15. UNIX COMPATIBLE RO UTINES

Contained in the system library are routines for both buffered and unbuffered
input/ output to disk files. The buffered routines are those whose names begin
with "f" , comprising the stream file interface . The unbuffered routines are the
low-level read() and write() routines. Both levels of 1/0 allow random access
to disk files. Along with these routines, the programmer is free to use the BIOS
routines for input/output .

Stream 1/0

A stream file is a pointer to a FILE data structure (declared in the header file
"STDIO .H") . Each stream is associated with a regular file via a file descriptor
(returned by open or creat) . Streams buffer data through the file descriptor so
single character 1/0 is efficient. The buffer size may changed from the default
of 512 bytes for added speed by using the setbuffer call. Streams are used
because of the large number of functions available as compared with the Basic
1/0 level.

Three streams are open when a program starts: stdin, stdout and stderr.
stdin is open for reading only and is connected to the keyboard (ie . its file
descriptor is 0) . stdout and stderr are open for writing only and are connected
to the screen (file descriptor 1) .

1 5 . 3 1/0 Redirection

1/0 redirection is a mechanism where stdin and stdout are changed from using
the keyboard and screen to using files. stdin is changed by passing ' < INFILE' on
the command line. stdout can be changed in two ways: ' >OUTFILE' will open
and erase outfile, while '»OUTFILE' will append to an existing outfile . The
program does not have to be changed for 1/0 redirection to work (although it
must have the argc and argv parameters declared for main()) .

1 5 . 4 Device 1/0
All of the system devices are available to the C programmer through the C
input/ output system. Legal device names are: 'AUX : ' , 'PRT : ' and 'CON : ' . For
most device input/output, it is wise to use setbuf() to prevent buffering on the
stream connected to the device.

1 5. 5 MEMORY ALLOCATION

When using the unbuffered input/output services, the only significant flag
in the mode word is the binary (D.JHNARY) flag. If this flag is set , there will be
no special treatment for line separator characters. Note that one cannot creat()

a device.
BIOS routines may be used to manipulate devices, but they require the file

descriptor number. This number is j ust the fi.leno() (defined in <stdio . h>) of
the stream or the file number returned by open ().

1 5 . 5 Memory Allo cation

The memory allocation routines malloc() and calloc() are available to the C
programmer. Because of the high space overhead (not to mention the bugs) in
memory allocation at the GEMDOS level, these routines allocate memory in
BKB blocks, breaking the blocks up as necessary to satisfy the requests made
from the C program. The free() routine will coalesce space which is returned
and the allocation system will reuse deallocated space ; however, memory will
not be returned to the GEMDOS routines.

Programs begin execution with 8KB of stack space available . This is plenty
of stack for most applications (the C compiler, in fact, uses less than 5KB) .
The size of the stack may be changed by declaring global variable _stksize
and initializing that variable to the size of the stack required . Example :

long _stksize = 1 6384L ;

Note that because pointers are 32 bits long , a C program can use as much
memory as is available on the machine through dynamic allocation.
IMPORTANT NOTE: you must make the declaration:

extern char *malloc () ;

in your program before you use malloc (the same is true for calloc()) . If you
don't do this the compiler will assume malloc() returns an int (which is only
16 bits wide) . The declaration is included in <stdio . h> .

1 5 . 6 P rogram Parameters

Program parameters passed from GEM desktop or a shell are available through
the argc and argv program parameters to main():

main(argc , argv , envp)
int argc ;

107

108 CHAPTER 15. UNIX COMPATIBLE RO UTINES

char *argv [] ;
char *envp [] ;

argc is the number of strings in the argv array. argv [0] is not defined. If you
don't need program parameters, just declare main() without any parameters
and the linker will not load the code to retrieve them.

envp is a pointer to a NULL terminated list of environment variables from
the previous program, and is optional.

1 5 . 7

open

read

!seek

creat

fop en

fdopen

fclose

feof

clear err
fread
fseek

ftell

get c

fgetc

gets

putc

fputc

puts

printf

sprintf

scanf
setbuf

setlinebuf

at of
a to!

toupper

_toupper

toascii

S ummary of Routines

open a file
Basic 1/0 Functions

close

read data from file

reposition file

create a file (old method, use

open)

write

isatty

unlink

S t ream 1/0 Functions
open a stream freopen

use existing file with stream

close a stream ffiush
test end of file ferrer
remove error state file no
read data from stream fwrite
reposition s tream rewind

report position

fast read byte get char

read byte get w

read string from "stdin" fgets

fast write byte putchar

write byte fputw

write str ing to "stdout" fputs

formated write to "stdout" fprintf

formated "write" to array sscanf

formated read from "stdin" fscanf
set buffer (s tandard size) set buffer

set buffer mode ungetc

close a file

write data to file

determine file type

delete a file

use d i fferent file with stream

write buffer to disk

test for error

file asso ciated wi th stream
write data to stream

reposition stream to fran t

read byte from "stdin"

r ead word

read string

write byte to "stdout"

write word

write string

formated write

formated "read" from array

forma ted read
set buffer (any size)
put byte back on "stdin"

C onversion and Classification Functions
AS C I I to float atoi AS C I I to int
AS C I I to long strtol AS CII (any base) to long

byte to uppper case tolower by te to lower c ase

fast toupper _to! ower fast tolower

int to AS CII isalpha test for letter

1 5. 7 SUMMARY OF RO UTINES

isupper

isdigi t

isalnum

ispunct

iscntrl

strcat

strcmp

strcpy

xtrcat

xtrncpy

index

abs

log

log1 0

log2

Sin
tan

a cos

sqr

powerd

dabs

mulpower2

fac

malloc

calloc
realloc

free

sbrk

exit

rand

setj mp

perror

C onversion and Classification Functions, con' t .
test for upper case islower test for l ower c ase

test for digit isxdigit test for base 16 digit

test for alphan umeric

test for punctuation

test for control char

append strings

compare strings

c opy string

iss pace

isprint

1sascn

S t ring Functions

strncat

strncmp

strncpy

append, but ret urn end

copy "n" bytes, return end

find byte in string

xtrcpy

strlen

rind ex

absolute value of int

natural logarithm

base 10 l ogarithm

base 2 l ogari thm

sine

tangent

i nverse c osine

square

raise t o p ower

Math Functions

labs

exp

exp l O

exp2

cos

as me

a tan

absolute value of double

fast n X 2 k

sqrt

poweri

dint

lngamma

matinv factorial

test for white space

test for printable

test for AS C I I

append " n " bytes

compare "n" bytes

copy "n" bytes

copy, but return end

length of string

find by te from end

absolute value of long

base e exp onential

base 10 exp onential

base 2 exp onential

cosine
. .

1nverse sme

inverse t angent

square root

raise to integer power

integer part of double

log of gamma function

matrix i nversion

Memory Allocation Functions
allo cate memory lmalloc allocate lots of m emory

al locate and clear lcalloc allocate a lot and clear
resize al located memory

release memory

another way to get memory

lrealloc

alloca

Miscellaneous Functions
terminate program

random number

non-local label

print system error

_exit

srand

longjmp

qsort

resize a lot of memory

allocate on stack

terminate, but don't clean up

start random sequence

non-local goto

quicksort

109

110 ABS

NAME

abs, labs - return integer or long absolute value

SYNOPSIS

int abs (i)
int i ;

long labs (l)
long l ;

DESCRIPTION

abs and Jabs return the absolute value of the number that is the parameter.

NAME

ATOF 111

atof - converts ASCII string to a floating-point number

SYNOPSIS

double atof (nptr)
char *nptr ;

DESCRIPTION

atof converts a character string pointed to by nptr to a double precision floating
point number. The first unrecognized character ends the conversion. atof
recognizes an optional string of white-spaced characters , then an optional sign,
then a string of digits optionally containing a decimal point , then an optional
E or e followed by an optionally signed integer . If the string begins with an
unrecognized character, then a zero is returned .

SEE ALSO

strtol

112 BLOCK FUNCTIONS

NAME
bcmp, bcopy, bzero - memory block operations .

SYNOPSIS

int bc mp (bloc k1 , block2 , len)
char *bloc k1 , *block2 ;

int

int

int len ;

bc opy (sourc e ,
char * sourc e ,
int len ;

bzero (block1 ,
char *block1 ;
int len ;

DESCRIPTION

destin , len)
*de stin ;

len)

These functions perform various operations on blocks of memory.

bcmp compares two blocks of memory block1 and block2 . The size of the
blocks is len. A value of 1 is returned if they are identical .

bcopy copies the sourc e block of memory to the block of memory pointed to
by destin. Both blocks are of size len.

bzero zeroes the memory pointed to by block1 . The block is of size len.

NAME

close - close a file .

SYNOPSIS

int c lose (fildes)
int fildes ;

DESCRIPTION

fildes is a file descriptor obtained from creat or open.

Close will fail if fildes is not a valid , open file descriptor.

DIAGNOSTICS

If successful , a 0 is returned.

CLOSE 113

If unsuccessful, a -1 is returned and errno is set appropriately.

114 CONY

NAME

toupper, tolower, _toupper, _tolower, toascii - convert character

SYNOPSIS

#inc lude <c type . h>

int toupper (c)
int c ;

int tolower(c)
int c ;

int _toupper(c)
int c . .

int _tolower(c)
int c ;

int toasc ii (c)
int c . .

DESCRIPTION

toupper and tolower have a range from -1 to 255 . If the argument for toupper
is a lower-case letter, the result is a corresponding upper-case letter. If the
argument for tolower is an upper-case letter, the result is a corresponding lower­
case letter. Arguments other than the ones mentioned are returned unchanged.

Toascii returns the argument with all but the low order 7 bits set to zero.

_toupper and _tolower are similar to toupper and tolower but have smaller
domains and are faster. _toupper requires a lower-case letter as its argument.
_tolower requires an upper-case letter as its argument . Undefined results occur
if arguments are other than required.

NAME

creat - create a new file or rewrite to an existing one.

GREAT 115

SYNOPSIS

#inc lude <fcntl . h>

int creat (fname , oflag)
char *fname
int oflag ;

DESCRIPTION

NOTE

creat creates a new file or writes to an existing one. If the file exists then the
length of the file is reduced to 0.

If successful, the file descriptor is returned and the file is opened for writing .
The file pointer is set to the beginning of the file .

oflag may be set to O_BINARY to indicate the untranslated mode. No other
flag values are allowed here (see open) .

creat will fail if an OS error occurs.

No process may have more than 20 files open simultaneously.

This function has been superceeded by open with the O _CREAT flag .

DIAGNOSTICS

If successful, a non-negative integer is returned (the file descriptor) .

If unsuccessful, - 1 is returned and errno is set appropriately.

SEE ALSO

open

116 CTYPE

NAME
isalpha, isupper, islower, isdigit , isxdigit , isalnum, isspace, ispunct , isprint, isc­
ntrl , isascii - classify characters

SYNOPSIS

#inc lude <c type . h>

int isalpha (c)
int c ;

int isupper (c)
int c ;

DESCRIPTION

These macros classify character-coded integer values. A zero is returned for
false and a non-zero is returned for true. isascii is defined on all integer values,
the rest are defined where isascii is true and for EOF (- 1) .

isalpha c is a letter

isupper c is an upper-case letter

islower c is a lower-case letter

isdigit c is a digit

isxdigit c is a hexadecimal digit

isalnum c is alphanumeric

isspace c is a space, tab , carriage return , new-line, or form-feed

ispunct c is a punctuation character (neither control nor alphanumeric)
isprin t c is a printing character, 040 (space) through 0176 (tilde)
iscntrl c is a delete character (0177) or an ordinary control character (less than

040)

isascii c is an ASCII character, code less than 0200

DIAGNOSTICS

CTYPE 117

If the argument of any of these macros lies outside its domain, the result is
undefined.

118 EXECV

NAME

execv, execve - Execute a file .

SYNOPSIS

int exec v (pathname , argv)
char *pathname , *argv [] ;

int exe cve (pathname , argv , envp)
char *pathname ;
char *argv [] , *envp [] ;

DESCRIPTION

execve executes a program from the disk . execv calls execve, passing the value
of the global environ for the parameter envp (see below) .

The parameter pathname is a pointer to a string which contains the name of
the program to be executed.

The parameter argv is an array of character pointers to strings, creating an
argument list that is made available to the new program. By convention, at
least one argument must be present in this array, and the first element of this
array should be the name of the executed program. However , since the Atari
operating system does not supply this information the first element is generally
NULL.

The parameter envp is also an array of character pointers to strings which are
not command line arguments, but system environment variables.

When the executed program begins, it is called as follows:

main(argc , argv , envp)
int argc ;
char *argv []
char *envp [] ;

where argc , the "arg count" , is the number of elements in argv, and argv is
the array of character pointers to the arguments themselves.

The parameter envp is a pointer to an array of strings which are the environment
variables from the calling program. Note that a pointer to this array is also
stored in the global variable extern char **environ. Each string consists of

a name, an " -" sign, and a null-terminated value. The array of pointers is

NOTE

EXECV 119

terminated by a null pointer. The Laser Shell passes an environment entry for
each global shell variable defined when the program is called .

The result from execv and execve is the exit code or status of the program. If
an error occurs during the launch of the new program, execv and execve will
return the appropriate DOS error code.

Since the command line on the Atari is limited to 128 characters, the Laser Shell
uses the environment variable ARGV= when this limit is exceeded . The value of
ARGV is a sing�e string containing a space separated list of the arguments past
the 128 byte limit . These arguments are added to argv by the C initialization
code so the program never has to deal with them specially.

SEE ALS O

exit, DOS Error Codes (pg . 587)

-.
'

120 EXIT

NAME

exit, _exit - terminate a process

SYNOPSIS

exit (status)
int status ;

_exit (status)
int status ;

DESCRIPTION

exit performs some cleanup operations before terminating the program:

• The onexit functions are called in the reverse of the order in which
they were added.

• All open streams are flushed and closed.

• All remaining file descriptors opened with open or creat are closed .

• _exit is called.

_exit terminates the program immediately without performing any cleanup op­
erations.

status is returned to the calling program as the result of the execv or Pexec
call.

SEE ALS O

onexit, execv, Pexec

NAME

fclose , fHush - close or flush a stream

SYNOPSIS

#inc lude <stdio . h>

int fc lose (stream)
FILE * stream ;

int fflush (stre.am)
FILE * stream ;

DESCRIPTION

FCLOSE 121

[close writes any buffered data to disk and closes the stream file. I t i s called
for each open stream by exit ,

fflush writes any buffered data to disk , but does not close the stream file .

DIAGNOSTICS

If successful, these routines return a 0. If unsuccessful, an EOF is returned .

SEE ALSO

exit, [open

122 FERROR

NAME

ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS

#inc lude <stdio . h>

int feof (stream)
FILE * stream ;

int ferror (stream)
FILE * stream ;

c learerr (stream)
FILE * stream ;

int fileno (stream)
FILE *stream ;

DESCRIPTION

NOTE

feof returns a non-zero when EOF has previously been detected reading the
named input stream, otherwise zero is returned.

[error returns a non-zero when an 1/0 error has previously occurred reading
from or writing to the named stream, otherwise a zero is returned.

clearerr resets the error indicator and EOF indicator to zero on the named
stream.

fileno returns the integer file descriptor for the named stream.

All these functions are implemented as macros and therefore cannot be declared
or redeclared.

SEE ALS O

perror

NAME

FOPEN 123

fopen, freopen, fdopen - open a stream

SYNOPSIS

#inc lude <stdio . h>

FILE *fopen(file_name , type)
char *f i le_name , *type ;

FILE *freope�(file_name , type , stream)
char *f i le_name , *type ;
FILE * stream ;

FILE *fdopen(fd , type)
int fd ;
char *type ;

DESCRIPTION

[open opens the file named by file ...name and associates a stream with it . [open
returns a pointer to the FILE structure associated with the stream.

[reopen substitutes the named file in place of the open stream. The original
stream is closed regardless of whether the open succeeds or not. [reopen
returns a pointer to the FILE structure associated with stream.

[reopen is typically used to attach the pre-opened streams associated with
stdin, stdout , and stderr to other files.

fdopen creates a stream from the file descriptor (fd) for a file opened with open
or creat .

file...name points to a character string that contains the name of the file to be
opened.

type is a character string with one of the following values: ,

r open for reading

w truncate or create for writing

a append; open or create for writing at end of file

124 FOPEN

r+ open for update (reading and writing)
w+ truncate or create for update

a+ random open for read or write ; pointer will be repositioned to end of file
for writing

In addition, any of the above may be preceded by a "b" to indicate that line­
feed/carriage return combinations are not to be translated to line-feeds .

If a file is open for update, both input or output may be attempted on the
stream. However, output may not be directly followed by input without an
intervening [seek or rewind, and input may not be directly followed by output
without an intervening [seek, rewind , or an input operation which encounters
end-of-file , EOF .

Files open for append cannot have information overwritten. All output i s ap­
pended to the end of file regardless of current pointer position . After output is
completed, the pointer is positioned at the end of the file .

DIAGNOSTICS

If unsuccessful, these routines return a NULL pointer.

SEE ALS O

open

NAME

FREAD 125

fread, fwrite - binary input/output

SYNOPSIS

#inc lude <stdio . h>

int fread (ptr , size , nitems , stream)
c har *ptr ;
int size , nitems ;
FILE * stream ;

int fwrite (ptr , size , nitems , stream)
char *ptr ;
int size , nitems ;
FILE * stream ;

DESCRIPTION

NOTE

fread places into an array ni terns of data read from the input stream beginning
at ptr. The data items are a sequence of bytes of length size . Reading is ������f�.�h��:::::��:���:::�
stopped when an error occurs, end-of-file is encountered, or ni terns of data
have been read. fread places the pointer, if any, at the byte following the
last byte read, if one exists. The contents of the stream are not changed.

[write attempts to append ni terns of data from the array pointed to by ptr to
the named output stream.

[seek or rewind must be called before switching between reading and writing
on a stream that allows both.

DIAGNOSTICS

Both routines return the number of items written or read . If a non-positive
number is given for ni terns, then a 0 is returned and nothing is read or written.

126 FSEEK

NAME

fseek , rewind, ftell - reposition a file pointer in a stream

SYNOPSIS

#inc lude <stdio . h>

int fseek(stream , offset , ptrname)
FILE *stream ;
long offset ;
int ptrname ;

rewind(stream)
FILE *stream ;

long ftell (stream)
FILE *stream ;

DESCRIPTION

[seek sets the position of the next input or output operation on the stream. The
new position is at the signed distance offset bytes from the beginning , from
the current position, or from the end of the file, depending on the value
of ptrname (either 0, 1, or 2 respectively) .

rewind is equivalent to fseek(stream , OL , 0) , except no value is returned .

[tell returns the the offset of the current byte relative to the beginning of the
file associated with the named stream.

fseek and rewind undo the effects of ungetc.

After [seek or rewind the next operation to the file may be either input or
output .

DIAGNOSTICS

If successful , [seek returns a 0.

If unsuccessful, a non-zero is returned. This can occur if [seek is attempted on
a file not open via [open or if it is used on something other than a file .

SEE ALS O

]seek

NAME

GETC 127

getc, getchar, fgetc , getw - get a character o r word from a stream

SYNOPSIS

#inc lude <stdio . h>

int getc (stream)
FILE * stream ;

int getchar ()

int fgetc (stream)
FILE * stream ;

int getw (stream)
FILE * stream ;

DESCRIPTION

getc returns the next byte from the named input stream and positions the �j::t1�1ll
pointer ahead one byte in stream. getc is a macro and cannot be used
where a function is required, i.e . a function pointer cannot point to it .

getchar returns the next character from the standard input stream, stdin.
getchar is also a macro.

fgetc performs the same function as getc, however it is a true function. It is
slower, but takes less space per invocation.

getw returns the next word (integer) from the named input stream. EOF is
returned if end-of-file or error is encountered. Since EOF is a valid integer,
feof or [error will need to be used to check the success of getw. The file
pointer is positioned at the next word. No special alignment is assumed .

DIAGNOSTICS

EOF is returned when end-of-file or error is encountered .

128 GETENV

NAME

getenv - get value of environment variable .

SYNOPSIS

char *getenv(envname)
char *envname ;

DESCRIPTION

getenv searches the environment variable list (kept in environ (see execv)) for
the name envname . The form of an environment variable is name=value . If

the "name" of the variable is identical to envname a pointer to the "value" is
returned. If the variable name is not in the environment list a NULL pointer
is returned.

SEE ALSO

execv

NAME

GETS 129

gets, fgets - get a string from a stream

SYNOPSIS

#inc lude <stdio . h>

char *gets (s)
char * s ;

char *fgets (s , n , stream)
char * s ;
int n ;
FILE * stream ;

DESCRIPTION

gets reads characters from the standard input stream, stdin, into the array
pointed to by s , until an end-of-file or new-line character is encountered .
The new-line character is discarded and the string is terminated with a
null character.

[gets reads characters from the stream into an array pointed to by s, until n - 1
characters are read, or a new-line character is read and transferred to s ,
o r an EOF is encountered. The string is terminated with a null character.

DIAGNOSTICS

If successful, s is returned .

If EOF is encountered and no characters have been read, then no characters
are transferred to s and a null pointer is returned.

If an error occurs, a null pointer is returned . Attempting to use one of these
functions on a file that has not been open for reading will cause an appropriate
error.

130 ISATTY

NAME

isatty - determine file device type .

SYNOPSIS

int isatty(fd)
int fd ;

DESCRIPTION

isatty determines the type of device that is associated with the file descriptor
fd. If the device is the keyboard the result of the function is 1 .

NAME

LSEEK 131

lseek - move read/write file pointer

SYNOPSIS

long lseek(filde s , offset , whenc e)
int fildes ;
long offset ;
int whenc e ;

DESCRIPTION

]seek sets the file pointer associated with fildes according to whenc e as follows:

whenc e = 0 - the pointer is set to offset bytes.

whenc e = 1 - the pointer is set to current position plus offset .

whenc e = 2 - the pointer is set to the file size plus offset .

DIAGNOSTICS

If successful, the pointer position, measured in bytes from the beginning of the ���f:\1:
file, is returned.

If unsuccessful, - 1 is returned and errno is set appropriately.

]seek will fail and the pointer will remain unchanged if:

• f ildes is not an open file descriptor.

• whenc e is not 0 ,1 , or 2 .

• The resulting pointer position would be negative.

132 MALLOC

NAME

malloc, lmalloc, calloc, lcalloc, realloc, lrealloc, free, alloca - RAM allocator

SYNOPSIS

char *malloc (size)
unsigned size ;

char * lmalloc (size)
unsigned long size ;

char *c alloc (nelem , elsize)
unsigned ne lem , elsize ;

char *lc alloc (nelem , e lsize)
unsigned long nelem , elsize ;

char *realloc (ptr , size)
char *ptr ;
unsigned size ;

char * lrealloc (ptr , size)
char *ptr ;
unsigned long size ;

free (ptr)
char *ptr ;

c har *alloc a (size)
unsigned long size ;

DESCRIPTION

malloc returns a pointer to a block of at least size bytes aligned for any use.
Note that the size parameter limits the size of the block to 64K .

lmalloc like malloc but accepts a long parameter (allowing more than 64K bytes
per allocation) .

calloc allocates space for an array of nelem elements of size elsize . The space
is initialized to zeros .

NOTE

lcalloc like calloc but accepts long parameters.

MALLOC 133

realloc changes the size of the block pointed to by ptr to size bytes and returns
a pointer to the (potentially moved) block . Note that the data will remain
unchanged and any data defined beyond size will be lost.

lrealloc like realloc but accepts a long parameter.

free makes space, pointed to by ptr and formerly allocated by malloc, lmalloc,
calloc, or lcalloc available for further allocation. free does not affect the
contents of the space.

alloca allocates size bytes of space in the stack frame of the calling function.
This space is temporary and will be automatically released upon the re­
turn of the calling function .

alloca does not check for stack overflow. The size of the stack is set to the
value in extern long _stksize when the program starts (default 8K bytes) .
_stksize should be redefined if more space is needed :

long _stksize = 10000 ;

main()

DIAGNOSTICS

The functions malloc, lmalloc, realloc , lrealloc, calloc and lcalloc will return a
null pointer if the memory requested is not available .

SEE ALS O

sbrk

134 MATH

NAME

math - floating point math routines

SYNOPSIS

#include <math . h>

double log (x) , loglO (x) , log2 (x) ;
double exp (x) , explO (x) , exp2 (x) ;

double sin (x) , c os (x) , tan (x) ;
double asin (x) , ac os (x) , atan(x) ;

double sqr (x) , sqrt (x) ;

double powerd (x , y) , poweri (x ,
double dabs (x) ;
double dint (x) ;
double mulpower2 (x ,
double lngamma (x) ;
double fac (k) ;

double x , y ;
int a , k ;

k) ;

double matinv (a , c , n)
double *a ;
long *c ;
long n ;

DESCRIPTION

a) ;

These routines implement various mathematical functions. The format of a
double precision floating point number is as follows:

• The leftmost bit (63) is the sign for the mantissa.

• The next bit (62) is the sign for the exponent .

• The next 10 bits (61-52) contain the binary exponent which has a bias of
Ox3ff (1023) .

• The mantissa, contained in bits 51-0, is preceded by an implied 1-bit (left
of the binary point) . Therefore, the theoretical precision is 53 x log10 (2) =

15 .95 decimal digits.

MATH 135

A zero is represented by all zeros in the floating point variable . The largest
possible value for a float variable is contained in the math libary variable
double de su. The value of this variable is Ox7fffffffffffffff . The value of
infinity is represented by the math library variable double dc in. It 's value is
Oxffffffffffffffff . This value is returned in the instances where a floating
point operation exceeded the maximum value of a double floating point number.

The smallest number x > 0 is :

X Ox0000000000000001
(1 + (2- 52)) (2 1o2 5)

1 . 1 125369292536009 x w- 308

If the absolute value of a result is smaller than this number (called underflow) ,
a zero is returned .

log and exp are base e logarithm and exponential functions.

loglO and explO are base 10 logarithm and exponential functions.

log2 and exp2 are base 2 logarithm and exponential functions .

sin, cos, and tan are transcendental functions.

asin , acos and atan are inverse transcendental functions.

sqr is x2 .

sqrt is ..jX.
powerd is xY . This is equivalent to exp2 (x * log2 (y)) .

poweri is the same as powerd but with an integer a for y.

dabs is lx l .
dint is the integer part of the double that is the parameter. The fractional

part is truncated. This is equivalent to

where

sgn (x) X l lx i J

{ - 1
sgn (x) = 0,

'

1 ,

if X < 0;
if X = 0;
if X > 0

liB

136 MATH

NOTE

mulpower2 performs a fast floating point multiplication by 2k .

lngamma is the natural logarithm of the gamma function if 0 < x < 5 . 1 x 10305 •
Outside of this range de in (infinity) , is returned.

fac is k ! , where 0 � k � 170.

matinv is the matrix inverse of the n x n array a. The data in a may be stored
in either row or column major order (C double dimension arrays are row
major) . c is a vector (one dimensional array) of longs used during the
computation. matinv returns the determinant of a as the function result ,
and the inverse of a in a. c has no meaning after matinv finishes. A
determinant value of zero indicates failure (a is destroyed) . Example:

#include <math . h>

double e [2] [2] = {1 , 0 , 0 , 1 } ;

main()
{

double det ;
long C [2] ;

det = matinv(e , C , 2L) ;

I* Identity Matrix *I

printf (" The determinant of e is %f\n" , det) ;
}

All intermediate floating point operations are done in double precision . The
transcendental functions use radians.

NAME

onexit - call user defined function upon exit .

ONEXIT 137

SYNOPSIS

int onexit (userfunc)
int (*userfunc) () ;

DESCRIPTION

onexit is used to define user exit functions. These functions will be executed
before files are closed by the standard exit function exit . The maximum number
of exit functions allowed is eight . If the maximum is exceeded the result of the
function is 1 , TRUE.

One of the eight functions is used by the program profiling code.

SEE ALS O

exit

DIAGNOSTICS

1 is returned after the maximum of eight functions are added to the exit list.

138 OPEN

NAME

open - open for reading or writing

SYNOPSIS

#inc lude <fcntl . h>

int open (fname , of lag)
char *fname ;
int oflag ;

DESCRIPTION

NOTE

open opens a file for reading and/ or writing as specified by the oflag. A file
descriptor for the file is returned. The parameter fname points to a string
containing the name of the file . The oflag values are constructed by OR-ing
flags from the following list :

O_RDONLY open for reading only.

O_WRONL Y open for writing only.

D...RDWR open for reading and writing .

O_CREAT create file if it does not exist.

O_TRUNC truncate size to 0 .

OJHNARY open in binary (untranslated) mode.

Note that only one of the first three may be used. Upon completion, the file
pointer is set to the beginning of the file .

No program may have more than 20 file descriptors open simultaneously.

open with O_CREAT superceeds the older function creat.

DIAGNOSTICS

If successful , the file descriptor is returned .

If unsuccesful, errno is set and - 1 is returned .

NAME

perror, sys_errlist , sysJlerr - System error messages

PERROR 139

SYNOPSIS

perror (s)
char * s ;

extern int sys_nerr ;
extern char *sys_errlist [] ;

DESCRIPTION

perror writes a short description of the last error that set errno onto the stan­
dard stream stderr. The string s is printed first, then a colon , then the message
and a new-line . The string s is usually the name of the program which called
perror.

perror should only be called when a function which sets errno indicates an
error has occurred since errno is not cleared upon successful execution.

The messages printed are stored in the array sys_errlist and may be indexed
by - errno (this is not compatible with UNIX where errno is always positive) .
The number of entries in sys_errlist is stored in sysJlerr.

f�i�f�i�i�i�i�iilitll

140 PRINTF

NAME

printf, fprintf, sprintf, _fprintf, _sprintf - print formatted output

SYNOPSIS

#inc lude <stdio . h>

int printf (format [, arg] . . .)
c har *format ;

int fprintf (stream , format [, arg] . . .)
FILE *stream ;
c har *format ;

int sprintf (s , format [, arg] . . .)
c har * s , *format ;

int _fprintf (stream , format , args)
FILE *stream ;
c har *format , *args ;

int _sprintf (s , format , args)
char *s , *format , *args ;

DESCRIPTION

print[places output on the standard output stream stdout .

fprintf places output on the named output stream.

sprint[places "output" , followed by a null character (\0) in consecutive bytes
starting at *s ; it is the user's responsibility to ensure that enough storage
is available .

..sprint[works like sprint[except the arguments are retrieved from the pointer
args (which normally points into the stack) .

Jprintf is like [prin t[except the arguments are retrieved from the pointer args .

Each function returns the number of characters transmitted (not including \0
for sprint£) , or a negative value if an output error was encountered .

PRINTF 141

Each of these functions converts , formats , and prints its args under control
of the format . The format is a character string that contains two types of
objects: plain characters , which are simply copied into the output stream, and
conversion specifications, each of which results in fetching of zero or more args.
The results are undefined if there are insufficient args for the format . If the
format is exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the
following appear in sequence:

• An optional flag which modifies the meaning of the conversion specifica­
tion .

• An optional decimal digit string specifying a minimum field width. If
the converted value has fewer characters than the field width, it will be
padded on the left (or right, if the left-adjustment flag has been given) ,
with spaces, to the field width . A leading zero indicates zeros should be
used instead of spaces.

• A precision which gives the maximum number of characters to be printed
from a string, or the number of digits to be printed to the right of the l}j![$;�!i!i!��!�� decimal point for float or double.

• An optional ! specifying that a following d, o , u, or x conversion character
applies to a long integer arg .

• A character that indicates the type of conversion to be applied .

The only flag character is the minus sign (-) . When used , the result of the
conversion will be left-justified within the field.

A field width or precision may be ' * ' instead of a digit string . In this case an
extra integer argument provides the field width or precision .

The conversion characters and their meanings are :

d,o ,u,x The integer arg is converted to signed decimal , unsigned octal , decimal,
or hexadecimal notation respectively ; the letters abc def are used for x
conversiOn .

f The float or double arg is converted to decimal notation in the style:

[-] (digits) . (digits)

142 PRINTF

NOTE

where the number of digits after the decimal point is equal to the precision
specification . If the precision is missing , six (6) digits are output ; if the
precision is zero (0) , no decimal point appears.

e , g The float or double arg is converted to the style:

[-] (digit) . (digits)E(+ 1 -) (digits)
'

where there is one digit before the decimal point and the number of digits
after it is equal to the precision; when the precision is missing , six (6)
digits are output ; if the precision is zero (0) , no decimal point appears .

c The character arg is printed.

s The arg is taken to be a string (character pointer) and characters from
the string are printed until a null character (\0) is encountered or the
number of characters indicated by the precision specification is reached.
If the precision is missing , it will be taken to be infinite, so all characters
up to the first null character are printed . A null arg will yield undefined
results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field ;
if the result of the conversion is wider than the field width, the field is simply
expanded to contain the conversion result. Characters generated by print[and
fprintf are printed as if putc had been called.

..sprint[and Jprintf are not standard UNIX functions .

..sprint[and Jprintf allow user defined functions to have the functionality of
print[. The following example demonstrates:

EXAMPLE

int dprintf (format , args)
char * args ;
char *format ;

{
if (DEBUG) {

I * Debug printf */

printf (" * * * DEBUG : 11) ;
_fprintf (stdout , format , targs) ;

}
}

NAME

PUTC 143

putc, putchar, fputc, putw - put a character or word on a stream

SYNOPSIS

#inc lude <stdio . h>

int putc (c , stream)
c har c ;
FILE * stream ;

int putchar (c)
c har c ;

int fputc (c , stream)
c har c ;
FILE * stream ;

int putw (w , stream)
int w ;
FILE * stream ;

DESCRIPTION

pu tc writes the character c to the output stream at the current pointer position .
putchar (c) is defined as putc (c , stdout) . putc and putchar are both
macros.

fputc is similar to putc but it is a true function . It is slower but takes less
space per invocation .

pu tw writes the word (integer) w to the output stream at the current pointer
position . putw does not force even alignment on the file.

DIAGNOSTICS

If successful, the value written is returned.

If unsuccessful, EOF is returned. This can occur if the file is not open for
writing or if the output file cannot be grown .

Because EOF is a valid integer, [error should be used to check for error when
using putw.

ra

144 PUTS

NAME

puts, fputs - put a string on a stream

SYNOPSIS

#inc lude <stdio . h>

int put s (s)
char * s ;

int fputs (s , stream)
char * s ;
FILE * stream ;

DESCRIPTION

puts writes the null-terminated string, pointed to by s , to the standard output
stream stdout . The string is followed by a new-line character.

[puts writes the null-terminated string , pointed to by s, to stream. The string
is not followed by a new-line character.

Neither function writes out the terminating null character.

DIAGNOSTICS

EOF is returned if an error occurs . This will happen if output is attempted to
a file not open for writing.

NAME

qsort - a quicker sort.

QSORT 145

SYNOPSIS

qsort (base , nelem , width , c ompare)
char *base ;
int nelem , width ;
int (*c ompare) () ;

DESCRIPTION

NOTE

qso1·t is an implementation of the quicksort algorithm. The first parameter is a
pointer to the base of the data. The second parameter nelem is the number of
elements in the array. The third parameter width is the width of each element
in bytes. The last parameter c ompare is a pointer to the comparison routine to
be called. This user-defined function will be passed two arguments which are
pointers to the elements being compared. This routine must return an integer
less than , equal to, or greater than 0 accordingly as the first argument is to be
considered less than, equal to, or greater than the second.

The quicksort algorithm used is recursive.
EXAMPLE

#inc lude <stdio . h>

int tes t (a , b)
int * a , *b :
{

re turn * a - *b ;
}

main()
{

int x [l OO] , i ;

for (i=O ; i < l OO ; i + +)
x [i] = rand() ;

I * Cre ate some random data * I

qs ort (x , 1 00 , sizeof (int) , test) ;

}

for (i=O ; i < l OO ; i+�)
printf (" �d " , x (i.]) ;

I * Display s orted resul t * I

puts (11 Press RETURN to continue ") ; getchar () ;

146 RAND

NAME

rand, srand - simple random-number generator

SYNOPSIS

#inc lude <stdio . h>

int rand ()

srand(seed)
long seed ;

DESCRIPTION

NOTE

rand uses a multiplicative congruential random-number generator.

srand can be called at any time to reset the random-number generator to a
new starting point. The generator is initially seeded with a value of 1 .

rand and srand are both macros defined i n <stdio . h> .

NAME

READ 147

read - read from a file

SYNOPSIS

int read (fildes , buf , nbyte)
int
char
unsigned

DESCRIPTION

filde s ;
*buf ;
nbyte ;

read attempts to read nbytes bytes from the file associated with f ildes into
the buffer pointed to by buf .

fildes is a file descriptor obtained by using an open or creat .

A value of 0 is returned when an EOF is reached.

read will fail if fildes is not a valid file descriptor open for reading or if an
operating system error occurs.

If the O..BINARY flag is not set then line-feed/carriage return combinations are
translated to line-feeds (except from the keyboard) .

DIAGNOSTICS

If successful, a non-negative integer is returned indicating the number of bytes
actually read.

If unsuccessful, a - 1 is returned and errno is set appropriately.

148 RENAME

NAME

rename - change the name of a file .

SYNOPSIS

int rename (from , to)
char *from , *to ;

DESCRIPTION

rename is used to change the existing name of a file on a disk to another name .
The from parameter is a pointer to the name of the current file on disk . The
to parameter is a pointer to the new name for the file.

DIAGNOSTICS

If unsuccesful, errno is set and - 1 is returned.

NAME

SBRK 149

sbrk , lsbrk - change data segment space allocation

SYNOPSIS

char * sbrk (inc r)
int inc r ;

char * lsbrk(inc r)
long inc r ;

DESCRIPTION

NOTE

sbrk requests inc r bytes of additional memory from the operating system and
returns a pointer to the block . The request is limited to 32K since inc r
is a signed integer.

lsbrk is like sbrk except a long value is passed allowing for far greater alloca­
tions .

Memory allocated by sbrk and lsbrk may not be returned to the system and l:::iUi�t�i!1:�\;:�:l! remains allocated until the program terminates .

This is not compatible with UNIX. In particular, blocks returned by sequential
calls to sbrk or lsbrk are not guaranteed to be adjacent in memory. This is due
to the memory management scheme employed by the Atari operating system.

DIAGNOSTICS

If successful, sbrk returns a pointer to the additional memory.

If unsuccessful , a - 1 is returned and errno is set appropriately.

SEE ALS O

malloc, Malloc

150 SCANF

NAME

scanf, fscanf, sscanf - convert formatted input

SYNOPSIS

#inc lude <stdio . h>

int sc anf (format [, pointer] . . .)
char *format ;

int fsc anf (stream , format [, pointer] . . .)
FILE * stream ;
char *format ;

int ssc anf (s , format [, pointer] . . .)
char * s , *format ;

DESCRIPTION

scan[reads from the standard input stream stdin.

fscanf reads from the named input stream.

sscanf reads from the character string s .

Each function reads characters, converts them according to a format , and stores
the results in its arguments. The arguments consist of a control string format
and a set of pointer arguments indicating where the converted input should be
stored .

The control string may contain :

• White-space characters (blanks, tabs, and new-lines) which cause input
to be read up to the next non white-space character.

• An ordinary character (not %) , which must match the next character of
the input stream.

• Conversion specifications, consisting of the character % , an optional as­
signment suppressing character * , an optional numerical maximum field
width, an optional 1 indicating the size of the receiving variable, and a
conversion code.

SCANF 151

A conversion specification directs the conversion of the next input field ; the
result is placed in the variable pointed to by the corresponding argument, unless
assignment suppression was indicated by * · The suppression of assignment
provides a way of describing an input field which is to be skipped. An input
field is defined as a string of non-white-space characters ; it extends to the next
inappropriate character or until the field width, if specified, is exhausted.

The conversion code indicates the interpretation of the input field. For a sup­
pressed field, no pointer argument should be given . The following conversion
codes are legal :

% a single % is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an
integer pointer.

h a short decimal integer is expected, the corresponding argument should
be a short pointer .

o an octal integer is expected; the corresponding argument should be an
integer pointer. lliii���jjjl

x a hexadecimal integer is expected; the corresponding argument should be
an integer pointer.

e ,f ,g a floating point number is expected; the next field is converted accord­
ingly and stored through the corresponding argument, which should be
a pointer to a float. The input format for floating point numbers is an
optionally signed string of digits, possibly with a decimal point, followed
by an optional exponent field consisting of an e , or an E followed by an
optionally signed integer.

s a character string is expected; the corresponding argument should be a
character pointer pointing to an array of characters large enough to accept
the string and a terminating \0, which will be added automatically. The
input field is terminated by a white-space character.

c a character is expected; the corresponding argument should be a character
pointer . The normal skip over white space is suppressed in this case; to
read the next non-space character, use l s . If a field width is given, the
corresponding argument should refer to a character array ; the indicated
number of characters is read.

152 SCANF

The conversion characters d, o , and x may be preceded by l to indicate that
a pointer to long rather than int is in the argument list . Also, the conversion
characters e , f , and g may be preceded by l to indicate that a pointer to double
rather than to float is in the argument list.

scan[conversion terminates at EOF, at the end of the control string , or when
an input character conflicts with the control string . In, the latter case , the
offending character is left unread in the input stream.

scan[returns the number of successfully matched and assigned input items; this
number can be zero in the event of an early conflict between an input character
and the control string. If the input ends before the first conflict or conversion,
EOF is returned.

DIAGNOSTICS

NOTE

These functions return EOF on end of input and a short count for missing or
illegal data items.

Trailing white space (including a new-line) is left unread unless matched in the
control string.

NAME

SETB UF 153

setbuf, setbuffer, setlinebuf - assign buffering to a stream

SYNOPSIS

#inc lude <stdio . h>

setbuf (stream , buf)
FILE * stream ;
char *buf ;

setbuffer (stream , buf , bufsize)
FILE *stream ;
char *buf ;
int bufsize ;

setlinebuf (stream)
FILE *stream ;

DESCRIPTION

Three types of buffering are available: unbuffered, block buffered, and line
buffered . When an output stream is unbuffered , information appears on the
destination file or terminal as soon as written; when it is block buffered many
characters are saved up and written as a block ; when it is line buffered characters
are saved up until a newline is encountered. Normally all files are block buffered.

setbuf is used after a stream has been opened but before it is read or written.
It causes the character array pointed to by buf to be used instead of an
automatically allocated buffer. If buf is a NULL character pointer then
input/output will be completely unbuffered. A constant BUFSIZ , defined
in the <stdi o . h> header file, tells how big an array is needed.

char buf [BUFSIZE] ;

setbuffer is used to set up a user defined 1/0 buffer whose size is determined by
the parameter bufsize . If buf is NULL the 1/0 buffer will be completely
unbuffered. Note that this function should only be used after a stream
has been opened , but before it has be read or written.

setlinebuf is used to change stdout or stderr from block buffered or un­
buffered to line buffered. Unlike setbuf and setbuffer it can be used
at any time that the file descriptor is active.

154 SETB UF

NOTE

If the space passed as buf cannot be freed (ie . i t was not allocated by malloc) ,
then the stream must be set to unbuffered before closing .

NAME

SETJMP 155

setjmp, longjmp - non-local goto

SYNOPSIS

#inc lude <stdio . h>

int set j mp (env)
j mp_buf env ;

longj mp (env , val)
j mp_buf env ;
int val ;

DESCRIPTION

NOTE

These functions are useful for dealing with errors and interrupts encountered
in a low-level subroutine of a program.

setjmp saves its stack environment in env (whose type, j mp_buf , is defined in
the <stdio . h> header file) , for later use by longjmp. It returns the value �:i:IO��i:i:i:l:::jj!i! 0.

longjmp restores the environment saved by a call of setjmp with the same env
argument. After longjmp is called , program execution continues as if the
corresponding call of setjmp had just returned the value val . longjmp
cannot cause setjmp to return the value 0. If longjmp is invoked with
a second argument of 0, setjmp will return 1. All accessible data have
values as of the time longjmp was called.

If longjmp is called when env was never primed by a call to setjmp, or when
the last such call is in a function which has since returned, something bogus
will happen.

EXAMPLE

#inc lude <stdio . h>

j mp_buf env ;

deepl y_nested_func tion ()
{

156 SETJMP

if ((p = malloc (30)) == NULL)
longj mp (env , 1) ; I* Out of memory * I

}

main()
{

}

if (s et j mp (env)) {
c l e anup () ;
exi t (l) ;

}

I * Come back here on fatal error * I '

NAME

STRING 157

strcat , strncat, xstrcat , strcmp , strncmp, strcpy, xstrcpy, strncpy, xstrncpy,
strlen, index, rindex - string operations

SYNOPSIS

#inc lude <string . h>

char * strc at (s l , s2)
char *xtrc at (s l , s2)
char *strnc at (s l , s2 , n)
int strc mp (s l , s2)
int strnc mp (s l , s2 , n)
c har * strcpy (s l , s2)
c har *xtrcpy (s l , s2)
c har * strncpy (s l , s2 , n)
c har *Xtrnc py (s l ,

c har * s l , *s2 ;
int n ;

int strlen (s)
char * s ;

c har * index(s , c)
c har *rindex (s , c)

c har * s , c ;

DESCRIPTION

s2 , n)

The arguments s l , s2 , and s point to strings (arrays of characters terminated
by a null character) . The functions strcat, xstrcat , strncat , strcpy, xstrcpy,
strncpy, and xstrncpy all alter sl . These functions do not check for overflow
of the array pointed to by s l .

strcat appends a copy of string s 2 t o the end of string s l and returns s l .

xtrcat appends but returns a pointer to the end of s l (pointing a t the null
byte) .

strncat appends at most n characters.

strcmp compares its arguments and returns an integer less than, equal to, or
greater than 0 according as sl is lexicographically less than, equal to, or
greater than s2 .

158 STRING

NOTE

strncmp makes the same comparison but looks at, at most, n characters .

strcpy copies string s2 to s 1 , stopping after the null character has been copied.
The result is s 1 .

xtrcpy copies but returns a pointer to the end of s 1 .

strncpy copies exactly n characters, truncating s2 or adding null characters to
s1 if necessary. The result will not be null-terminated if the length of s2
1s n or more .

xtrncpy copies like strncpy, but returns a pointer to the end of s 1 .

strlen returns the number of characters in s , not including the terminating null
character.

index (rindex) returns a pointer to the first (last) occurrence of c in string s .
NULL i s returned if c is not i n s .

All of the string functions are declared in the <string . h> header file .

NAME

STRTOL 159

strtol , atol , atoi - convert string to integer

SYNOPSIS

long strtol (str , ptr , base)
char * str ;
char * *ptr ;
int base ;

long atol (str)
char * str ;

int atoi (str)
char *str ;

DESCRIPTION

strtol returns as a long integer the value represented by the character string
str. The string is scanned up to the first character inconsistent with the base.
Leading white-space characters are ignored .

If the value of ptr is not (char **) NULL, a pointer to the character terminating
the scan is returned in *ptr: If no integer can be formed, *ptr is set to str,
and zero is returned .

If base is positive and not greater than 36, it is used as the base for conversion .
After an optional leading sign, leading zeros are ignored, and "Ox'' or "OX" is
ignored if base is 16.

Truncation from long to int can take place upon assignment or by an explicit
cast.

atoJ takes the ASCII representation. of a number and converts it into a long
integer.

atoi takes the ASCII representation of a number and converts it into an integer.

SEE ALS O

at of

160 UNGETC

NAME

ungetc - push a character back into the input stream

SYNOPSIS

#inc lude <stdio . h>

int ungetc (c , stream)
char c ;
FILE * stream ;

DESCRIPTION

ungetc inserts the character c into the buffer associated with an input stream.
c will be returned by the next read from that stream. c is returned and the
stream is left unchanged.

c can be read by getc, getchar, [read , gets, [gets, fgetc, fscanf, and scan£.

One character pushback is guaranteed provided that something has been read
from the stream.

If c equals EOF , ungetc does nothing to the buffer and returns EOF .

[seek erases all memory of inserted characters.

DIAGNOSTICS

A read must be performed prior to the ungetc.

EOF is returned if ungetc cannot insert the character .

NAME

unlink - remove a directory entry

SYNOPSIS

int unlink(fname)
char *path ;

DESCRIPTION

unlink removes the directory entry pointed to by fname .

UNLINK 161

The named file is unlinked unless the operating system returns an error (see
errno) .

DIAGNOSTICS

If successful, a zero is returned.

If unsuccessful, a - 1 is returned and errno is set to indicate the error.

�
� I

162 WRITE

NAME

write - write on a file

SYNOPSIS

int write (fildes , buf , nbyte)
int
char
unsigned

DESCRIPTION

fildes ;
*buf ;
nbyte ;

write will write nbyte bytes from the buffer pointed to by buf to the file asso­
ciated with the fi ldes .

f i lde s i s a file descriptor obtained from a creat or open .

Writing begins at the current pointer position and is incremented by the number
of bytes actually written after returning from write.

write will fail if an operating system error occurs . The pointer position will
remain unchanged in this event.

If the O..BINARY flag is not set then line feeds are translated to carriage re­
turn/line feed combinations (except to the screen) .

DIAGNOSTICS

If successful, the number of bytes actually written is returned.

If unsuccessful, - 1 is returned and errno is set appropriately.

Chapt er 1 6

GEM AES

Introduction

AES stands for ((Application Environment Services" . I t consists of a series of
subroutines that handle displaying , creating and maintaining windows, dialog
boxes , menu bars and other ((high-level" objects. AES is composed of several
parts :

• subroutine libraries divided into various ((managers"

• a kernel with limited multi-tasking support

• a desk accessory buffer

• a menu and alert buffer

The Screen Manager

The screen manager monitors the actions of the mouse outside the work area of
the active window and reports them as events to the process owning the active
(or top) window. The work area of a window is the area excluding the title,
information line, scroll bars, close box etc. The screen manager intercepts mouse
events and reports high-level events to the application (such as window redraw,
menu selected and window scroll) . An application can get the raw mouse events
itself by calling wind_update with a value of BEG.J.1CTRL. Unfortunately it cannot
then pass the mouse event on to the Screen Manager if the application decides
it really didn't want the mouse event .

163

164

IIOf.�J

CHAPTER 16. GEM AES

The Kernel

The kernel allows a total of six desk accessories and one main application .
The dispatcher portion of the kernel controls the execution of processes

to ensure none monopolize the system. This is done by assigning each of the
processes - such as the Screen Manager, the primary application , or background
processes - to one of two lists.

The two lists are the ready and not-ready. If an application is waiting for an
event such as a keystroke, a mouse button press, mouse movement , a message,
or time passage , it is assigned to the not-ready list . If a process is presently
ready to run it is then assigned to the ready list . The ready list will execute in
order .

The process dispatcher runs non-preemptively : it is only executed when an
application makes a GEM call . Because of this, processes should make sure
some GEM routine is called periodically, even if it serves no other purpose than
to run the dispatcher.

Desk accessory buffer

The desk accessory buffer is just the section of memory that contains the desk
accessory programs. Desk accessories are executable files ending with the ex­
tension " . ACC" . They are loaded into memory and executed when the GEM
desktop program starts at boot time. A desk accessory starts by performing
any required initialization, including a menu_register call which places the ac­
cessory 's name in the desk menu , and then calling event_multi which waits for
an event. At this point GEM desktop takes over and loads the next desk ac­
cessory. A desk accessory will be re-started when the user selects its name in
the desk menu. This causes an AC_OPEN event to be sent to the accessory.

Menu/ Alert buffer

The menu/alert buffer is just a section of RAM used to hold the part of the
screen bit map covered up by a pull-down menu or alert box so that the screen
can be restored when the menu or alert box goes away. The buffer can hold 1/4
of the screen's bit map (which places a maximum size on a menu or alert box) .

The area of the screen covered up by a window is not saved, so the screen
manager sends redraw events to applications when a window is moved or closed.
This is somewhat slower than the buffer method, but doesn 't require nearly as
much memory.

1 6. 1 CREATING A GEM APPLICATION

GEM AES interface

GEM AES is implemented as a series of functions divided into "managers" .
The functions are defined in the standard C library ; but the code that actually
performs the operation is in the ROM. The library functions merely translate
from the conventional C style function call to the somewhat unusual method
employed by the ROM. A C programmer normally need not concern himself
with the internal mechanisms, however it is sometimes necessary to know these
things.

All data passed to and received from the AES ROM routines are sent
through six global arrays. These arrays are defined in the standard C library
and are automatically included in any program using the AES functions . The
only parameter passed to the ROM is a pointer to a struct of pointers to these
six arrays. The arrays are defined as follows:

int control [C_SIZE+1] , global [G_SIZE+1] ;
int int_in [I_SIZE+ 1] , int_out [O_SIZE+1] ;
long addr_in [AI_SIZE+ 1] , addr_out [AD_SIZE+1] ;

The constants are defined in "GEMBIND.H" .
The global array is used as follows:

global [O]
[1]

[2]
[3 - 4]

[5 - 6]

[7- 15]

The version of GEM AES , pre-set .
The largest number of applications the version of AES can
support concurrently.
The application ID , set by AES upon invoking the application.
A LONG value which can be set and used as the application
desires.
A LONG address which points to the array of tree addresses
initialized by rsrc_load
Reserved for use by AES .

A program may open multiple resource files by saving and restoring global [5]
and [6] . This pointer is used by rsrc_gaddr.

The other arrays don't have anything useful for the C programmer in them.

1 6 . 1 Creating a GEM Application

A GEM application must first call appUnit . This function sets up any appli­
cation specific data structures and returns an application ID ap_id. This ID
is placed in the global array and is used by AES to identify the application .
appl_exit must be called before the program exits.

165

166 CHAPTER 1 6. GEM AES

The example program developed in this section displays the dialog shown
in figure 16 . 1 when "About test . . . " is choosen in the Desk menu .

m
.

.

.

.

Th i s i s a Test ! OK

Figure 16 . 1 : Example Dialog

int ap_id ; I • Appli c ati on I D • I

main()
{

ap_id = appl_ini t () ;

appl _exi t () ;
}

Select the Application's Resource File (s)

The specification of certain graphical/textual objects is kept on disk in a file
called a resource file instead of being hard coded within the program. Typically
the menu bar , dialog boxes, and icons are stored this way. A resource file will
have a " .RSC" extension.

Screen resolutions are 640 X 400 (monochrome) , 640 x 200 (four color) , and
320 X 200 (sixteen color) . It may be necessary to maintain several resource
files for icons because of the difference in the screen's aspect ratio; one file for
high-res (monochrome) mode and low-res, and one file for medium-res. The
aspect ratio for low and high resolution modes are the same.

If knowledge of the screen 's resolution is required prior to loading the proper
resource file , it may be obtained from the GEMDOS function Getrez .

Since the example has an icon, two " .RSC" files will be used . phys_handle
isn 't used in this example, but is typically needed in larger GEM programs.

#inc lude <osbind . h>

int gr_hwchar , gr_hhc har ;
int gr_hwbox , gr_hhbox ;
int reso luti o n ;

I • Size of a charac ter cell (in pixels) • I
I • Size of box b i g enough to hol d a charac ter • I
I • 0=320x200 , 1 =640x200 , 2=640x400 • I

1 6. 1 CREATING A GEM APPLICATION

int phys _handl e ;

phys _handl e = graf_handl e (lgr_hwc har , lgr_hhchar , lgr_hwbox , tgr_hhbox) ;
re s o lution = Getre z () ;

Load the Resource File (s)
To load the resource file, a call is made to rsrcJoad . This causes the Resource
Manager to allocate memory for the resource file, load it, and set up internal
pointers .

if (resolution == 1)
rsrc_l o ad (" testme d . rsc ") ; I * Medium rez . • I

else
rsrc_l o ad (" testhi gh . rsc ") ; I * Used for both hi gh and low *I

0 btain Resource Addresses

After rsrcJoad has been performed, a call to rsrc_gaddr is used to return the
address of any OBJECT contained in the resource file. Typically symbolic
names created by the Resource Construction Program (RCP) are used . These
names are defined in a " .H" file created by the RCP (called "test .h" in this
example) .

#inc lude <obdef s . h>
#inc lude 11 te s t . h11 I* He ader file from RCP * I

OBJECT * about ;
int x , y , w , h ;

I * Out o f paper di alog • I

rsrc_gaddr (O , TES T , labout) ;
form_c ente r (about , lx , ly , lw , lh) ;
obj c _draw (about , 0 , 1 0 , x , y , w , h) ;
form_do (about , 0) ;

Capturing an Event

I • Ge t address o f di alo g • I
I • Center di alog on screen * I
I • Draw the dial o g * I
I * Wai t f o r O K button • I

After all initializations are complete, a GEM program goes into its main event
loop. This is just a do . . . whi le loop that waits for an event, processes it
and loops back for the next event . Events are caused by user actions, such as
selecting a menu item, pressing a key or moving a window. The event driven

167

168 CHAPTER 16. GEM AES

method avoids "modes" because the user is always able to do anything (dialog
boxes are an exception though) .

The function evnt_multi will wait for any type of event that can be created .
The example only deals with message events so evntJnesag is used instead.

Example

Here is the complete example:

I•
* A simple GEM applic ation
• I

#�inc lude <stdi o . h>
#�inc lude <osbind . h>
#�inc lude <obdefs . h>
#�inc lude < gemdefs . h>
#�inc lude "test . h"

I •
* S ome global variables
•I

int gr_hwchar , gr_hhchar ;
int gr_hwbox , gr_hhbox ;
int res olutio n ;
int ap_i d ;
int phys_handle ;
OBJECT •menubar ;
int qui t ;

about ()
I •

I • Defines Obj e c t Manager symbo ls • I
I • Defines other GEM AES symbo ls • I
I • He ader file from RCP • I

I • Size o f a charac ter c e l l (in pixels) • I
I • Size o f box big enough t o hol d a c harac ter * I
I • 0=32 0x200 , 1 =640x200 , 2=640x400 * I
I • Appli c ation I D * I

I • l=exit from event l o o p • I

* Displ ays the " About test . . . 1 1 di alog box .
* I

{
O BJECT * about ;
int x , y , w , h ; I • Loc ation and size o f dialog box o n s c reen • I

rsrc _gaddr (O , TES T , tabout) ;
form_c ente r (about , tx , ly , tw , th) ;

I • Get addres s of dial o g • I
I • Center on s c reen • I

form_dial (FND_START , 0 , 0 , 0 , 0 , x , y , w , h) ; I • Re serve screen spac e • I

obj c _draw (about , 0 , 1 0 , x , y , w , h) ; I • Draw i t * I
form_do (about 0) ; I • Waits for an exitable item (OK) • I

I • De-hilite the O K button for the next time i t i s di splaye d • I
obj c _c hange (about , ABOUTOK , 0 , x , y , w , h , NORMAL , 0) ;

form_dial (FND_FINISH , 0 , 0 , 0 , 0 , x , y , w , h) ; I • Release screen spac e • I

1 6. 1 CREATING A GEM APPLICATION

}

main()
{

}

int me s s age [8] ;

ap_i d = appl _ini t () ;

phys _handl e = graf_handle (kgr_hwchar , kgr_hhchar , tgr_hwbox , kgr_hhbox) ;
reso lution = Getrez () ;

I * Load resource file • I
i f (re s o l ution = = 1)

rsrc_l oad (" testme d . rs c ") ; I* Me dium rez . • I
else

rsrc _l oad (" testhi gh . rs c ") ; I * Us ed for both high and low * I

I * Display the menu b ar • I
rsrc _gaddr (O , MENU , kmenubar) ;
menu_bar (menubar , 1) ;
graf _mous e (ARRO W , 1) ; I • Change to arro w from bumble bee • I

do { I * Enter main event loop * I
e vnt_me s ag (message) ;

switch (message [O]) {
c ase MN_S ELECTED :

switch (message [3]) {
c ase MNDESK :

about () ;

}

bre ak ;

c ase MNFI LE :
qui t = 1 ;
bre ak ;

I • Onl y " Qui t" appe ars i n the Fil e menu s o • I
I * I don ' t have to look at the item no . • I

I * De-hilite the menu title • I
menu_tnormal (menubar , mess age [3] , 1) ;
bre ak ;

}
} whi l e (! quit) ;

menu_bar (menubar , 0) ;
rsrc_free O ;
appl_exi t () ;

I * Clear menu bar * I
I * Rel e ase resourc e file ' s memory • I

A more complete GEM example may be found in the EXAMPLES folder of
the WORK disk.

169

1 6.2 APPLICATIONS MANAGER

1 6 . 2 Applications Manager

appLi.nit

appLread

appLwrite

applJind

appLtplay

appLtrecord

appl_exit

Introduction

returns application ID and initializes GEM for the
application .

reads a specific number of bytes from the event
managers buffer.
writes a specific number of bytes from the event
managers buffer.
finds another application's ID.

plays back a series of AES recorded events.
records a series of user interactions with AES .
exits a session with the application manager.

The Applications Manager is a set of routines designed to communicate with
the operating system and other applications.

1 71

172 APPL_EXIT

NAME

appLexit - GEM AES cleanup

SYNOPSIS

int appl_exit ()

DESCRIPTION

NOTE

appLexit is used when an AES application is about to shut down. This function
cleans up the GEM environment freeing AES related data structures as well as
restoring the machine to its state before the start of the application .

A call to this function does not terminate the execution of the program.

DIAGNOSTICS

The result of the function is 0 if an error occurs.

NAME

APPL_FIND 173

appLfind - find the ID of another application

SYNOPSIS

int appl_find(ap_fpname)
char *ap_fpname ;

DESCRIPTION

applJind allows an application to obtain the ID of another application in order
to communicate with it. This is done by passing an 8 character string which
contains the file name of the application being looked for in the parameter
ap_fpname . The string must l::!e padded with blanks to make it 8 characters in
length . If the application is found, its application ID will be returned as the
result of the function.

DIAGNOSTICS

The result of the function is - 1 if an error occurs.

SEE ALS O

appLread, appLwrite

17 4 APPLJNIT

NAME

appUnit - initialize the application

SYNOPSIS

int appl_init O

DESCRIPTION

appLinit initializes internal GEM AES arrays. If the application's initialization
was successful a positive application ID is returned as the result of the function.

DIAGNOSTICS

The result of the function is - 1 if an error occurs.

SEE ALS O

appLexit

NAME

APPL_READ 175

appL.read - reads a number of bytes from a message pipe .

SYNOPSIS

int appl_read (appl_id , length , buff)
int appl_id ;
int length ;
char *buff ;

DESCRIPTION

appLread reads a message sent from another active application whose ID is
specified by the parameter appLid. The parameter length indicates the num­
ber of bytes to be read from the message pipe and the pointer buff tells the
function where the data is to be placed .

DIAGNOSTICS

The result of the function is zero if an error occurs.

SEE ALS O

appLinit , appl_write

176 APPL_TPLAY

NAME

appLtplay - replays a portion of a record of user actions

SYNOPSIS

int appl_tplay (ap_tpmem , ap_tpnum , ap_tpsc ale)
char *ap_tpmem ;
int ap_tpnum ;
int ap_tpsc ale ;

DESCRIPTION

appLtplay replays user events that were recorded through a call to the AES
function appLtrecord . The parameter ap_tnum contains the number of user
events that are defined in the buffer pointed to by the parameter ap_tpmem.
The last parameter ap_tpsc ale is a speed factor which determines the rate at
which the user's events will be played back . The values for this parameter range
from 1 to 10 ,000.

50 Half speed
100 Full speed
200 Twice speed

DIAGNOSTICS

The result of this function is always 1 .

SEE ALS O

appLtrecord

NAME

APPL_TRECORD 177

appLtrecord - records user actions

SYNOPSIS

int appl_trec ord (ap_trmem , ap_trc ount)
char *ap_trmem ;
int ap_trc ount ;

DESCRIPTION

appLtrecord records up to ap_trc ount user actions. These actions can later be
replayed by appLtplay. The parameter ap_trmem i s a pointer to a buffer where
the user event messages will be stored. Note that there should be approximately
6 times ap_trc ount bytes available in the user event buffer. The last parameter
ap_trc ount contains the number of events to record .

Each user action is stored in two parts: two bytes that define the action and
four bytes that describe the action. The result of the function is the number of
actions actually recorded .

Two byte code for the event :

OxOOOO timer event
OxOOOl button event
Ox0002 mouse event
Ox0003 keyboard event

The next four bytes store information dependent upon the event :

timer - the number of milliseconds elapsed

button event - The low word is the button state.
0 =

1 =

button up
button down

The high word is the number of clicks.

mouse event - low word
high word

mouse x-coordinate
mouse y-coordinate

keyboard event - the high word is the keyboard state, the low word is the
character.

SEE ALSO

appLtplay

178 APPL_ WRITE

NAME

appLwrite - write a number of bytes to a message pipe

SYNOPSIS

int appl_write (appl_id_wid , length , buff)
int appl_id ;
int length ;
char *buff ;

DESCRIPTION

NOTE

appl_write sends a message event to another application whose ID is specified
by the parameter appLid. The parameter length indicates the number of bytes
to be placed in the message pipe, and the pointer buff points to the data that
is to be placed in the message pipe .

This routine is useful for posting message events to the application running . For
a complete description of message types refer to page 179. Also, this routine is
useful for creating application defined message events.

DIAGNOSTICS

The result of the function is zero if an error occurs.

SEE ALS O

appLread, Event Manager Introduction (pg. 179)

1 6. 3 EVENT MANAGER

1 6 . 3 Event Manager

evnt..keybd

evnt_bu tton
evnt_mesag

evnt_timer
evnt_multi

evnt_dclick

Introduction

waits for keyboard event

waits for a mouse button event
waits for a message event

waits for a timer event
waits for any of multiple events

sets and obtains the double clicking speed

In an attempt to alleviate the need for time consuming polling of inputs, GEM
provides routines which allow the operating system to look for many inputs
(events) , and to activate the application when an input occurs.

Mouse Button Event

The mouse button event occurs when the following equation is true:

(current....state AND mask) = desiredstate

The LSB is the left-most mouse button. The current state of 012 would indicate
the left mouse button is pressed . The mask sets the buttons the application
is interested in looking at. So, a mask of 102 would only look at the second
mouse button. The final variable (desired....state) is what is being looked for ; a
value of 01 2 , would look for the left button being pressed.

It is also possible to look for such things as "double clicks" from the mouse.
This is done by specifying the number of clicks necessary in an interval .

Mouse Event

A mouse event occurs when the mouse is either inside or outside a rectangle.
This could be used to change the mouse form when the mouse enters a specified
rectangle on the screen. The application would be inactive as long as the
mouse is in the rectangle, and would be re-activated when the mouse leaves the
rectangle .

Message Event

GEM allows many applications to run at the same time. The application with
the top window has control of the keyboard and the menus which appear in the

179

180 CHAPTER 1 6. GEM AES

menu bar. For many reasons the user may wish to manipulate many items which
the application does not know about directly. Such as menu selection and user
interaction with the window border. The information from these interactions
are passed to the application through a message pipe , resulting in a Message
Event .

The messages are stored in the message pipe in first-in-first-out order. A
Message Event occurs when the application receives the message, and each
message is removed as it is read by the application.

There are several pre-defined types of messages. Each message has a maxi­
mum length of 8 words (16 bytes) , and all of the pre-defined types use the first
three elements of ev...JIIgpbuff in the same manner:

ev ...JIIgpbuff [0]

ev ...JIIgpbuff [1]

ev ...JIIgpbuff [2]

MN _SELECTED

message type, a number

the apjd of the application originating the message .

the message length in excess of the predefined 16
bytes. The portion beyond 16 bytes can be read by
the applJead call.

This message notifies the application a user has selected a menu item.

ev...JIIgpbuff [0]

ev ...JIIgpbuff [3]
ev...JIIgpbuff [4]

WM_REDRAW

10

the object index of the menu title selected

the object index of the menu item selected

This indicates part of the window work area must be redrawn due to user action.
This is the area of the window other than any border, title bar, or information
line.

ev...JIIgpbuff [0]

ev ...JIIgpbuff [3]

ev...JIIgpbuff [4]

ev ...JIIgpbuff [5]

ev...JIIgpbuff [6]

ev ...JIIgpbuff [7]

20

the window handle to be redrawn

the screen coordinate x position of the window area
to be redrawn
the screen coordinate y position of the window area
to be redrawn
screen coordinate width of the area

screen coordinate height of the area

1 6. 3 EVENT MANAGER

WM_TOPPED

This tells the application it (the application) has requested its or another ap­
plication 's window to be moved to the top and made active .

ev_mgpbuff [0]

ev _mgpbuff [3]

WM_CLOSED

2 1
the handle of the window

This indicates the user wishes the application's window closed.

ev_mgpbuff [0]

ev_mgpbuff [3]

WM_FULLED

22
the handle of the window

This informs the application that the user has clicked the window full box, thus
requesting the window be enlarged to its full size. If the window is at its full
size, this is interpreted to restore the window to its previous size.

ev_mgpbuff [0]
ev_mgpbuff [3]

WM_ARROWED

23
the handle of the window

One of the arrows or scroll bars in the application's window border area has
been clicked.

ev_mgpbuff [0]

ev_mgpbuff [3]

ev_mgpbuff [4]

24
the handle of the window

one of the following:
0 - page up
1 - page down
2 - row up
3 - row down
4 - page left
5 - page right
6 - column left
7 - column right

Page actions are from the scroll bars, row and column actions are from the
arrows.

181

182 CHAPTER 1 6. GEM AES

WMJISLID

This informs the application of the new position requested for the horizontal
slider .

ev_mgpbuff [0]

ev _mgpbuff [3]

ev_mgpbuff [4]

WM_VSLID

25

the window handle

the requested slider position (0 left most - 1000
right most)

This informs the application of the new position requested for the vertical slider .

ev_mgpbuff [0]

ev _mgpbuff [3]

ev _mgpbuff [4]

WM_SIZED

26

the handle of the application window

the new position (0 top - 1000 bottom)

The user has requested a new window size. The new coordinates given by this
message include the following applicable title bar, information line and borders.

ev _mgpbuff [0]

ev _mgpbuff [3]

e v _mgp buff [4]

ev _mgpbuff [5]

ev_mgpbuff [6]

ev _mgpbuff [7]

WM...MOVED

27

the handle of the window

the requested X-coordinate, which is normally the
present one

the requested Y-coordinate, usually the present one

the requested width

the requested height

The user has moved a window. The new coordinates include the applicable of
the title bar, information line , and borders .

1 6. 3 EVENT MANAGER

ev_mgpbuff [0]

ev _mgpbuff [3]

ev_mgpbuff [4]

ev _mgpbuff [5]

ev_mgpbuff [6]

ev _mgpbuff [7]

WM...NEWTOP

28

the window handle

the requested x coordinate

the requested y coordinate

the requested window width, should stay the same

the requested window height, should stay the same

This tells the application that its window has been placed on top and thus made
active.

ev_mgpbuff [0]

ev _mgpbuff [3]

AC_OPEN

29

the handle of the window just placed on top

This is sent to a desk accessory when it has been selected from the Desk Menu.

ev_mgpbuff [0] 30

ev _mgpbuff [3]

AC_CLO SE

me ...rmenuid - the desk accessory menu item iden­
tifier returned by the menuJegister call .

This is sent to a desk accessory when all of the following are true:

• the current application has just terminated

• the screen is about to be cleared

• window manager structures are about to be reinitialized .

The desk accessory should then zero any window owned by it .

ev_mgpbuff [0] 3 1

ev _mgpbuff [3]

Timer Event

me ...rac c menid - the desk accessory menu item
identifier returned by the menuJegister call.

If the application desires to wait for a time, it can cause a timer event to be
generated after a requested number of milliseconds. The intent is to avoid
polling the system clock or other cumbersome methods for timing something .

183

184 CHAPTER 16. GEM AES

Example

The following example is a typical call to the event manager that is used in the
sample AES application supplied with Laser C.

#inc lude <gemdefs . h>
#inc lude <obdefs . h>

#inc lude " gl obals . h"

Handle Appli c ation Events .
* I

TaskMaster ()
{

int event ;

int button = TRUE ;
int me s s age [S) ;
int mous e x , mousey ;
int mouse button ;

int keyc ode ;
int keymods ;

I• The event code .

I • de sired Button state
I* Event mes s age buffer .
I • The current mous e po sition .
I * The state of the mous e button

I * The c o de for the ke y pre s s e d . •I
I * The state of the ke ybo ard mo dif iers .

(shift , c trl , etc) . * I
int c l i c ks ; I * The number of mous e c l icks that o c curred in the

given time . * I

d o {
event = evnt_mul ti (

MU_MESAG I MU_BUTTO N I MU_KEYBD , I * set me ssages to
1 , I * Time frame for e vents .

re spond to . • I
* I

) ;

1 , I * Ke ybo ard Event mask .
button , I * de sired key state
0 , 0 , 0 , 0 , 0, I* rec tangl e one information (i gnored)
0 , 0, 0 , 0 , 0, I * rec tangle two info rmation (i gnored)
me ssage , I • The me ss age buffer
0, 0 , I * Number o f Ti c ks for Timer e vent .
tmous e x , I • The x- c o ordinate of the mous e a t event .
tmous e y , I • The y-co ordinate o f the mous e at event .
tmousebutton , I • The state of the mouse buttons at e vent .
tkeymo ds , I * The state of the ke yboard mo dif iers .
tkeyc o de , I • The key c o de for the key pressed .
tc licks I * The number of times the e vent o c c urred

if (e vent l MU_MESAG) {
switch (mess age [O)) {

I •

* I
* I
• I
• I
* I
• I
* I
* I
* I
• I
• I
* I

16 .3 E VENT MANAGER

}

}
}

lfindow Support

e as e lflCREDlAlf :
e as e \fl(_TOPPED :
e ase lfM_FULLED :
e as e lfM_ARRO\fED :
e as e lfM_HSLID :
e as e lfM_VSLID :
e as e lfM_SIZED :
e as e lfM_MOVED :
e as e lfM_NE\fTOP :
e as e lfM_CLOSED :

do_windo w (message) ;
bre ak ;

Menu Support

e as e MN_SELECTED :
do_menu(message) ;

bre ak ;

Desk Ac c essory Support

e as e AC_OPEN :
e as e AC_CLOSE :
bre ak ;

if (e ve nt l MU_BUTTO N)
button ·= TRUE ;

if (e ve nt l MU_KEYBD)
do_update (message) ;

} whi l e (1) ;

185

186 EVNTJ3 UTTON

NAME

evnt_button - waits for a mousedown event

SYNOPSIS

int evnt_button (ev_bc lic ks , ev_bmask , ev_bstate , ev_bmx , ev_bmy ,
ev_bbutton , ev_bkstate)

int ev_bc licks ;
int ev_bmask ;
int ev_bstate ;
int *ev_bmx ;
int *ev_bmy ;
int *ev_bbutton ;
int *ev_bkstate ;

DESCRIPTION

evnt_button waits until a mouse down event occurs and then returns informa­
tion about the mouse through the parameters. It is possible to have this routine
respond only to certain mouse buttons and to wait until a certain number of
clicks have occurred . The result of the function is the number of times that the
button achieved the desired state .

ev_bc lic ks

ev_bmask

ev_bstate

ev_bmx

ev_bmy

ev_button

the number of times the mouse button needs to be clicked.

is a mask that allows the application to respond to only certain
button events .

OxOOOl
Ox0002

Left mouse button
Right mouse button

The state of the mouse button to wait for (0 is up, 1 is down) .
The state is indicated with a bit vector as in ev _bmask.

the x-coordinate of where the mousedown event occurred.

the y-coordinate of where the mousedown event occurred.

The state of the mouse buttons upon exit from the routine
(using the same bit vector as ev_bstate) .

ev_bkstate

SEE ALSO

evnt_multi

EVNT_B UTTON 187

The keyboard's state upon exit from the routine . If a bit i s set
then that button has been pressed:

Ox0001 right shift
Ox0002 left shift
Ox0004
Ox0008

ctrl key
alt key

188 EVNT _DCLICK

NAME

evnt_dclick - sets or reads the double-click speed

SYNOPSIS

int evnt_dc lic k (ev_dnew , ev_dgetset)
int ev_dnew ;
int ev_dgetset ;

DESCRIPTION

evnt_dclick is used to set or read the double click speed for the mouse. If
ev_dgetest is one , then a new double-click speed is set . The new double click
speed is contained in ev_dnew. The speeds range from 0 to 4 where 4 is the
fastest . If a read of the double click speed is requested the function returns the
current double click speed.

ev_dnew

ev_dgetset

SEE ALSO

evnt_multi

this parameter contains the new double click speed.

determines whether the value in ev_dnew is to be used in setting
the double click speed. If it is set to zero then the current
speed of the double click is returned through the function and
the value of ev _dnew ignored.

NAME

evnt..keybd - waits for a keyboard event

SYNOPSIS

int evnt_keybd ()

DESCRIPTION

EVNT _KEYBD 189

evnt...keybd function waits for a keyboard event (any keyboard input) . The
result of this function is the keyboard code for the typed character (refer to
page 589) .

SEE ALSO

evnt_multi, Keyboard Codes

190 EVNT..MESAG

NAME

evnt_mesag - waits for a message

SYNOPSIS

evnt_mesag (ev_mgpbuff)
int ev_mgpbuff [8] ;

DESCRIPTION

NOTE

evnt_mesag i s used to wait for message events from the system. The parameter
evJilgpbuff is a pointer to a 8 word (16 byte) buffer in memory where the
message will be placed.

The standard event messages are described in the event manager introductory
section.

DIAGNOSTICS

The result of the function is always 1 .

SEE ALS O

evnt_multi, Event Manager Introduction (pg . 179)

NAME

evnt_mouse - waits for a mouse event

EVNT _MO USE 191

SYNOPSIS

int evnt_mouse (ev_mof lags , ev_mox , ev_moy , ev_mowidth , ev_moheight ,
ev_momx , ev_momy , ev_mobutton , ev_mokstate)

int ev_moflags ;
int ev_mox ;
int ev_moy ;
int ev_mowidth ;
int ev_mohe ight ;
int *ev_momx ;
int *ev_momy ;
int *ev_mobutton ;
int *ev_mokstate ;

DESCRIPTION

evnt_mouse waits for the mouse to enter or leave a specified rectangle. The func­
tion is passed the size and position of the rectangle in the parameters ev JIIOX,
ev_moy, ev_mowidth, and evJiloheight . The function returns the location and
button state of the mouse when the event occurred and stores the results at the
locations pointed to by their respective integer pointers.

ev_moflags

ev_mox

ev_moy

ev_mowidth

ev_mohe ight

ev_momx

ev_momy

If this flag is 1, a mouse event occurs when it exits the rect­
angle , otherwise the event occurs when the mouse enters the
rectangle .

the x-position (in pixels) of the defined rectangle.

the y-position (in pixels) of the defined rectangle.

the width of the defined rectangle in pixels.

the height of the rectangle in pixels .

the x-coordinate of the mouse when it entered or exited the
rectangle .

the y-coordinate of the mouse when it entered or exited the
rectangle .

192 EVNT_MOUSE

ev.JIIobutton

ev.JIIokstate

SEE ALS O

evntJnulti

the state of the mouse button when it entered or exited the
rectangle . Each bit represents a mouse button 0-15 from lower
order to high. If the bit is set then the button has been pressed
(e .g . left button has value Ox0001) .

the status of the keyboard special function keys. If the bit is
set then the button has been pressed . They are represented as
follows:

Ox0001
Ox0002
Ox0004
Ox0008

right shift
left shift
Ctrl
Alt

NAME

EVNT MULTI 193

evnt_multi - waits for several possible events

SYNOPSIS

int evnt_multi (ev_mflags , ev_mbc licks , ev_mbmask , ev_mbstate ,
ev_mml flags , ev_mmlx , ev_mmly , ev_mmlwidth , ev_mmlheight ,
ev_mm2flags , ev_mm2x , ev_mm2y , ev_mm2width , ev_mm2height ,
ev_mmgpbuff , ev_mtloc ount , ev_mthicount , ev_mmox , ev_mmoy ,
ev_mmobutton , ev_mmokstate , ev_mkreturn , ev_mbreturn)

int ev_mmflags ;
int ev_mbc lic ks ;
int ev_mbmask ;
int ev_mbstate ;
int ev_mmlflags ;
int ev_mmlx , ev_mmly ;
int ev_mmlheight , ev_mmlwidth ;
int ev_mm2flags ;
int ev_mm2x , ev_mm2y ;
int ev_mm2height , ev_mm2width ;
int ev_mtlocount ;
int ev_mthicount ;
int *ev_mmox , *ev_mmoy ;
int *ev_mmobutton ;
int *ev_mmokstate ;
int *ev_mkreturn ;
int *ev_mbreturn ;
int ev_mmgpbuff [8] ;

DESCRIPTION

This simple function will wait for any of 6 possible events. Which events to
wait for are indicated by event mask ev .Jnflags by setting the appropriate bit
as below:

Bit Event
0 keyboard event
1 mouse button event
2 mouse event 1
3 mouse event 2
4 message event
5 timer event

194 EVNT_MULTI

Any combination is legal which means to wait for any one of the events.

The event which actually occurred is returned (using the same bit representation
as above) .

ev Jllbc lie ks

evJilbask

evJilbstate

evJilml f lags

evJilmlx,
evJilml y

ev Jllml width,
evJilmlheight

ev Jllm2flags ,
evJilm2x,
evJilm2y,
ev Jllm2width,
evJilm2height

ev Jllmgpbuff

A mouse event occurs when the keys of interest, defined by
ev_mbmask are placed in a state defined py evJilbstate , for a
count of evJilbc licks in a time generally specified by the front
panel.

This sets the mouse button mask for a mouse event . The mask
is ANDed with the present state of the mouse keys and then
compared to the desired state. The LSB of this mask filters
the value of the leftmost mouse button. A value of Ox0001 in
this parameter would allow only the left button to be tested.

This is the state of the mouse buttons of interest which cause
a mouse button event . The bits refer to the keys as above , 0
means mouse up, 1 means mouse down.

This sets the mouse event for the first rectangle to be generated
upon entry or exit from the rectangle. A zero generates it on
entry, and a one generates the event on exit .

The x and y coordinates of the first mouse event rectangle.

The width and height of the first mouse event rectangle .

These are the parameters for the second mouse event rectangle,
and have the same meaning as the first - except they act on
the second rectangle.

This is the 8 word message pipe buffer. Refer to page 179 for
a further description of the event messages.

evJiltloc ount , The low and high words used to set the timer.
ev Jllthi c ount

ev_mmox,
ev_mmoy

ev_mmobutton

EVNTMULTI 195

The x and y coordinates of the mouse when the mouse event
occurred.

This contains the state of the mouse buttons when the user
event occurred. As above, Ox0002 would indicate the mouse
button second from the left was depressed.

ev_mmokstate This returns the state of the following keys when the event
occurred:

ev_mkreturn

ev_mbreturn

SEE ALSO

Bit (LSB = bit 0)
0
1
2
3

Key
right shift
left shift
ctrl
alt

The keyboard code for the key pressed.

This is the number of times the mouse key entered the desired
state, within the desired time.

evnt_keybd, evnt_button, evnt_mouse , evnt_mesag, evnt_timer, evnt_dclick 1111

196 EVNT_TIMER

NAME

evnt_timer - waits for a specified time.

SYNOPSIS

evnt_tirner (low_c ount , high_c ount)
int low_c ount , high_count ;

DESCRIPTION

evnt_timer delays for a specified number of milliseconds. The number of mil­
liseconds is defined by a long word which is divided into two parts . The param­
eter low_count contains the low sixteen bits of the long word. The parameter
high_c ount contains the upper word of the delay count long word .

DIAGNOSTICS

The function result is always 1 .

SEE ALS O

envt_multi

1 6. 4 FORM MANAGER

1 6 . 4 Form Manager

form_do
form_dial

form_alert

form_error

form_center

Introduction

monitors user interaction with a form
allocates and de-allocates space for dialog boxes
makes a alert box, saves screen, redraws screen , etc

makes an error box, saves screen, redraws screen,
etc
centers a dialog box

A form is a means of gathering information from the user. The application may
use any of the following methods for querying the user:

Radio buttons - for one response only. All but the selected response are
deselected .

Check boxes - all boxes checked are selected.

Editable text - for responses that require text reply.

The form must have at least one exit . Usually two are supplied : an OK
button and a CANCEL. The OK is traditionally used to record the informa­
tion obtained from the form, while CANCEL is pressed if the response is to
be ignored.

Editable Text F ields

The following keys may be used in the editable text fields:

Left and right arrows, down-arrow, delete, backspace, Tab - The Re­
turn and Enter keys end editing of the text field. This happens only if
one object in the form has been flagged as a DEFAULT object . If there
is no DEFAULT object, the Form Manager ignores any Return or Enter.

Escape - Clears the text edit field.

There are three parts to any text edit field . They are the template, the
validation string, and the text . The template is used to format text that appears
in the text field, the validation string specifies what may be typed into the field,
and the text is typed in by the user or may be a default value. These are created
in the Resource Construction Program.

197

198 CHAPTER 16 . GEM AES

If a character is entered that is not valid according to the validation string ,
it is ignored unless it is the next invalid character in the template. If this occurs
the curser moves to the position immediately following the invalid character.

An example of a field follows in which a period is not a valid character:

If the string "test .c" were entered,

test . c

would appear. Or, in the case of a date that is entered " 1/3/86" into:

_ _/ _ _/ --

The result is:

1 _/3_/86

Three special forms exist for interaction with the user. They are the dialog
box, alert box, and Error box.

Dialog Boxes

The dialog box is basically a generic form and thus, is used when the application
requires additional information from the user. It usually contains some text and
one or more exit buttons. It may fill the screen if desired and contain a large
number of buttons, boxes, and text fields. The dialog box appears on top of
the screen and may optionally be centered.

Dialog boxes are resources and are , therefore, created by the Resource Con­
struction Program.

To call a dialog box from an application, the following steps need to be
taken:

1. Call rsrc....gaddr to get the address of the dialog box object tree.

2. Call form_dial to reserve screen space for the dialog box. Call the routine
again with FMD_GROW set to draw an expanding box.

3. Call obj_draw to display the dialog box.

4 . Call form_do to handle events of the dialog box.

5. Call form_dial to free the screen space and to redraw the screen. The
routine may be called twice, the first time with FMD..SHRINK set to show
a shrinking dialog box.

1 6. 4 FORM MANAGER

Alert and Error Boxes

An alert box is used to convey a message to the user for an immediate response.
The alert is very easy to handle, you simply call form....alert and pass the three
required pieces of information. An example follows:

� S"ok e y says ,

O n l y you can p revent
Forest f i re s

OK I Cance l I
[3] [Smokey says , I I Only you c an prevent l forest fires] [DK I Cancel]

The three parts of an alert are :

[(icon#)] [(message text)] [(exit buttons)]

A lert box ico ns

• v e
1 2 3

(icon#) is a single character that identifies an icon (if any) that appears at the
left side of the alert.

0 no 1con
1 NOTE icon
2 WAIT icon
3 STOP icon

(message text) is a string consisting of up to 5 lines of 32 characters per
line . In the string, the lines are separated by the logical OR symbol " I " .

199

200 CHAPTER 16 . GEM AES

(exit buttons) one, two, or three exit buttons; each containing no more that
20 text characters.

In the string , the exit button text is separated by the logical OR symbol .
The area of the screen that is written over by the alert is saved in a buffer

and is automatically written back when the alert is exited. The buffer is limited
to 25% of the screen size, so this puts a limit on the alert box size .

An error box is just an alert box that receives its text string from the forms
manager after a system error occurs.

To display an alert from an application, the following step needs to b e
performed:

• Call form...alert

To display an Error box, do the following :

• Call form_error. Pass an operating system error code. A retry or abandon
code is returned to the application.

Example

Below is shown a routine which follows the steps in displaying and handling
dialogs as described above.

tinc lude <gemdefs . h>
tinc lude <obdef s . h>

tinc lude "resourc e . h"

do_di al o g (dialog)
OBJECT * dial o g ;

{
int x , y , w , h ;
int itemhit ;

Center the dialog box .

form_c enter (dial o g , lx , ty , tw , th) ;

Res erve screen memo ry for dialog .
* I
form_di al (FND_START , 0 , 0 , 0 , 0 , x , y , w , h) ;

16 .4 FORM MANAGER 201

Draw di al og
* I
obj c _draw (di alo g , 0 , 1 0 , x , y , w , h) ;

Handle Dialog Event .

i temhi t = form_do (dial o g , 0) ;

I *
Rel e as e reserve d s c reen memory .

* I
form_dial (FMD_FI NIS H , 0 , 0 , 0 , 0 , x , y , w , h) ;

re turn itemhit ;
}

202 FORM_ALERT

NAME

form..alert - is the routine that displays the alert dialog box.

SYNOPSIS

int form_alert (fo_adefbttn , fo_astring)
int fo_adefbttn ;
c har *fo_astring ;

DESCRIPTION

form...a.lert displays the alert box, and returns with a number identifying the
exit button that was selected by the user . The sequence of steps the routine
goes through to display an alert box are as follows:

1 . It creates an object tree based upon the alert string that it was given .

2 . It saves the screen area that will be taken over by the alert .

3 . It calls the objc_draw routine to display the alert.

4 . It calls the form_do routine to let the user respond to the alert .

5 . After return from the form_do routine the screen is restored , and the exit
button that was selected is returned to the application .

fo_adefbttn is the form's DEFAULT exit button.

fo_astring

SEE ALS O

0 no DEFAULT exit button
1 first exit button
2 second exit button
3 third exit button

the address of the string containing the alert box description.
The format of the string is discussed in the Introduction section
on Alert Boxes.

Form Manager Introduction (pg . 197)

NAME

FORM_CENTER 203

form_center - centers the dialog box on the screen.

SYNOPSIS

form_c enter (dlog_tree , new_x , new_y , new_w , new_h)
OBJECT *dlog_tree ;
int *new_x , *new_y , *new_w , *new_h ;

DESCRIPTION

NOTE

form_center takes the OBJECT described by the parameter dlog_tree and
centers it in relation to the screen boundaries. The OBJECT data structure
will be modified to reflect the centering and the new position of the box will be
returned in the parameters new..x , new_y , new_w , new ..h.

dlog_tree The address of the object tree that describes the dialog .

new_x the centered x-coordinate of the dialog box.

new_y the centered y-coordinate of the dialog box.

new_w the width of the dialog box in pixels.

new..h the height of the dialog box in pixels .

Once the dialog box is centered it is not necessary to call the form_center
function for the dialog again.

DIAGNOSTICS

The result of this function is always 1 .

204 FORM_DIAL

NAME

form_dial - reserves or releases the portion of the screen used for dialog boxes .

SYNOPSIS

int form_dial (form_cmd , small_x , small_y , small_w , small_h ,
big_x , big_y , big_w , big_h)

int form_c md ;
int small_x , small_y , small_w , small_h ;
int big_x , big_y , big_w , big_h ;

DESCRIPTION

form_dial performs the housekeeping functions required for dialog boxes. The
four dialog box housekeeping functions are as follows:

form_c md the form_dial action being invoked by the current call.

0 (FMD_sTART) reserves screen space for the dialog
box.

1 (FMD_GROW) calls graf_growbox to draw an ex­
panding box from small to the large
box specified by (big_)x, y, w and h.

2 (FMD_sHRINK) calls graf...shrinkbox to draw a
shrinking box from the large box
to the small box specified by
(smalL)x, y, w and h.

3 (FMD_FINISH) Releases screen space reserved by
FMD_sTART, and causes the applica­
tion to redraw the screen .

The parameters small..x, smalLy, smalLw, small_h and big..x, big_y, big_w,
big_h are used with the form commands FMD_GROW and FMD_SHRINK. The grow
and shrink commands call the AES function graLgrowbox and graf...shrinkbox
respectively, passing the appropriate set of parameters . The small rectangle for
the shrink operation is described by the smalL parameters . The large rectangle
for the grow operation is defined by the big_ parameters.

DIAGNOSTICS

If an error occurs the result of the function is 0.

SEE ALS O

form_do, graf..growbox, graf...shrinkbox

FORMJJIAL 205

�
�

206 FORM_DO

NAME

form_do - causes the Form Manager to monitor the user's interaction with a
form.

SYNOPSIS

int form_do (dlog_tree , start_obj)
OBJECT *dlog_tree ;
int start_obj ;

DESCRIPTION

form_do handles the user's interaction with a form (or dialog box) . The result
of the function is the number of the object that caused the exit from the dialog
box.

dlog_tree

start_obj

The address of the form's object tree definition.

The number of the object (which must be an editable text field)
that the application wants active when the form is displayed .
The application can pass in a value of 0 if the form does not
contain editable text fields.

NAME

FORM..ERROR 207

form_error - display the error dialog box specified by the DOS Error number
parameter.

SYNOPSIS

int form_error (error_code)
int error_c ode ;

DESCRIPTION

NOTE

form_error displays a pre-defined error dialog box specified by the error code
number. The result of the function is the number of the exit button . The error
dialog is specified by the parameter error _c ode . The pre-defined errors are as
follows:

2 File not Found Error
3 File not Found Error
4 Out of Memory Error
5 File Exists Error
8
10
1 1
1 5
16
18

Can't Launch application, Out of Memory
Can 't Launch application , Out of Memory
Can 't Launch application , Out of Memory
Disk Drive does not Exist
Can 't delete Folder
File Not Found Error

Note that any error dialog that is undefined will default with the message "TOS
error #" and the number of the undefined error_code .

All standard error dialogs have only one exit button. Any error _c ode greater
than 63 will return an error for the function and not display an error dialog .

1 6. 5 FILE SELECTOR MANAGER

1 6 . 5 File S elector Manager

fseLinput

Introduction

displays the File Selector dialog box and controls
box activities

The routine in the File Selector Manager creates a dialog box that displays the
current directory name and the list of its files . The directory files are placed
in a window on the File Selector box with a scroll bar on the right side of
the window. The box also contains a text editable field which contains a file
selection (when appropriate) . CANCEL and OK buttons are also part of the
box.

Before selecting a file, the user may :

• scroll through files in the directory, or

• change directories.

To change file directories, the user clicks the mouse curser in the DIREC­
TORY text editable field and types in a new drive identifier, directory path
name, and file specification containing a wildcard. For example,

B : \GEMSTUFF* . GEM

Using the File Selector Manager

The fseLinput() routine returns the following information:

• the selected file name

• the current directory and wildcard specification

• which of the exit methods was used (CANCEL or OK)

Example

Below is shown an example of the fseLinput function.

#inc lude <stdi o . h>

#define O K 1
#define CANCEL 0

209

210 CHAPTER 16 . GEM AES

main()
{

}

c har de faul t_path [80] ;
char de fault_name [80] ;
int button ;

appl_ini t O ;

s trcpy (default_path , " A : \ \ * . * ") ;
strcpy (defaul t_name , "Untitled") ;

:fse l_input (defaul t_path , defaul t_nlllae , ll:button) ;

if (button == OK)
printf (" You have selected the file <%s> . \n" , def aul t_name) ;

else
printf (" You have c anc e l e d the file selec tion . \n") ;

printf (" Press RETURN to end . \n") ;
getchar () ;

appl_exi t O ;

NAME

FSELJNPUT 211

fseL:input - displays a file selector dialog box, and waits for input .

SYNOPSIS

int fsel_input (default_path , default_fname , button)
c har *default_path ;
char *default_fname ;
int *button ;

DESCRIPTION

fseLinput displays a dialog box which is used to select the name of a file on a
disk . The file selector displays the files that are in the directory specified by
defaul t_path. There is a field on the file selector dialog box which contains
a default file name. This field is initialized by the parameter defaul t ..fname .
The results of the user interaction will be placed in the memory pointed to
by default_path and default..fname . The parameter button is a pointer to
an integer that contains the number of the exit button. The return values of
button are defined as follows:

0
1

Cancel button
OK button

DIAGNOSTICS

NOTE

The result of the function is zero if an error occurs.

Wildcard characters may be used in the parameter defaul t_path. All files
ending in " . c" would be displayed by passing the string "A : * . C" as the default
path.

1 6. 6 GRAPHICS MANAGER

1 6 . 6 G raphics Manager

graLru bberbox

graf_dragbox

grafJ11ovebox

graf..growbox

graf_.shrinkbox

graf_watchbox

graf..slidebox

graLhandle

grafJ11ouse

grafJ11kstate

Introduction

draws an expanding box from a fixed point as the
mouse moves
moves a box on the screen, keeping the mouse
pointer in the same position
draws a moving box

draws an expanding box outline

draws a shrinking outline

looks for a mouse-down inside a box

keeps a sliding box inside the parent box

returns a VDI handle for the opened screen work­
station that AES uses
changes the mouse form to another predefined or
application defined form

returns the current mouse location, mouse button
state, and keyboard state

The Graphics Manager routines are used to control boxes in the GEM envi­
ronment . A "box" is basically a rectangular outline drawn on the screen . For
example, the routine graf..growbox is the routine that draws the expanding box
when an application is executed by double-clicking an icon. Other Graphics
Manager routines perform functions like moving a box shape across the screen ,
dragging a box on the screen keeping the mouse pointer fixed, and checking to
see if a mouse-down event has occurred in a box.

213

214 GRAF _DRAG BOX

NAME

graLdragbox - moves a rectangle, keeping the mouse pointer m the same
position in the rectangle.

SYNOPSIS

int graf_dragbox(start_w , start_h , start_x , start_y ,
bound_x , bound_y , bound_w , bound_h ,
finish_x , finish_y)

int start_w , start_h , start_x , start_y ;
int bound_x , bound_y , bound_w , bound_h ;
int *fini sh_x , *finish_y ;

DESCRIPTION

NOTE

graLdragbox lets a user drag an outline of a rectangle within an application
defined boundary rectangle. When the user presses the mouse button to begin
dragging , GEM AES makes a call to VDI to get the mouse 's location . As the
user drags, this call keeps the mouse pointer in a fixed position relative to the
box's upper left corner. The parameters start_w, start..h, start...x, start _y
define the outline of the rectangle to be drawn. The parameters bound...x,
bound_y, bound_w, bound..h define a boundary rectangle that will contain the
rectangle being drawn. If an error occurs the result of the function is 0. The
final (x , y) position, when the mouse button is released, will be stored at the
locations pointed to by finish...x and f inish_y, respectively. Note that all
parameters are defined in pixels.

If a call to graLdragbox is made while the mouse button is up the function will
return immediately.

SEE ALS O

graf..slidebox

NAME

graf...growbox - draws an expanding box outline.

GRAF_GRO WBOX 215

SYNOPSIS

int graf_growbox(small_x , small_y , small_w , small_h ,
large_x , large_y , large_w , large_h)

int small_x , small_y , small_w , small_h ;
int large_x , large_y , large_w , large_h ;

DESCRIPTION

graf_growbox draws a box growing from a smaller rectangle to a larger rectangle.
The small rectangle is defined by the parameters small..x, smalLy, smalLw,
smalLh. The large rectangle is defined by the parameters large ..x, large_y,
large_w, large ..h. Note that both rectangles are defined in pixels .

DIAGNOSTICS

The result of the function is zero if an error occurs .

SEE ALS O

graf....shrinkbox

216 GRAF JlANDLE

NAME

graLhandle - is a routine that returns a handle to the opened screen worksta­
tion that the GEM AES routines use.

SYNOPSIS

int graf_handle (char_width , char_height , char_bwidth , c har_bhe ight)
int *char_width , *char_height ;
int *char_bwidth , *char_bheight ;

DESCRIPTION

graf_handle returns a handle to the current active workstation. Information
about the system font is returned through the parameters as follows:

char _width the width of a character cell in the system font in pixels.

char ..he ight the height of a character cell in the system font in pixels.

char_bwidth the width of a square box large enough to hold a system font
character in pixels .

c har_bheight the width of a square box large enough to hold a system font
character in pixels .

SEE ALSO

vst..height

NAME

GRAF�KSTATE 217

graLmkstate - returns the loca�ion of the mouse , the state of the mouse button,
and the state of the keyboard.

SYNOPSIS

int graf_mkstate (mousex , mousey , mouse_state , keybd_state)
int *mousex , *mousey , *mouse_state , *keybd_state ;

DESCRIPTION

graf_mkstate returns information about the mouse state. The mouse (x , y)
locations are stored in memory where the parameters mousex and mousey point .
The state of the mouse button and the state of the keyboard are stored at the
locations pointed to by the parameters mouse _state and keybd_state . The
integers returned are defined as follows:

mouse _state

keybd_state

DIAGNOSTICS

The current mouse button state. If the bit is set then the
button is currently down :

Ox0001 button on left
Ox0002 second button from the left
Ox0004 third button from the left , etc.

The state of the keyboard's modifier keys. If the bit is set
then the key is considered down, if it is zero then the key is
considered up:

Ox0001
Ox0002

right-shift
left-shift

Ox0004 Ctrl
Ox0008 Alt

The function always returns a 1 .

218 GRAF _MO USE

NAME

graf..mouse - lets an application change the mouse form to one of a predefined
set or to an application-defined form.

SYNOPSIS

int graf_mouse (form_num , form_def)
int form_num ;
int form_def [37] ;

DESCRIPTION

graLmouse changes the mouse form to one of a predefined set or to an appli­
cation defined form. The parameters are defined as follows:

formJtum

form_def

a code identifying a predefined mouse form:

0 arrow
1 hourglass
2 bumble bee
3 =
4
5
6
7
255
256 =

hand with pointing finger
flat hand, extended fingers
thin cross hair
thick cross hair
outline cross hair
mouse form stored in form_def
hide mouse form

257 show mouse form

the address of a 37-word buffer that fits the mouse form defi­
nition. See the VDI function vscJorm (page 382) .

NAME

GRAF�O VEBOX 219

grafJnovebox - Draw a moving outlined box

SYNOPSIS

int graf_movebox(gr_mwidth , gr_mheight , gr_msourc ex ,
gr_msourc e y , gr_mde stx , gr_mde sty)

int gr_mwidth , gr_mheight ;
int gr_msourc ex , gr_msourc ey ;
int gr_mde stx , gr_mdesty ;

DESCRIPTION

graf_movebox is a routine that draws an animated box moving from one position
to another without changing size.

gr_mwidth the rectangle 's width in pixels .

gr_mheight the rectangle 's height in pixels.

gr _msourc ex the rectangle's starting x-coordinate.

gr_msourc ey the rectangle 's starting y-coordinate.

gr_mde stx the rectangle 's ending x-coordinate

gr_mde sty the rectangle 's ending y-coordinate

DIAGNOSTICS

A positive integer is returned on success, 0 on failure.

220 GRAF_R UBBERBOX

NAME

graLrubberbox - draws a rectangle that expands and contracts from a fixed
point as the mouse moves.

SYNOPSIS

int graf_rubberbox(gr_rx , gr_ry , gr_rminwidth ,
gr_rminheight , gr_lastwidth , gr_rlastheight)

int gr_rx , gr_ry ;
int gr_minwidth , gr_minheight ;
int *gr_rlastwidth , *gr_rlasthe ight ;

DESCRIPTION

graf_rubberbox draws the outline of a rectangle that expands and contracts
with the movement of the mouse. The position of the rectangle's upper left
corner is fixed , but by dragging the lower right corner with the mouse pointer,
the user can make the rectangle larger or smaller. When the mouse button is
released the width and height of the new rectangle is returned.

gr...rx the rectangle's X-coordinate .

gr_ry the rectangle's Y -coordinate.

gr ...rminwidth the rectangle's smallest possible width in pixels .

gr ...rminhe ight the rectangle's smallest possible height in pixels.

gr...rlastwidth the resulting width of the rectangle .

gr...rlastheight the resulting height of the rectangle .

DIAGNOSTICS

The result of the function is zero if an error occurs.

NAME

GRAFSHRINKBOX 221

graf...shrinkbox - draws a shrinking rectangle outline.

SYNOPSIS

int graf_shrinkbox(start_x , start_y , start_w , start_h ,
final_x , f inal_y , f inal_w , f inal_h)

int start_x , start_y , start_w , start_h ;
int final_x , final_y , final_w , final_h ;

DESCRIPTION

graf...shrinkbox that will draw a shrinking rectangle outline. The large rectangle
is defined by the start_ parameters. The small resulting rectangle is defined
by the f inaL parameters. Note that no rectangle will be visible on the screen
when this function is finished.

start_x the rectangle's starting x-coordinate .

start_y the rectangle 's starting y-coordinate .

start_w the rectangle 's starting width in pixels .

start...h the rectangle's starting height in pixels .

final_x the rectangle's ending x-coordinate .

finaLy the rectangle's ending y-coordinate .

finaLw the rectangle's ending width in pixels.

final...h the rectangle's ending height in pixels.

DIAGNOSTICS

The result of the function is zero if an error occurs.

222 GRAF ...SLIDEBOX

NAME

graf..slidebox - keeps a sliding rectangle inside its parent rectangle.

SYNOPSIS

int graf_slidebox (obj tree , parent , slider , direction)
OBJECT *obj tree ;
int parent ;
int slider ;
int direc tion ;

DESCRIPTION

graf..slidebox tracks a sliding rectangle inside a parent rectangle. An example
of the use of this function are the scroll bars commonly seen on windows. The
mouse movement causes the sliding rectangle to move, and the parent rectangle
defines the sliding rectangle's range of motion. An application calls this routine
when the mouse button is depressed and returns control to the application when
the user releases the mouse button. Both boxes (slider and parent) defined by
the object tree obj tree .

The return value of the function is a number that indicates the slider position
relative to the inside of the parent rectangle. If direc tion is 0, then the
routine returns a value from 0 to 1000; left to right. If direction is 1 , the
routine returns a value from 0 to 1000; top to bottom.

parent

slider

direc tion

obj tree

The index of the parent in the object tree .

The index of the the slider in the object tree.

The direction of the slider's movement.
0 horizontal
1 vertical

A pointer to the object tree containing the slider and parent.

NAME

GRAF WATCHBOX 223

graLwatchbox - "watches" a rectangle to see if the user releases the mouse
button inside of a specified rectangle .

SYNOPSIS

int graf_watchbox(tree , obj ec t , instate , outstate)
OBJECT *tre e ;
int obj e c t ;
int instate , outstate ;

DESCRIPTION

graf_watchbox tracks the mouse pointer in and out of a predefined rectangle
while the mouse button is depressed, and returns a value based upon where the
mouse button is released. The state of the rectangle is changed according to
the instate and outstate parameters.

1 is returned if the mouse button was released inside the rectangle , otherwise 0
is returned.

tree

obj ec t

instate

outstate

is a pointer to the object tree that contains the defined rectan­
gular area.

the index of the object in the tree.

the rectangle's state when the depressed mouse button goes
inside the defined rectangle.

OxOOOO normal
Ox0001 selected
Ox0002 crossed
Ox0004 checked
Ox0008 disabled
Ox0010 outlined
Ox0020 shadowed

the rectangle 's state when the depressed mouse button goes
outside the defined rectangle.

1 6. 7 MENU MANAGER

1 6 . 7 Menu M anager

menu_bar

menu_icheck

menu_ienable
menu_tnormal

menu_text

menu _register

Introduction

displays or erases the menu bar

displays or removes checks by menu items
enables or disables menu items
displays the menu title in normal or reverse video
changes the text of a menu item
registers desk accessories

Each GEM application defines its own menu, and the application's menu is
displayed when the application is active. The menu 's title is selected by moving
the mouse onto the text of the title on the menu bar, this causes a drop-down
menu to be displayed.

The various selections displayed under a title be enabled or disabled by
the application. If disabled, a half-tone or gray title is drawn and the user is
prevented from selecting the item. Additionally the application may wish to
place a check mark to the left of one or more of the selections.

To display a menu, the application must make two calls. F irst , it calls
rsrcJoad to load the menu data. Second, it calls menu.bar to display the menu
bar. The application will then receive a message from the Screen Manager when
an item in a drop down menu is selected .

The Screen Manager displays the drop down menu and highlights the menu
title when the mouse form touches a menu title. The manager then follows the
mouse over the menu . As the mouse passes enabled titles, the manger displays
them in reverse video. The user selects an enabled item from the menu by
clicking the mouse on one of the enabled items, resulting in in two actions by
the manager. F irst , the manager removes the drop down menu. Then, the
manager sends a message to the message pipe of the application.

If the user moves the mouse outside of a drop down menu, the drop down
menu remains, but nothing is selected or highlighted. If the user then clicks
the mouse, the drop down menu is removed and no messages are sent to the
application .

GEM also allows the application to change the text of the menu items. This
is useful for different states or modes of the application.

225

226 CHAPTER 16 . GEM AES

Using the Menu Manager

The programmer creates a menu object tree with the Resource Construction
Program which then adds it to a resource file . Then the tree is loaded into
memory using the rsrc_load call from the application. Finally, menu_bar is
called to display the titles . Once this is done, the visible menu entries can be
accessed by the user.

After the user chooses a menu item, the Screen Manager sends a message to
the application, and then control is returned to the application . The application
must then read the message in the pipe. Reading the pipe tells the application
that the message is about a menu selection, the object index of the menu title
chosen , and the object index of the menu item chosen.

Example

The example below shows how to place a menu bar on the screen. The menu
bar object tree is created by the Resource Construction Program. The name of
the menu bar is MENUBAR is defined by the header file of the resource file . For
further information about resources refer to section 1 1 . For further information
about handling menu trees refer to section 16 .3 .

#inc lude <osbind . h>
#inc lude <gemdefs . h>
#inc lude <obdefs . h>

#inc lude "resourc e . h"
#inc lude " gl obals . h"

I * header file created by RCP • I
I • contains definition o f menubar • I

init_menu - find the address o f the menubar and draw i t .
• I
ini t_menu ()
{

}

MENUBAR is the name of the menu resourc e .
menubar is an (OBJECT *) .

rsrc _gaddr (O , MENUBAR , tmenubar) ;

Draw the menu Bar .
• I
menu_b ar (menubar , 1) ;

The following example shows how to handle a menu event .

1 6. 7 MENU MANAGER

#inc lude <gemdet s . h>
#inc lude <obdet s . h>

#inc lude "resourc e . h"
#inc lude " gl obal s . h"

I • he ader tile created by RCP • I
I • contains detinition at menubar * I

do _menu - de termine s whic h menu was selected and c alls the
appropriate routine to handle the item selecte d .

• I
do _menu (message)

int * me ssage ;
{

}

int menuid , itemi d ;

menuid
itemid

me s s age [3] ;
mes s age [4] ;

switc h (menuid) {

}

c as e DES K :
handle _desk(itemid) ;

bre ak ;

c as e FI LE :
handle _tile (i temid) ;

bre ak ;

c as e EDI T :
handl e _e di t (i temid) ;

bre ak ;

menu_tnormal (menubar , menuid , 1) ;

handle _de sk - pert o rms the appropriate ac tion tor the menu item s e l e c te d .
* I
handl e _desk(itemid)

int itemid ;
{

}

switch (i temid) {
c as e ABOUT :

}

form_alert (l , " (0] (A Sampl e Application I I rpt .] (Ok] ") ;
bre ak ;

227

�
�

228 CHAPTER 16 . GEM AES

handl e _1ile - per1orms the appropriate ac tion 1or the menu item selecte d .
* I
handl e _1ile (i temi d)

int ite mi d ;
{

}

int button ;

switc h (i temi d) {
c ase FI LENE11 :

}

new_window(SIZER I MOVER I FULLER I CLO SER I NAME) ;
break ;

c ase FI LECLOS :
{

}
bre ak ;

windowptr the win 1rontwindow () ;

i1 (the win)
dispose_window(thewin) ;

c ase FI LEQUIT :
button = 1orm_al ert (2 , 11 [3] [Are you sure?] [Yes I No] ") ;

i1 (but ton == 1)
shutdo wn(O) ;

break ;

handle _edit - per1orms the appropriate ac tion 1or the menu item selecte d .

handl e _edi t (i temid)
int ite mi d ;

{
c har string [80] ;

switc h (i temid) {
c ase UNDO :

sprint 1 (s tring , " Edit . Undo . itemi d
bre ak ;

c ase CUT :

%d . " , itemid) ;

sprint1 (s tring , " Edit . Cut . itemid == %d . " , i temi d) ;
break ;

c ase CO PY :

1 6. 7 MENU MANAGER

}

}

sprintf (s tring , " Edi t . Copy . i t emi d == Xd . " , itemi d) ;
bre ak ;

c ase PASTE :
sprintf (s tring , " Edit . Pas te . i temid == Xd . " , i temid) ;

bre ak ;

c ase CLEAR :
sprintf (s tring , " Edit . Cle ar . i temid == U . " , itemid) ;

bre ak ;

paramdlo g (s tring) ;

229

230 MENU..BAR

NAME

menu_bar - display or erase the menu bar.

SYNOPSIS

int menu_bar (menu_tree , show_menu)
OBJECT *menu_tree ;
int show_menu ;

DESCRIPTION

NOTE

menu_bar draws or erases a menu object tree on the desktop. The parameter
menu_tree is a pointer to an OBJECT which describes a menu. The param­
eter showJIIenu tells the function whether to draw or erase the menu bar . If
showJIIenu is 1 , the menu bar is drawn, otherwise the menu is erased .

The application should always erase the menu bar before exiting with appLexit .

DIAGNOSTICS

The function result will be 0 if an error occurs.

NAME

MENUJCHECK 231

menujcheck - displays o r erases a check mark next to a menu item

SYNOPSIS

int rnenu_iche ck (rnenu_tree , rnenu_itern , rnenu_che ck)
OBJECT *rnenu_tree ;
int rnenu_itern ;
int rnenu_chec k ;

DESCRIPTION

NOTE

menu_icheck marks a menu item as checked. The parameter rnenu_tree is an
object pointer to the menu definition . The parameter rnenu_i tern is a integer
index into the menu tree which indicates the menu item to mark . The final
parameter rnenu_check is an flag which determines the state of the check . If
rnenu_che ck is 1 , the menu is marked with a check . If it is zero then the menu
is not marked.

The value of rnenu_i tern may be obtained from the resource header file if the
menu item has been "named."

DIAGNOSTICS

The result of the function is zero if an error occurs.

SEE ALS O

Resource Construction Program (pg. 8 1)

232 MENUJENABLE

NAME

menujenable - enable or disable a menu item

SYNOPSIS

int rnenu_ienable (rnenu_tree , rnenu_itern , rnenu_enable)
OBJECT *rnenu_tree ;
int rnenu_itern ;
int rnenu_enable ;

DESCRIPTION

NOTE

menu_ienable enables and disables menu items . When a menu item is disabled
it is drawn in half-tone grey and cannot be selected by the user. The parameter
rnenu_tree is a pointer to an obect that describes the menu bar. The parameter
rnenu..i tern is an index into the menu bar object tree that indicates the menu
to be enabled/ disabled. The last parameter rnenu_enable is a flag which deter­
mines the operation. If rnenu_enable is 0, the menu will be disabled, otherwise
the menu item will be enabled.

The value of rnenu..i tern may be obtained from the resource header file if the
menu item has been "named."

DIAGNOSTICS

The result of the function is zero if an error occurs.

NAME

MENU_REGISTER 233

menu_register - places a desk accessories menu on the Desk Menu.

SYNOPSIS

int menu_register (appl_id , ac c _name)
int appl_id ;
c har *ac c _name ;

DESCRIPTION

NOTE

menu_register is used to register the application to AES as a Desk Accessory.
The parameter appLid is the application's identifier that is obtained from
appLini t . The last parameter is a pointer to the name of the Accessory which
is placed in the Desk Menu. The result of the function is a menu identifier .

The menu identifier is used during the message event ACC_OPEN to determine if
the Desk Accessory is active .

DIAGNOSTICS

If there are currently more than 6 accessories in the list then the result of the
function is - 1 .

SEE ALSO

appLinit, evnLmesag, evntJDulti

11m . t '

234 MENU_TEXT

NAME

menu_text - changes the text of a menu item.

SYNOPSIS

int rnenu_text (rnenu_tree , rnenu_itern , rnenu_text)
OBJECT *rnenu_tree ;
int rnenu_itern ;
char *rnenu_text ;

DESCRIPTION

NOTE

menu_text changes the text on a specified menu item. The menu is defined
by the OBJECT tree pointer rnenu_tree . The menu item that is changed is
specified by rnenu_i tern. The text that replace the existing menu item text is
pointed to by rnenu_text .

The value of rnenu_i tern may be obtained from the resource header file if the
menu item has been "named."

DIAGNOSTICS

The function result is zero if an error occurs.

NAME

MENU_TNORMAL 235

menu_tnormal - displays a menu title in either normal or reversed video.

SYNOPSIS

int menu_tnormal (menu_tree , menu_title , menu_normal)
OBJECT *menu_tree ;
int menu_title ;
int menu_normal ;

DESCRIPTION

NOTE

menu_tnormal hilites and de-hilites menu titles. The parameter menu_tree is
an OBJECT pointer to the menu bar tree. The parameter menu_tree is an
index into the menu tree that specifies the menu title that is affected. The last
parameter menuJlormal specifies the state of the menu title. If it is zero the
menu title will be hilited, otherwise the menu title is de-hilited.

The value of menu_ti tle may be obtained from the resource header file if the
menu item has been "named."

DIAGNOSTICS

The result of the function is zero if an error occurs.

SEE ALS O

Resource Construction Program (pg . 8 1)

1 6. 8 OBJECT MANAGER

1 6 . 8 Object Manager

objc_add

objc_delete

objc_draw

objcJind

objc_offset

objc_order

objc_edit

objc_change

Introduction

adds an object to an object tree

deletes an object from an object tree

draws an object or object tree

determines if the mouse is over an object

computes an object 's location relative to the screen

changes the order of an object within its tree

lets a user edit text in an object

changes an objects state

Objects describe visual items, such as icons, characters, and boxes . The Object
Manager provides routines to manipulate them. An example of an object (in
this case a dialog box) follows:

Th i s is a fun d i a l og box . OK !

Figure 16 .2 : Example Dialog

An object tree is an array of OBJECT 's (see C typedef in <obdefs . h> and
shown below) . The address of the array is the address of the tree (its type
is OBJECT *) . Each object in the tree can be accessed as an index from the
address of the tree. For example the following C code de-hilites the OK button
in the above dialog box:

#inc lude <obdet s . h>

Note : The tollowing values are supplied by the RCP .
* I
#def ine TREE 0
#def ine NAMEDLOG 1 0
#define O KBUTN 2

I • Ge t resourc e type Tree •I
I • eleventh tree in re source tile •I
I • third obj e c t i n above tre e •I

237

238 CHAPTER 16 . GEM AES

dehi l i te_O K ()
{

}

O BJECT •name dl o g ;

Make OBJECT •namedlog point to di alog tree .
• I
rsrc _gaddr (TIEE , NANEDLOG , tname dlog) ;

• I

Change the ob_state of the button obj e c t
to no t s e lected .

name dl o g [OKBUTN] . ob_state •= · s ELECTED ;

Normally the names NAMEDLOG and OKBUTN would come from a ' . H' file
created by RCP. The structure of the tree comes from the ob_next , ob..head
and ob_last fields of each OBJECT. These fields contain the index numbers of
the next sibling, first child and last child of each object in the tree. If there is
no such object (such as ob..head for a leaf object) then the value is - 1 . The
ob..next field of the last child of an object points to that object . The first object
(index no. 0) is the root of the tree . The ob..next field of the root object is - 1 .
The tree structure for the dialog box is shown below:

B o x �

ob_head ob_ne xt ob_ta i l
� -1 '

/
S t r inq

ob_headl ob_ne x t ob_ta i l
- 1 I -1

11

�
OK but t on

ob_head ob_nextfob_ta i l
-1 � -1

Figure 16.3: Object structure

Object Manager Data Structures

The following structures are used by the 0 bject Manager:

OBJECT
TED INFO

1 6. 8 OBJECT MANAGER

ICONBLK
BITBLK
APPLBLK
PARMBLK

OBJECT

typedef struc t obj e c t {
int
int
int
unsigned
unsigned
unsigned
c har
int
int
int
int

} OBJECT ;

ob_next ;
ob_head
ob_tail
ob_type ;
ob_flags ;
ob_state ;

*ob_spec ;
ob_x ;
ob_y ;
ob_width ;
ob_height ;

I* obj ec t ' s next sibling
I* head of obj ec t ' s c hildren
I* tail of obj e c t ' s children
I* type of obj e c t , i . e . BOX , CHAR
I* flags
/*state , i . e . SELECTED , OPEN . . .
I * see below

*I
*I
*I

. . . * I
*I
*I
*I

/*upper left c orner of obj e c t *I
/*upper left c orner of obj e c t *I
/*width of obj e ct *I
I* he ight of obj e c t *I

The OBJECT structure 's values describe the object , its relative position in
the tree, and on screen . There is an OBJECT structure for each object in a tree .

ob_next

ob..head

ob_tai l

ob_type

ob_flags

ob_state

ob_spec

index of the object's next sibling in the object tree array

index of the object's first child : the head of the list of the
object's children in the object tree array.

index of the last child in the list of the object 's children in the
object tree array.

the object type (see object types paragraph)

the object flags (see object flags paragraph)

the object state (see object state paragraph)

Depending on the object 's type, this can be a pointer, or other
four byte value. All the values of this are described when the
object types are described below in Object Types.

239

240

ob_x

ob_y

ob_width

ob..height

TED INFO

CHAPTER 16 . GEM AES

For the types G..BOX G_IBOX, and G..BOXCHAR the low word is
the object color. The high word is broken into two bytes . For
the type G..BOXCHAR, the high byte of this word is a character ,
for all other types, this is zero.

The low byte of the high word is the thickness of the border of
the object , and can have the following values:

0 no thickness
1 - 128 these positive values are the inside

thickness, inward from the object's
edge

- 1 - (- 127) these negative values are outward
thickness, from the object edge .

For a child , the x coordinate of the object relative to the parent.
For the root , relative to the screen .

For a child , the y coordinate of the object relative to the parent.
For the root , relative to the screen.

the width of the object in pixels

the height of the object in pixels

The TEDINFO object is an editable field that is used to receive and check key­
board input from the user.

typedef struc t text_edinfo {
c har *te_ptext ; I* ptr to text (must be first) *I
c har *te_ptmplt ; I* ptr to template *I
c har *te_pvalid ; I* ptr to validation chrs . *I
int te_font ; I* font *I
int te_ j unkl ; I* j unk word 1 *I
int te_ j ust ; I* j ustific ation , left or right *I
int te_color ; I* c olor information word *I
int te_ j unk2 I* j unk word *I

1 6. 8 OBJECT MANAGER

int
int
int

} TEDINFO ;

te_thickness ;
te_txtlen ;
te_tmplen ;

I* border thi ckness
/*length of text string
I* length of template string

This structure allows a user to edit formatted text. The object types G_TEXT ,
G__BOXTEXT, G_FTEXT , and G_FBOXTEXT use their ob_spec pointers to point to
TED INFO structures. te_ptext a pointer to the actual text. If the first character
is "(Q" , then the entire field is blanks, and all following characters are merely
place holders; i .e . "Cabc " would be four spaces.

te_ptmplt

te_pvalid

te_font

te_j unkl

te_j ust

a pointer to a text string template for any further data entry.

a pointer to a text string which validates entered text:
9 allow only digits 0-9

A allow only uppercase letters A-Z and space

a allow only letters, upper and lower case A-z and
space

N allow 0-9 and uppercase A-Z plus space

n allow 0-9 and upper and lowercase A-z , plus space

F allow all valid DOS file name characters, plus
? * :

P allow all valid DOS file name characters, plus
\ : ? *

p allow all valid DOS file name character, plus \ :

X allow anything

x allow anything and do uppercase conversion

an integer identifying the font used to draw the text :
3 system font, used in menus, dialogs, etc.

5 small font , used in icons

reserved for future use

an integer identifying the type of text justification desired :
0 left justified
1 right justified
2 centered

241

242 CHAPTER 16. GEM AES

te_c olor an integer identifying the color and pattern of box-type objects

te _j unk2 reserve for future use

te_thic kne ss an integer defining the thickness in pixels of the text box

te_txtlen

te_tmplen

0 no thickness
1 - 128 positive values are the inside thickness

inward from the objecrs edge

- 1 - (- 127) negative values are the outside thick­
ness outward from the object's edge

an integer which is the length of the text string pointed to by
te_ptext

an integer containing the length of the string pointed to be
te_ptmplt

Underscore characters in the te _ptmplt field indicate where characters typed
by the user will be displayed . Other characters are for display only and may not
be modified by the user. The te_ptext string will contain only the characters
the user typed in , and will not contain any of the extra characters from the
te _ptmpl t field.

An example. An edit field for entering a file name would use the following
field values:

te_ptmplt "File name : "

te_pvalid "FFFFFFFFFFF"

On return te_ptext will contain only the characters the user typed , for instance
if the user typed "FUN . TXT" then te _ptext will contain:

te_ptext "FUN TXT"

Note that the period typed by the user is not legal according to te _pvalid,
however it was in te _ptmpl t so the cursor automatically jumped to the next
underscore after the period .

ICONBLK

The Object Manager uses this structure to hold the data that defines icons. The
object type G_ICON points with its ob__spec pointer to an ICONBLK structure.

1 6. 8 OBJECT MANAGER

typedef
int
int
c har
int
int
int
int
int
int
int
int
int
int
int

struc t ic on_bloc k {
*ib_pmask ;
*ib_pdata ;
*ib_ptext ;
ib_char ;
ib_xc har ;
ib_yc har ;
ib_xi con ;
ib_yi con ;
ib_wi con ;
ib_hicon ;
ib_xtext ;
ib_ytext ;
ib_wtext ;
ib_htext ;

} ICONBLK ;

ib_pmask

ib_pdata

ib_ptext

ib_char

ib...xchar

ib_ychar

ib...xic on

ib_yic on

ib_wic on

a pointer to an array of integers representing the mask bit­
image of the icon

a pointer to an array of integers representing the data bit-image
of the icon

a pointer to the icon's text

an integer containing a character to be drawn in the icon. The
character color is defined in the high byte of the integer. The
foreground color is defined in the upper nybble and the back­
ground color is defined in the lower nybble.

an integer containing the x-coordinate of ib_char

an integer containing the y-coordinate of i b_char

an integer containing the x-coordinate of the icon

an integer containing the y-coordinate of the icon

an integer containing the width of the icon in pixels, and must
be a multiple of 16.

243

lEI

244 CHAPTER 16. GEM AES

ib_hic on an integer containing the height of the icon in pixels

ib_xtext an integer containing the x-coordinate of the icon
,
s text

ib_ytext an integer containing the y-coordinate of the icon
,
s text

ib_wte xt an integer containing the width of the icon
,
s text in pixels

ib_htext an integer containing the height of the icon>s text in pixels

BITBLK

The object type G_IMAGE uses the BITBLK structure to draw the bit images like
cursor forms or icons.

typedef struc t bit_bloc k {
int *bi_pdata ; I* ptr to bit forms data *I
int bi_wb ; I* width of forms in bytes *I
int bi_hl ; I* height in lines *I
int bi_x ; I* sourc e x in bit form *I
int bi_y ; I* sourc e y in bit form *I
int bi_color ; I* fore -ground color of bit *I

} BITBLK ;

bi_pdata

bLwb

bi _hl

bi_x

bLy

bLc olor

a pointer to an array of ints containing the bit image

an integer containing the width of the bLpbdata array in
bytes. Because the bLpdata array is made of ints, this value
must be an even number.

an integer containing the height of the bit block in scan lines,
or pixels

an integer containing the source X in bit form, relative to the
bi_pdata array

an integer containing the source Y in bit form, relative to the
bi_pdata array

an integer containing the color GEM AES uses when displaying
the bit-image.

16. 8 OBJECT MANAGER

APPLBLK

This structure is used to locate and call an application-defined routine that
will draw and/or change an object. The ob....spec pointer in the object type
G_FROGDEF points to an APPLBLK structure.

typedef struc t appl_blk {
int (*ub_code) () ;
long ub_parm ;

} APPLBLK ;

ub_c ode

ub_parm

PARMBLK

a pointer to the routine for drawing and/ or changing the object

a long value, optionally provided by the application, passed as
a parameter when the Object Manager calls the application 's
object drawing/ changing routine.

This structure is used to store information relevant to the application's drawing
or changing an object.

When it calls the application 's object drawing/changing routine(pointed to
by ab_c ode) , the Object Manager provides a pointer to a PARMBLK.

typedef struc t parm_blk {
OBJECT *pb_tree ;
int pb_obj ;
int
int
int
int
long

} PARMBLK ;

pb_tree

pb_obj

pb_prevstate ;
pb_currstate ;
pb_x , pb_x , pb_w , pb_h ;
pb_xc , pb_yc , pb_wc , pb_hc ;
pb_parm ;

a pointer to the object tree that contains the application­
defined object

the object index of the application-defined object

245

246 CHAPTER 16. GEM AES

pb_prevstate the old state of an object to be changed

pb_currstate the changed or new state of an object

If pb_prevstate = pb_currstate then the application is draw­
ing the object, not changing it .

pb..x , pb_y the x and y-coordinates of a rectangle t�at define the location
of the object on the physical screen

pb_w , pb..ll the width and height in pixels of a rectangle defining the size
of the object on the physical screen

pb..xc , pb_yc an integer containing the x and y -coordinates of the current
clip rectangle on the physical screen

pb_wc , pb..llc an integer containing the width and height in pixels of the
current clip rectangle on the physical screen

pb_param identical to the ab_parm in the APPLBLK structure. The Object
Manager passes this value to the application when it is time
for the application to draw or change the object.

Predefined Values

The Object Manager routines use the following predefined values:

object types
object flags
object states
objects colors

The following sections define these values.

Object Types

#define G_BOX 20
#define G_TEXT 21
#define G_BOXTEXT 22
#define G_IMAGE 23
#define G_PROGDEF 24

1 6. 8 OBJECT MANAGER

#define G_IBOX 25
#define G_BUTTON 26
#define G_BOXCHAR 27
#define G_STRING 28
#define G_FTEXT 29
#define G_FBOXTEXT 30
#define G_ICON 31
#define G_TITLE 32

Object types are stored in the ob_type section of the OBJECT structure. All
object types are graphic or bitmap object types.

G_BOX

G_TEXT

G_BOXTEXT

G_IMAGE

G_FROGDEF

G_IBOX

G_BUTTON

G_BOXCHAR

G_STRING

A graphic box; ob_spec is the object's color and thickness.

Graphic text ; ob_spec is as pointer to a TEDINFO structure in
which the value of the te_ptext points to the displayed text
string .

A graphic box containing graphic text ; ob...spec is a pointer
to a TED INFO structure in which te _ptext points to the actual
text string .

A graphic bit-image; ob_spec is a pointer to a BITBLK struc­
ture .

A programmer-defined object; its ob_spec is a pointer to an
APPLBLK structure.

An "invisible" graphic box; its ob_spec value contains the ob­
ject 's color int and thickness. It has no fill pattern and no
internal color. Its border is the only visible part , and the bor­
der is only visible if it has thickness.

a graphic text object centered in a box; ob_spec is a pointer
to a null-terminated text string.

A graphic box containing a single text character; ob_spec con­
tains the character, plus the object 's color and thickness.

A graphic text object; its ob...spec value is a pointer to a null­
terminated text string.

247

248

lllm

G_FTEXT

G_FBOXTEXT

G_ICON

G_TITLE

CHAPTER 16 . GEM AES

Formatted graphic text; ob_spec is a pointer to a TEDINFO
structure in which te_ptext points to a text string . The text
string is merged with the template pointed to by te _ptmplt
before it is displayed.

A graphic box containing formatted graphic text; ob_spec is
a pointer to a TEDINFO structure in which te_ptext points to
a text string. The text string is merged with the template
pointed to by the te_ptmplt before it is displayed.

An object that describes an icon; ob_spec is a pointer to an
ICONBLK structure.

A graphic text string used in menu titles; ob_spec is a pointer
to a null-terminated text string .

Object Flags

#define NONE oxoooo
#define SELECTABLE OX0001
#define DEFAULT OX0002
#define EXIT OX0004
#define EDITABLE OX0008
#define RBUTTON OX0010
#define LASTOB OX0020
#define TOUCHEXIT OX0040
#define HIDETREE OX0080
#define INDIRECT OX0100

Object flags are stored as a bit vector in the ob..f lags portion of the OBJECT
structure. Each bit in the ob..f lags word is significant . Undefined bits should
be set to zero.

SELECTABLE

DEFAULT

Indicates the user can select the object.

Indicates the the Form Manager will examine the object if the
user enters a carriage return . No more than one object in a
form can be flagged DEFAULT . This object is usually an exit
button, which lets the user enter a carriage return to exit the
form without using the mouse.

16. 8 OBJECT MANAGER

EXIT

EDITABLE

RBUTTON

LASTOB

TOUCHEXIT

HIDETREE

INDIRECT

Indicates that the Form Manager will return control to the
caller when the exit condition is satisfied, by the user selecting
the object .

The object is editable by the user in.

An object called a radio button.

Radio buttons appear in groups of two are more, only one of
which may be selected at a given time. When the user selects
a button, the currently selected button is automatically de­
selected.

All radio buttons in a group must have the same parent .

Indicates that an object is the last object in the object tree.

Indicates that the Form Manager will return control to the
caller after the exit condition is satisfied. The exit condition
is satisfied when the user presses the mouse button while the
pointer is over ("touching") the object.

Makes a subtree invisible. It and its children cannot be drawn
by objc_draw or found by objc.lind() calls .

Indicates that the value in ob...spec is a pointer to the actual
value of ob...spec .

Object States

#define NORMAL OxOOOO
#define SELECTED Ox0001
#define CROSSED Ox0002
#define CHECKED Ox0004
#define DISABLED Ox0008
#define OUTLINED Ox0010
#define SHADOWED Ox0020

Object states determine how the objc_draw routine draws objects. Object states
are stored as a bit vector in the ob_state portion of the OBJECT structure .

249

250

NORMAL

SELECTED

CROSSED

CHECKED

DISABLED

OUTLINED

SHADOWED

CHAPTER 16. GEM AES

Indicates that the object is drawn in normal foreground and
background colors .

Indicates that the object is highlighted by reversing the fore­
ground and background colors.

Indicates that an "X" is drawn in the obje,ct. The object must
be a box.

Indicates that the object is drawn with a check mark .

Indicates that the object is drawn faintly.

Indicates that an outline appears around a box object . This
state is used for dialog boxes.

Indicates that the object (usually a box) is drawn with a drop
shadow.

Object Colors

Object colors are stored in the ob...spec portion of the OBJECT structure and the
te_c olor portion of the TEDINFO structure. An L preceding the name of the
color, as in LRED, indicates a light shade of the color.

The color descriptor integer has five portions as indicated below, each por­
tion's bits represented by a letter:

aaaabbbbc dddeeee

The high four bits "aaaa" are the border color, with values ranging from 0 to
15 . The next four bits, "bbbb" are the text color, also with values from 0 to 15 .
Bit "c " indicates whether text i s written in transparent mode (c = 0) or replace
mode (c = 1) . The next three bits "ddd" indicate the object's fill pattern , with
values 0 to 7 :

0
7

hollow fill
solid fill

1 - 6 = other pattern of increasing darkness

The low four bits "eeee" are the object's inside color, with values from 0 to 15 .

NOTE: A tree i s an array of objects, and thus each object i s referred to by
its index based at the address of the tree. In the Object Manager routine
descriptions, references to an object number or ID refer to this index.

NAME

objc__add - adds an object to an object tree.

OBJC_ADD 251

SYNOPSIS

int obj c _add (obj _tree , obj _parent , obj _chi ld)

OBJECT *obj _tree ;
int obj _parent ;

int obj _chi ld ;

DESCRIPTION

objc_add associates two OBJECT trees. The parameter obj _parent is an index
into the object tree obj _tree . This object is considered the parent object . The
last parameter obj _c hi ld is an index into the object tree obj _tree . This object
is the OBJECT which will be made the child object of obj _parent .

In other words the OBJECT that is indexed by obj _c hi ld will be made the
actual child of the OBJECT specified by the parameter obj _parent .

DIAGNOSTICS

The function result is zero if an error occurs.

SEE ALSO

Resource Construction Program (pg . 81)

252 OBJC_CHANGE

NAME

objc_change - changes an object's ob_state value .

SYNOPSIS

int obj c _c hange (obj _tree , obj _obj e ct , obj _resvd , obj _xc lip ,
obj _yc lip , obj _wc lip , obj _hc lip , obj _newstate , obj _redraw)

OBJECT *obj _tree ;
int obj _obj ec t ;
int obj _resvd ;
int obj _xc lip ;
int obj _yc lip ;
int obj _wc lip ;
int obj _hc lip ;
int obj _newstate ;
int obj _redraw ;

DESCRIPTION

objc_change changes the ob_state field of an OBJECT . The parameter obj _tree
defines the object tree. The parameter obj _obj e ct is an index into the object
tree obj _tree . The ob_state field of the object obj _obj e c t will be changed
to the value of the parameter obj ..newstate . If the obj _redraw flag is 1 , then
the object will be drawn with the new state obj ...newstate using the clipping
rectangle defined by obj -*c lip.

obj _tree the address of the object tree containing the object

obj _obj e c t the object t o b e changed

obj _resvd reserved ; the value must be zero

obj ...xc lip, the x and y-coordinate of the clip rectangle
obj _yc lip

obj _we lip , the width and height of the clip rectangle in pixels .
obj ...hc lip

obj ..news tate the ob...state value of the object

obj _redraw if 1 , then redraw the object, if zero then don't redraw

DIAGNOSTICS

The result of the function is zero if an error occurs.

OBJC_CHANGE 253

254 OBJCJ)ELETE

NAME

objc_delete - removes an object from its parent object.

SYNOPSIS

int obj c _de lete (obj _tree , obj _obj e c t)

OBJECT *obj _tree ;
int obj _obj e c t ;

DESCRIPTION

objc_delete disassociates an OBJECT from it 's parent OBJECT. The object
tree is defined by the parameter obj _tree . The parameter obj _obj e c t is an
index into the object tree obj _tree . The object obj _obj e c t will be deleted
from the tree list obj _tree .

DIAGNOSTICS

The result of the function is zero if an error occurs.

NAME

OBJC..DRA W 255

objc_draw - draws objects, or object trees

SYNOPSIS

int obj c _draw (obj _tree , obj _startobj , obj _depth ,
obj _xc lip , obj _yc lip , obj _wc lip , obj _hc lip)

OBJECT *obj _tree ;
int obj _startobj ;
int obj _depth ;
int obj _xc lip ;
int obj _yc lip ;
int obj _wc lip ;
int obj _hc lip ;

DESCRIPTION

objc_draw draws an object tree . The parameter obj _tree defines the OBJECT
tree being drawn. The parameter obj ...startobj is an index into the object tree.
This index indicates the initial object to be drawn. The parameter obj _depth
determines how many levels of the tree, from obj _startobj , are drawn. When
the object are drawn the clipping rectangle obj _*c lip is used. This means that
only the objects defined within the clipping rectangle will be drawn.

obj _tree

o bj _starto b

obj _depth

obj _xc lip,
obj _yc lip

obj _wc lip,
obj _hc lip

DIAGNOSTICS

the address of the object tree containing the object

the starting object on the tree ob_drtree.

how many levels in the object tree to draw, starting from
ob_drstartob:

0 starting object only
n n level children of starting object

the x and y-coordinates of the clip rectangle in pixels

the width and height of the clip rectangle in pixels

The result of the function is zero if an error occurs.

256 OBJC_EDIT

NAME

objc_edit - allows the user to edit the text in an object.

SYNOPSIS

int obj c _edit (obj _tree , obj _obj e ct , obj _char , obj _idx ,
obj _kind , obj _newidx)

OBJECT *obj _tree ;
int obj _obj ec t ;
int obj _char ;
int obj _idx ;
int obj _kind ;
int *obj _newidx ;

DESCRIPTION

NOTE

objc_edit is used to handle user interaction with a text object tree . The object
tree being edited is defined by the parameter obj _tree . The actual edit object
is defined by the index obj _obj e ct into the object tree obj _tree . This object
must be of type G_TEXT or G_BOXTEXT . The parameter obj _c har is the character
that is to be inserted at position obj _idx in the input box string. The type of
edit to be performed is controlled by obj ..kind. Its values are defined as follows :

1 combine the values in te_ptext and te _ptmplt into a format­
ted string; turn on text cursor

2 validate typed characters against te_pvalid, update
te_ptext , and display string

3 turn off text cursor

After the edit is performed the function returns. The index of the next character
in the raw text string is stored at obj ..newidx.

objc_edit does not query the keyboard for the user input . It is strictly a function
which performs an edit operation on the editable object and displays the changes
specified by the parameters . It is suggested the form_do function be used for
obtaining user input.

DIAGNOSTICS

The result of the function is zero if an error occurs .

SEE ALS O

Object Introduction (pg. 237, form_do)

OBJC_EDIT 257

258 OBJCJi'IND

NAME

objcJind - finds an object under the mouse form.

SYNOPSIS

int obj c _find(obj _tree , obj _startobj , obj _depth , mousex , mousey)
OBJECT *obj _tree ;
int obj _startobj ;
int obj _depth ;
int mousex ;
int mousey ;

DESCRIPTION

[]liliDI NOTE

objcJind locates an object which is drawn under a defined point on the screen.
The point where the object is searched for is defined by the parameters mousex
and mousey. The object tree that is searched is defined by the parameter
obj _tree . The object where the search begins is defined by the parameter
obj _startobj . This number is an index into the object tree obj _tree . The
number of levels down the object tree that are searched is defined by the pa­
rameter obj _depth. The result of the function will b e the number of the object
found under the point . If no object was found the result of the function is - 1 .

If obj _depth is zero then only the object specified by obj _startobj will be
searched .

NAME

OBJC_OFFSET 259

objc_offset - computes an object 's location relative to the screen

SYNOPSIS

int obj c _offset (obj _tree , obj _obj ect , obj _xoffset , obj _yoffset)
OBJECT *obj _tree ;
int obj _obj ec t ;
int *obj _xoffset ;
int *obj _yoffset ;

DESCRIPTION

objc_offset returns the position of the specified object on the screen. The object
tree is defined by the parameter obj _tree . The parameter obj _obj ect is an
index into the object tree obj _tree which defines the object. The coordinates
of the object, relative to the upper-left corner of the screen, are stored at the
locations pointed to by obj ..xoffset and obj _yoffset.

DIAGNOSTICS

The result of the function is zero if an error occurs.

260 OBJC_ORDER

NAME

objc_order - moves an object to a new position in its parent 's list of children .

SYNOPSIS

int obj c _order (obj _tree , obj _obj e ct , obj _newpos)
OBJECT *obj _tree ;
int obj _obj ect ;
int obj _newpos ;

DESCRIPTION

objc_order moves an object in the object tree to a new position in the object
list . The object tree is defined by the parameter obj _tree . The object to be
moved is defined by the parameter obj _obj e c t . This number is an index into
the object tree obj _tree . The parameter obj ...newpos defines the new position
of the object obj _obj ect . The new position is defined relative to the bottom
of the object list as follows:

0 = on the bottom
1 = one from the bottom
2 two from the bottom [etc .]
- 1 on the top

DIAGNOSTICS

The result of the function is zero if an error occurs.

1 6. 9 RESO URCE MANAGER

1 6 . 9 Resource Manager

rsrcJoad
rsrcJree

rsrc_gaddr

rsrc....saddr
rsrc_obfix

Introduction

loads entire resource file into RAM
frees the memory allocated during rsrcJoad

gets the address of a data structure in memory

stores an index to a data structure
· converts an object 's (x, y) coordinates from char­

acter to pixel coordinates

A resource is an application independent interface between the user, or a device ,
and the application . Its purpose is to allow easy change to the application's
interface without changing the application. A common use for this would be
localizing an application for a language other than the one for which it was
originally written. For example, if an application was originally written for an
English literate market and the authors wished to sell it in France, a simple
change in the resources using the Resource Construction Program hopefully
would be all that is required.

Using the Resource Manager

The rsrcJoad routine is used to load the resource file into RAM. It also makes
any necessary updates to the file. These updates include building the array of
tree pointers, storing the tree array address in the application 's global array,
and making the file device specific to the screen's resolution .

Example

The example below illustrates how to load a resource into memory.

#inc lude <osbind . h>
#inc lude < gemdefs . h>
#inc lude <obdefs . h>

ltinc lude "resourc e . h"
#inc lude " gl obals . h"

I • he ader file created by RCP • I
I • contains definition o f menubar • I

init_resources - attempts to load the applic ations resources into
memory . Note that if the file is no t found in the current

261

262 CHAPTER 16. GEM AES

dire c t ory the ROM will search the A : \ drive aut omatically .

init_resourc e s ()
{

}

it (! rsrc_load ("re s ourc e . rsc ")) {

}

'form....alert (1 , " [O] [Cannot find resourc e . rs c 'file i Terminating . . .] [O K] ") ;
exit (2) ;

Put up simple dialog to show how re sourc e s work .
• I
mai n ()
{

}

OBJECT * di al o g ;
int x , y , w , h ;

Initiailize the ROMs .
• I
appl_ini t () ;

Lo ad resourc e s .
• I
init_resourc e s () ;

Get addres s of dial o g definition in memory .

rsrc _gaddr (O , PARMDLOG , .dial o g) ;

• I

This next set o f func tions display a dialog an d handle
the dialogs events . For a in depth description of
what i s begin done refer to the Form Manager .

form_c enter (dial o g , tx , •y . •w , •h) ;
form....dial (FMD_START , 0 , 0 , 0 , 0 , x , y , w , h) ;
obj c _draw (dial o g , 0 , 1 0 , x , y , w , h) ;
f orm....do (dial o g , 0) ;
form_dial (FMD_FINISH , 0 , 0 , 0 , 0 , x , y , w , h) ;

Shut do wn the appl i c ation .
• I
appl_exi t O ;

NAME

RSRC_FREE 263

rsrc.lree - frees the memory allocated during rsrc_load.

SYNOPSIS

int rsrc _free ()

DESCRIPTION

rsrcJree release the memory allocated for resourced defined during the rsrcJoad
function.

DIAGNOSTICS

The result of the function is zero if an error occurs.

264 RSRC_GADDR

NAME

rsrc...gaddr - gets the address of a data structure in memory.

SYNOPSIS

int rsrc _gaddr (re_gtype , re_gindex , re_gaddr)
int re_gtype ;
int re_gindex ;
struc t **re_gaddr ;

DESCRIPTION

rsrc_gaddr returns the address of a specified OBJECT in the resource list .
The type of the object is defined by the parameter re _gtype . The parameter
re_gindex is an index into the object list specifying the object whose address
is required. The address of the object is stored at the pointer whose address
is defined in re_gaddr. The different types of objects whose address may be
obtained is as follows:

re _gtype

re _gindex

the type of data structure:
0 tree
1 OBJECT
2
3

TED INFO
ICONBLK

4 BITBLK
5 string

6 imagedata

7 obspec

8 te_ptext

9 te_ptmplt

10 te_pvalid

1 1 ib_pmask

13 ib_pdata

14 ib_ptext

15 ad_frstr - the address of a pointer to a free
string

16 ad_frimg - the address of a pointer to a free
Image

the index of the data structure .

re_gaddr

DIAGNOSTICS

RSRC_GADDR 265

the address of the data structure specified by re_gtype and
re ...gindex .

The result of the function is zero if an error occurs.

266 RSRC_LOAD

NAME

rsrcJoad - loads an entire resource file into memory.

SYNOPSIS

int rsrc _load (res_fname)
c har *res_fname ;

DESCRIPTION

rsrcJoad loads a resource file into memory and changes all offset values into
specific addresses. The resource file that is loaded is specified by the path name
re s_fname . This routine searches for the file and finds its total size in bytes.
Using the DOS allocate call , it allocates the memory space for the resource file.
It then opens it and reads the resource into memory, and closes the file . It then
makes the required updates to the file :

1 . make the file device-specific to the screen's resolution.

2 . link up all the OBJECT pointers, TEDINFO pointers, ICONBLK pointers and
BITBLK pointers.

3. build the array of tree pointers.

4 . store the address of the tree array in the application's Global Array.

DIAGNOSTICS

The result of the function is zero if an error occurs.

NAME

RSRC_OBFIX 267

rsrc_obfix - Changes a resource object's coordinate system.

SYNOPSIS

int rsrc _obfix(re s_tree , re s_obj e c t)

OBJECT *re s_tree ;
int re s_obj e c t ;

DESCRIPTION

rsrc_obfix converts an objects position and size from a character coordinate
system to a pixel coordinate system. The object tree is defined by the parameter
re s_tre e . The object to be converted is defined by the parameter re s_obj e c t
which i s an index into the object tree re s_tre e .

DIAGNOSTICS

The result of the function is zero if an error occurs.

K11J

268 RSRC...SADDR

NAME

rsrc....saddr - stores an index to a data structure .

SYNOPSIS

int rsrc _saddr (res_type , re s_index , re s_addr)
int res_type ;
int re s_index ;
struc t *res_addr ;

DESCRIPTION

rsrc....saddr stores the address re s_addr into the resource list . The rsrc_gaddr
function returns the address of a specified type of obj ect at a certain index in
the resource list. If it becomes necessary to redefine the object in the resource
list the rsrc...saddr function is used . The type of the resource to be changed is
defined by the parameter re s_type . The index into the resource type list is
defined by the parameter re s_index. The address to which the resource will
now point for the specified object is defined by re s_addr . The types of resources
are:

re_stype the type of data structure .
0 tree
1 OBJECT
2 TEDINFO
3 ICONBLK
4 BITBLK
5 string

6 imagedata

7 obspec

8 te_ptext

9 te_ptmplt

10 te_pvalid

1 1 ib_pmask

13 ib_pdata
14 ib_ptext

15 ad_frstr - the address of a pointer to a free
string

16 ad_frimg - the address of a pointer to a free
Image

DIAGNOSTICS

The result of the function is zero if an error occurs.

SEE ALS O

rsrc_gaddr

RSRC..SADDR 269

1 6. 1 0 SCRAP MANAGER

1 6 . 1 0 S crap Manager

scrp_read

scrp_write

Introduction

reads the scrap directory currently stored m the
clipboard

writes the scrap directory to the clipboard

The Scrap Manager provides a means for applications to share information .
There are two ways to gather data to be transmitted to another application.

F irst , the data may be extracted from the source file leaving the only version of
the data in the clipboard or, second, the data may be copied into the clipboard
leaving the source file unaffected by the operation.

The target for a scrap_write procedure is the clipboard. It is also the source
for a read.

The clipboard only keeps one element at the time. If two scrap_write oper­
ations are performed, one immediately following the other, the data from the
scrap_write is overwritten by the data from the second.

The "clipboard" is merely AES keeping track of a directory where a scrap
file may be stored . It is up to the application to conform to the standard
conventions of creating the scrap file.

The convention states that the file name must be SCRAP and the filetype
must convey the type of data.

The following types are defined by GEM:

Data Type
Text strings
Spreadsheet data
Metafile
Bit-images

File Extension
. TXT
. DIF
. GEM
. IMG

271

272 SCRP _READ

NAME

scrp_read - reads the scrap directory currently stored on the clipboard.

SYNOPSIS

int sc rp_read (sc rap_buf)
c har *sc rap_buf ;

DESCRIPTION

NOTE

scrp_read reads the name of the scrap file from the "clipboard ." The path name
of this scrap file is stored at sc rap_buf . The function result is zero if an error
occurs .

It is up to the application to create the space and read the data in from the
scrap file. The "clipboard" is strictly a static piece of memory that may be
used to communicate the path of the scrap file between applications .

SEE ALS O

scrp_write

NAME

SCRP _WRITE 273

scrp_write - writes the scrap directory to the clipboard.

SYNOPSIS

int sc rp_write (sc rap_fname)
c har * sc rap_fname ;

DESCRIPTION

NOTE

scrp_write writes the path name of the scrap directory into an area called the
clipboard . sc rap_fname is the path name of the scrap file .

It is up to the application to write the scrap data to the path name that is
specified by the scrp_write function. The ((clipboard" is strictly a static piece
of memory used to pass path name information about the scrap file between
applications.

16.11 SHELL MANAGER

1 6 . 1 1 Shell Manager

sheLenvrn
sheLfind

shelJead
sheLwrite

Introduction

Get an environment variable value
Find an application pathname through DOS search
path
Get command line variables
Launch another application

The Shell Manager is a set of functions that may be used by an application
to communicate with the outside environment. These functions include the
manipulation of the application's command line and environment variables.
They can also find and invoke other applications.

275

276 SHEL_ENVRN

NAME

sheLenvrn - get address of environment variable table.

SYNOPSIS

int she l_envrn(value , name)
char * *value , *name ;

DESCRIPTION

NOTE

sheLenvrn searches the GEMDOS environment variable list for the name value .
The form of an environment variable is name=value . If the variable name is
not in the environment list a NULL pointer is returned.

value

name

a pointer to 4 byte area where the address of the environment
variable value is located.
a character pointer to the name of the environment variable to
be searched for. Note that the string should have an '= ' sign
at the end.

This function will return a pointer to the byte following the first pattern that
was matched with name .

DIAGNOSTICS

The result of the function is always 1 .
SEE ALSO

getenv

NAME

shelJind - find the full pathname of an application.

SYNOPSIS

int she l_find (filename)
c har *filename ;

DESCRIPTION

SHEL_FIND 277

sheLlind searches for the filename specified by the parameter f i lename using
the DOS search path . The full pathname of the file, if found, will be stored at
the memory pointed to by the parameter filename .

NOTE

The buffer must be large enough to hold the resulting pathname.

DIAGNOSTICS

The result of the function is 0 if an error ocurrs.

SEE ALS O

sheLwrite

278 SHEL...READ

NAME

shel..read - tells an application its name and parameters.

SYNOPSIS

int she l_read(programname , c ommandline)
c har *programname ;
c har * c ommandline ;

DESCRIPTION

NOTE

shel..read is used to obtain the application's name and command line parameters
when the application was launched.

programname points to a buffer where the program name will be stored.
c ommandline points to a buffer where the parameters to the program will be

stored .

The full pathname of the programname will be returned if the application does
not reside in the current working directory.

DIAGNOSTICS

The result of the function is 0 if an error occurs.

SEE ALS O

shel_write , Progam Parameters (pg. 107)

NAME

sheLwrite - launch a new application.

SHEL_ WRITE 279

SYNOPSIS

int she l_write (execcode , graftype , progtype , progname , c mdline)
int exec c ode , graftype , progtype ;
char *progname , *c mdline ;

DESCRIPTION

sheLwrite exit GEM or launch new application.

exec c ode
graftype
progtype
progname
c mdline

DIAGNOSTICS

execution code. (0 = Exit GEM, 1 = run new program)
program type. (0 = non graphic , 1 = graphic)
program type. (0 = non GEM, 1 = GEM)
character pointer to name of program to launch .
character pointer to new programs parameters .

The result of the function is 0 if an error ocurrs .

SEE ALSO

sheLread, Pexec, Shell Introduction (pg . 275)

1 6. 1 2 WINDO W MANAGER

1 6 . 1 2 Window Manager

Calculate the window size
Close a window
Create a window

wind_calc
wind_close
wind_create
wind_delete
wind ...lind

wind ...get

wind_open

windset

wind_update

Remove a window ID from the window list
Find a window under a point

Get information about a window

Open a created window

Set values for display fields

Tell GEM that a window has been updated

Introduction

The following picture shows the various components of a window:

C lose box Title bar & Move bar

I nformatio n
l i ne -------l

Wort< Area

Arrow

S l ider S cro l l bar S ize box

Figure 16 .4: Sample Window

The window library supports the creation, deletion and updating of an ap­
plication 's windows. The <gemdefs . h> header file should be included in appli­
cations using the window library. An application can have up to eight windows
simultaneously open. Each window is refered to by an integer known as a
window handle.

The only components required for all windows are the title bar and work

281

2 8 2 CHAPTER 16 . GEM AES

area. The optional components are called window control areas . The work
area is maintained by the application, all other components are handled by
the window library routines. The window library communicates information
about user actions back to the application through message events. These
events occur when a user mouse operation changes the window in some way.
For example, by moving the window to a new location or pressing in a scroll
bar . The application is notified about the event after the fact ; the window
library traps the mouse event and generates an appropriate window event for
the application. The application can turn off the mouse event trapping and
receive all mouse events itself by calling wind_update with the value BEG..MCTRL
(see the manual page for more information) . See the event library for a list of
the 'WM_' messages generated by the window library.

Slider Usage

The ratio of the size of the slider to the size of the scroll bar should be the
same as the size of the work area to the size of the object being displayed in
the window. This allows the user to see at a glance exactly where in (by the
position of the slider) and how much of (by the size) the complete object the
window is . The size of the slider is specified as a percentage of the scroll bar's
size to make this easy to do.

Move Bar

The move bar is overlaied on top of the title bar. It just enables mouse tracking
and moving of the window when the user presses the mouse over the title bar.
There is no visual clue that the move bar exists, the user will discover whether
it exists or not when he tries to move the window.

Desktop Window

The menu bar and gray background is called the desktop window (although it
doesn't look or work like a normal window) . The window library automatically
redraws the desktop whenever part of it becomes uncovered. The size of the
gray region can be obtained by calling windget with a value of WF _WORKXYWH for
window 0. wind_get is used to get information about windows, WF _WORKXYWH
asks for the work area's (x, y) location and width and height . Application
windows should be initially created to fit inside the desktop work area.

The gray background area can be replaced by an application defined object
tree by calling wind...set with a value of WF __NEWDESK for window 0. This is the

1 6. 12 WINDO W MANAGER

way most applications place icons on the desktop.

Creating a Window

A window is created by a sequence of calls that specify the initial size, the
largest size, the location, and the type of window controls the window will
have. These values may be changed later with wind..set.

The routine that creates the window wants the size of the perimeter of the
window. This size is not nearly as important to the application as the size of
the work area. The function wind_calc is used to calculate the perimeter (or
border) size from the work area size and vice versa. The program should call
wind_calc to determine the border area size for both the initial and largest sizes
of the window.

The application calls wind_create after determining the size of the border
area. wind_create reserves one of the eight windows and returns the handle
number for it. It does not draw the window.

Next the application calls wind_open with the initial size. The window is
drawn at this point. A WM_R.EDRAW event is also generated which will cause the
application to draw the interior of the window in the normal course of event
processing . The example below is used by the sample application to create a
new window.

#inc lude <gemdefs . h>
#inc lude " gl obal s . h"

* I

new_window - create � draw a ne w window .

1) create the window .
2) draw the window wi th the wind_open ()
3) create an d s e tup the window rec ord .

windowptr ne w_windo w (thekind)

{
int thekind ;

int handl e ;
int xde s k , ydesk , wdesk , hdesk ;
windowptr the wi n ;
static window_c ount .= 1 ;

Get the desktop c o ordinate s .
• I
wind_ge t (O , WF_WORKXYWH , �de s k , �ydesk , �wdesk , �hdesk) ;

283

l1lmll

284 CHAPTER 16 . GEM AES

Create the informat ion for the windo w .
Max size is the desktop .

* I
handl e = wind_create (thekind , xdesk , yde s k , wdesk , hde sk) ;

Check for error .
* I
if (handl e < 0) {

paramdl o g (" S orry ! No more windo ws available . ") ;
re turn NULL ;

}

All o c ate spac e for window rec ord .
* I
the win = (windo wptr) malloc (s izeof (windo wrec)) ;

Set the title for the windo w .
* I
sprintf (the win - > title , " Untitled %d " , windo w_c ount+ +) ;

wind_s e t (handle , WF_NAME , thewin - > title , 0 , 0) ;

I *
A littl e fl im-fl ammery .

• I
graf_growbox(O , 0 , 0 , 0 , xdesk , ydesk , wde skl 2 , hde skl 2) ;

Draw the windo w .
* I
wind_o pen(handle , xdesk , ydesk , wdeskl2 , hdeskl2) ;

Initialize windo w data s truc ture .
* I
the win - > next NULL ;
the win -> handle handle ;
the win - > kind the kind ;
the win - > full size FALSE ;
the win - > graf . handle open_vwork(tthe win - > graf . mfdb) ;
the w in -> updatepro c nul lpro c ;

wind_get (handle , WF_WD RKXYWH , txdesk , tyde s k , twdesk , thde sk) ;
setre c t (tthe win - > work , xdesk, ydesk , wdesk , hde sk) ;

wind_ge t (handle , WF_CURRXYWH , txdesk , tyde s k , twdesk , thde sk) ;

1 6. 1 2 WINDO W MANAGER

}

setre c t (Athe win - > box , xdesk , ydesk , wdesk , hde sk) ;

I *

* I
{

}

Insert into windo wl ist .

register windo wptr winptr (windowptr) Afirstwindow ;

while (winptr - > next)
winptr = winptr - > next ;

winptr - > next = thewin ;

make _f rontwin (the win) ;

re turn thewin ;

Closing a Window

A window can be removed from the screen by calling wind_close with the win­
dow handle. The window is still allocated however and may be redrawn by call­
ing wind_open again . If the window is not needed any longer then wind_delete
should be called to return the window to the window library so it may be used
by another application (a desk accessory for instance) . The example below is
used in the sample application to close and delete a window.

dispo s e _windo w - Cl oses the window and dispo s e s the storage for
the windo w rec ord .

*I
dispos e _windo w (thewin)

windowptr the win ;
{

int x , y , w , h ;
int handl e ;

handl e = the win - > handle ;

wind_c lose (handl e) ;

wind_ge t (handle , WF_CURRXYYH , Ax , ty , tw , th) ;

graf _shrinkbox(O , 0 , 0 , 0 , x , y , w , h) ;

wind_de lete (handl e) ;

285

286

{

}
}

CHAPTER 16. GEM AES

Remo ve windo w record from windo w list .
• I
register windowptr winptr = (windo wptr) tfirs twindo w ;

while (winptr - > next)
if (winptr - > next

bre ak ;
the win)

else
winptr = winptr - > next ;

if (winptr - > next)
winptr -> next = winptr -> next -> next ;

else {

}

* I

paramdl o g (" Internal Error : lfindow pointer n o t in lis t . ") :
shutdo wn (2) ;

Update the front window pointer .

if (! firs twindow)
thefrontwin = NULL ;

else

• I

if (winptr = = (windo wptr) tfirstwindow)
make_frontwin(winptr - > next) ;

e l s e
make_frontwin(winptr) ;

Close works tation associated wi th window .

v_c l svwk(the win - > graf . handl e) ;

Release windo w data struc ture storage .

free (the win) ;

Drawing and Updating a Window

The window library . maintains a rectangle list of non-intersecting rectangles
which together cover all visible parts of each opened window. This list is ac­
cessed by calling wind ...get with WF ..FIRSTXYWH to retrieve the first one , and
WF _NEXTXYWH to retrieve the rest . The last rectangle is indicated by a width

1 6. 12 WINDO W MANAGER

and height of zero.
The application must redraw a window when it receives a WM..REDRAW event .

First it should call wind_update , passing a "1" to tell the window library not
to change any rectangle lists while the window is redrawn.

A window handle and a rectangle to be redrawn is passed in the message
buffer. The application should step through the window's rectangle list inter­
secting each rectangle with the rectangle passed in the message buffer and then
redraw the window with clipping set to the resultant rectangle (see the VDI
function vs_clip) . When the entire window has been redrawn, the application
should call wind_update again , but pass 0 to let the window library change
the rectangle lists again . The clipping rectangle should be reset to the desktop
work area also.

Any rectangular area of the screen can be invalidated by calling form_dial
with a value of FMD..FINISH. The rectangle will be redrawn by a series of
events for all windows covered by it. The example below is used by the sample
application to update all the windows when a redraw event is received .

I *

* I

do _update - Update a l l of the windows affected by the
update event .

do _updat e (message)

{
int * me s sage ;

int the window ;
re c t rl , there c t ;

the windo w = me ssage [3] ;

setrec t (tthere c t , me ssage [4] , me ssage [6] , me ss age [6] , message [7]) ;

wind_ge t (the windo w , WF_FIRSTXYWH , trl . x , trl . y , trl . w , trl . h) ;

Cyc l e through rec tangle list .
* I
whil e (rl . w t t rl . h) {

if (rc _inters e c t (tthere c t , trl)) {
I *

S e t c l i pping s o that drawing wil l only change
the c hange d area .

setc l i p (thewindo w , tr l) ;

Cal l the func tion to re draw the windo w .
* I

287

288 CHAPTER 16 . GEM AES

update _windo w (the windo w) ;
}

wind_get (thewindo w , WF_NEXTXYWH , lrl . x , lr l . y , lrl . w , trl . h) ;
}

{

}
}

int x , y , w , h ;

Re store c lip rec tangle t o de sktop rec tangle .

wind_get (O , WF_WORKXYWH , tx , ty , tw , th) ;
setre c t (lrl , x , y , x+w , y+h) ;
vs_c l i p (phys_handle , 1 , lrl) ;

Examples

The following example functions illustrate common functions that are used in
a AES application for handling window events. These functions are used in a
complete sample application that is supplied as part of an Laser Development
System. The next example shows a method for resizing a window.

ldefine WIND_NINW 80
ldefine WIND_NINH 80

do_re s i ze - redraws the window at it ' s new pos i tion and updates all
of the window ' s po si tion records .

do_re s i ze (message)
int *me s s age ;

{
int x , y , w , h :
int handle :

handl e = me ss age [3] ;
x = mess age [4] ;
y = mess age [6] ;
w = mess age (6] ;
h = mess age [7] ;

Make sure that the window doesn ' t bec ome too smal l .
* I
if (w < WIND_NINW) w = WIND_NINW :

1 6. 1 2 WINDO W MANAGER

}

if (h < WIND_MI NH) h WI ND_MINH ;

Re draw the window at it ' s new size .
* I
wind_s e t (handle , WF_CURRXYWH , x , y , w , h) ;
wind_ge t (handle , WF_WO RKXYWH , tx , ly , lw , lh) ;

{

}

Set the Windo w record dat a .
* I
windo wptr thewin ;

the win = findwindowptr (handl e) ;

setre c t (lthe win - > work , x , y , w , h) ;
setrec t (lthe win - > box , x , y , w , h) ;

the win - > fullsize = FALSE ;

This example illustrates the method for making the window become it 's full
SIZe.

do_ful l s ize - draws the windo w at it ' s fully de f ine d size . If
the windo w i s at it ' s full size then this routines restores
the windo w to i t ' s previous size .

do_ful lsize (handl e)
int handle ;

{
register windo wptr thewin ;

int x , y , w , h ;
int d ;

the win = findwindowptr (handle) ;

if (the win - > ful l s i ze) {
I *

Back to normal size
* I
wind_c alc (WC_WO RK , the win - > kind ,

thewin - > box . x , the win - > box . y ,
thewin - > box . w , the win - > box . h ,

lthe win - > work . x , lthe win - > work . y ,

289

290

}

tthe win - > work . w , tthe win - > work . h) ;

wind_s e t (handle , WF_CURRXYWH ,
the win - > box . x , the win - > box . y ,
the win - > box . w , the win - > box . h) ;

CHAPTER 16 . GEM AES

the win - > fullsize = FALSE ;
} else {

}

I *
Draw window at full s i ze ;

* I
wind_ge t (handle , WF_FULLXYWH , tx , ty , tw , th) ;
wind_s e t (handl e , WF_CURRXYWH , x , y , w , h) ;
wind_c alc (WC_WO RK , the win - > kind , x , y , w , h ,

tthe win - > work . x , tthe win - > work . y ,
tthe win - > work . w , tthe win - > work . h) ;

the win - > fullsize = TRUE ;

The next example shows a method for decoding and handling window events .

do _windo w - determi nes the type of windo w e vent and then c al l s
the appropriate func tion to handle the e vent .

do _windo w (me ssage)

{
int *me ssage ;

int handle ;

handl e = me ss age [3] ;

s et_mo use (OFF) ;
wind_update (BEG_UPDATE) ;

switch (message (O]) {
c ase WM_REDRAW :

do_update (message) ;
bre ak ;

c ase lfM_NEWTO P :
c ase lfM_TOPPED :

make _frontwin(findwindo wptr (handle)) ;
bre ak ;

c ase WM_MOVED :
c ase lfM_SIZED :

do_res i ze (message) ;

16. 12 WINDO W MANAGER

}

}

bre ak ;

c ase lfM_FULLED :
do_ful l size (handl e) ;

bre ak ;

c as e WM_CLOSED :
dispo s e _vindov(findvindo wptr (handl e)) ;

bre ak ;

wind_update (END_UPDATE) ;
set_mouse (ON) ;

291

292 WIND_CALC

NAME

wind_calc - calculates the X- and Y-coordinates and the width and height of
a window's work area or border area.

SYNOPSIS

int wind_c alc (wi_c type , wi_c kind ,

int
int

wi_cinx ,
wi_c outx ,

wi_c iny , wi_c inw , wi_c inh ,
wi_c outy , wi_c ?utw , wi_c outh)

wi_c type , wi_c kind ;
wi_c inx , wi_c iny , wi_c inw , wi_c inh ;

int *wi_c outx , *wi_couty , *wi_c outw , *wi_c outh ;

DESCRIPTION

wind_calc calculates the X- and Y -coordinates and the width and height of a
window's border area or work area. The parameter wi _c type indicates the
type of calculation that is to be performed. If wLc type contains the value
0 the function assumes that the input rectangle , wLc in* , describes the size
of the work area. The output rectangle will be the dimensions of the total
window. If wLc type contains the value 1 the function assumes that the input
rectangle describes the size of the entire window. The output rectangle will be
the dimensions of the work area of the window.

wLc type

wLc rkind

the type of calculation to perform:

0 return border area X, Y, width, and height.

1 return work area X, Y, width , and height.

A bit vector of the window components used for the window
in question .

The following bits represent the components :

Ox0001 (NAME)
Ox0002 (CLOSE)
Ox0004 (FULL)
Ox0008 (MOVE)
Ox0010 (INFO)
Ox0020 (SIZE)
Ox0040 (UPARROW)

title bar with name
close box
full box
move box
information line
size box
up-arrow

wLc inx

wLc iny

wLc inw

wLc inh

wi_c outx

wLc outy

wi_c outw

wLc outh

DIAGNOSTICS

Ox0080 (DNARROW)
Ox0100 (VSLIDE)
Ox0200 (LFARROW)
Ox0400 (RTARROW)

WIND_CALC 293

down-arrow
vertical slider
left-arrow
right-arrow

This call uses the following bit settings for each component :

0 =

1
does not have component .
has the component.

the input X-coordinate of the work area (if wLc type = 0) or
border area (if wLc type = 1) .

the input X-coordinate of the work area (if wLc type = 0) or
border area (if wLc type = 1) .

the input width of the work area (wLc type = 0) or border
area (if wLctype = 1) .

the input height of the work area (wLc type = 0) or border
area (if wLctype = 1) .

the output X-coordinate of the work area (if wLc type = 1) or l[l�k��j!j�ii!J border area (if wLc type = 1) .

the output Y-coordinate of thework area (if wLc type = 1) or
border area (if wLc type = 0) .

the output width of the work area (if wLc type = 1) or border
area (if wLctype = 0) .

the output height of the work area (if wLctype = 1) or border
area (if wLctype = 0) .

The result of the function will be zero if an error occurs .

294 WIND CLOSE

NAME

wind_close - closes an open window.

SYNOPSIS

int wind_c lose (wi_c lhandle)
int wi_c lhandle ;

DESCRIPTION

wind_close closes an open window. The window to be closed is defined by the
window handle wLc lhandle . Although the window is closed it 's data structures
remain in memory. The application can re-open the window by calling the
wind_open function again .

DIAGNOSTICS

The result of the function will be zero if an error occurs .

SEE ALS O

wind_open

NAME

WIND_CREATE 295

wind_create - allocates the application 's full-size window and returns a handle.

SYNOPSIS

int wind_c reate (wi_crkind , wi_c rwx , wi_c rwy , wi_c rww , wi_c rwh)
int wi_c rkind ;
int wi_c rwx ;
int wi_c rwy ;
int wi_c rww ;
int wi_c rwh ;

DES CRIPTION

wind_create creates a window definition in memory. A call to this routine
allocates the application's full-size window and returns the window's handle (a
integer value) . The window's full size rectangle is defined by the parameters
wLc rwx, wLc rwy, wLc rww, and wLc rwh. The result of the function will be the
handle of the new created window.

wLc rkind A bit vector of the window components to include in the new
window.

The following bits represent the components:

Ox0001 (NAME) title bar with name
Ox0002 (CLOSE) close box
Ox0004 (FULL) full box
Ox0008 (MOVE) move box
Ox001 0 (INFO) information line
Ox0020 (S IZE) size box
Ox0040 (UPARROW) up-arrow
Ox0080 (DNARROW) down-arrow
Ox0100 (VSLIDE) vertical slider
Ox0200 (LFARROW) left-arrow
Ox0400 (RTARROW) right-arrow
Ox0800 (HSLIDE) horizontal slider

This call uses the following bit settings for each component:

0 does not have component.
1 has the component.

296 WIND_CREATE

wi_c rwx the X-coordinate of the full-size window.

wi_c rwy the Y-coordinate of the full-size window.

wi_c rww the width (in pixels) of the full-size window.

wLc rwh the height (in pixels) of the full;size window.

NOTE

The window's initial size is determined by the wind_open function.

DIAGNOSTICS

If a negative value is returned an error occurred during the creation of the
window.

SEE ALS O

wind_open

NAME

WIND..DELETE 297

wind_delete - de-allocates the application 's window and handle.

SYNOPSIS

int wind_de lete (wind_handle)
int wind_handle ;

DESCRIPTION

wind_delete release the memory allocated by the window and removes the win­
dow handle from the active window list. The window that is to be deleted is
defined by the window handle wind..handle .

DIAGNOSTICS

The result of the function is zero if an error occurs.

SEE ALS O

wind_create

298 WIND_FIND

NAME

windJind - find a window under a point on the screen .

SYNOPSIS

int wind_find (wi_fmx , wi_fmy)
int wi_fmx ;
int wi_fmy ;

DESCRIPTION

wind.Jind returns the handle of the frontmost window under the pixel posi­
tion (wLfms , wLfmy) . A value of zero will be returned if only the desktop or
background is visible at that location .

wLfmx the X-coordinate of the position .

wLfmy the Y -coordinate of the position .

NAME

WIND_GET 2 99

wind_get - gets the information on the window specified by wi_ghandle.

SYNOPSIS

int wind_get (wi_ghandle , wi_gfield ,
wi_gw1 , wi_gw2 , wi_gw3 , wi_gw4)

int wi_ghandle ;
int wi_gfield ;
int *wi_gw1 , *wi_gw2 , *wi_gw3 , *wi_gw4 ;

DESCRIPTION

wind_get returns information about the window with handle wLghandle . This
routine can request information about the windows (x, y) position and size,
the active window handle, the slider location and size, the window's current
location and size, or the window's previous location and size.

wLghandle

wLgfield

The handle of the window that the application wants informa­
tion about.

�:c��:e��: :��li!:�1;o:h;r:;:at:.e �:i�al:::fr::t�;;i:�:�:� mm:J:i
termines which of wL.gw1 , wi ...gw2 , wi ...gw3 , and wi ...gw4 is re­
turned .

4 (WF _WORKXYWH) - request the coordinates of the window
work area.

wi...gw1 X-coordinate
wi ...gw2 Y-coordinate
wi...gw3 width
wi ...gw4 height

5 (WF _CURRXYWH) - request the coordinates of the entire
current window.

wi...gw1 X-coordinate
wL.gw2 = Y -coordinate
wL.gw3 width
we ...gw4 height

300 WIND_GET

6 (WF YREVXYWH) - request the coordinates of the previous
window.

wL .gwl X-coordinate
wi....gw2
wi....gw3
wi....gw4

Y -coordinate
width
height

7 (WF ..FULLXYWH) - request the coordinates of the fullsize
window.

'

wigwl X-coordinate
wigw2 Y -coordinate
wi....gw3 width
wi....gw4 height

8 (WF ..HSLIDE) - request the relative position of the hor­
izontal slider. It returns a number between 1 and 1000
which is the relative position of the slider . (1 = leftmost
position; 1000 = rightmost position) .

wi....gwt Slider position

9 (WF _VSLIDE) - request the relative position of the verti­
cal slider . It returns a number between 1 and 1000, giving
the relative position of the vertical slider. (1 = topmost
position; 1000 = bottom position) .

wi....gwt Slider position

10 (WF_TDP) - request the handle of the active window.
wi....gwt Window Handle

1 1 (WF_FIRSTXYWH) - request the coordinates of the first
rectangle in the window's rectangle list .

wi....gw1 X-coordinate
wL.gw2 Y -coordinate
wi....gw3 width
wL.gw4 height

12 (WF _NEXTXYWH) request the coordinates of the next
rectangle in the window's rectangle list .

wLgw1 ,
wLgw2 ,
wLgw3 ,
wLgw4

DIAGNOSTICS

wi __gw1
wi __gw2
wi __gw3
wi __gw4

X-coordinate
Y -coordinate
width
height

13 (WF....RESVD) - [Reserved] .

WIND_GET 3 0 1

15 (WF JISLSIZE) - request the size of the horizontal slider.
- 1 = default minimum size (a square box) .
1 - 1000 = the slider 's relative size compared to the hor­
izontal scroll bar

wi__gw1 Slider size

16 (WF _VSLSIZE) - request the size of the vertical slider.
- 1 = default minimum size (a square box) .
1 - 1000 = the slider 's relative size compared to the ver­
tical scroll bar

wi__gw1 Slider size

The return values. The meaning of each 1s determined by
wLgfield above.

Returns 0 if an error occurs.

302 WIND_OPEN

NAME

wind_open - opens the created window to a specified size and location .

SYNOPSIS

'

int wind_open (wi_ohandle , wi_owx , wi_owy , wi_oww , wi_owh)
int wi_ohandle ;
int wi_owx , wi_owy , wi_oww , wi_owh ;

DESCRIPTION

NOTE

wind_open draws a window onto the screen . This window's size i s defined by
wLoww and wLowh at the location (wLowx, wLowy) .

wLohandle

wLowx

wLowy

wi_oww

wLowh

the handle of the window to be opened (returned by
wind_create) .

the initial X-coordinate of the window.

the initial Y -coordinate of the window.

the initial width (in pixels) of the window.

the initial height (in pixels) of the window.

It is necessary to obtain a window handle from the wind_create function before
opening the window.

DIAGNOSTICS

The result of the function is zero if an error occurs.

SEE ALSO

wind_create

NAME

WIND...SET 303

wind..set - sets new values for the display fields for a window.

SYNOPSIS

int wind_set (wi_shandle , wi_sfield , wi_swl , wi_sw2 ,
wi_sw3 , wi_sw4)

int wi_shandle ;
int wi_sfield ;
int wi_swl , wi_sw2 , wi_sw3 , wi_sw4 ;

DESCRIPTION

wind...set is used to change window attributes. The parameter wLshandle de­
fines the window whose attributes are to be changed . The attribute to be
changed is defined in the parameter wLsfie ld.

wLshandle

wLsfie ld

The handle of the window whose fields are to be changed.

A numerical value identifying the field to change:

1 �������d, the �:d�c����n
r
e
o
n::in�{ the window (see �l�]��l[�lll!

wLswl New wLc rkind

2 (WF ..NAME) - a string containing the name of the window.
wLswl High word of c har *
wLsw2 Low word of char *

3 {WF _INFO) - a string containing the information line.
wLswl High word of char *
wLs w2 Low word of char *

5 (WF_CURRXYWH) - defined under wind_get .

8 (WF JISLIDE) - defined under wind_get .

9 (WF _VSLIDE) - defined under wind_get.

10 (WF _TOP) - defined under wind_get.

304 WIND..SET

wi_sw1 ,
wi _sw2 ,
wi _sw3 ,
wLsw4

DIAGNOSTICS

14 (WF ..NEWDESK) - the address of a new default desktop for
GEM AES to draw. Takes a tree (OBJECT *) and index
of subtree to draw.

wLsw1 High word of OBJECT *
wLsw2 Low word of OBJECT *
wLsw3 Subtree index

'

15 (WF..HSLSIZE) - defined under wind...get .

16 (WF_VSLSIZE) - defined under wind...get .

The value depends on the field named wLsfield above.

The result of the function is zero if an error occurs.
EXAMPLE

make_frontwin - Forc e a window to the front .

make_frontwin(the win)
windowptr thewin ;

{

}

SEE ALS O

wind_s e t (the win - > handle , WF_TOP , 0 , 0 , 0 , 0) ;
thefrontwin = thewin ;

wind ...get

NAME

WIND_UPDATE 305

wind_update - notify GEM that a window update is in progress.

SYNOPSIS

int wind_update (wind_op)
int wind_op ;

DESCRIPTION

NOTE

wind_update performs several functions that facilitate window updating . The
parameter wind_op functions that are used during the update of a window's
work area. If wind_op contains the code BEGIN_UPDATE GEM knows that the
application is updating the screen and no further drawing will be done by GEM,
(e .g . menus, mouse, etc .) . When the update is completed the wind_update
function is called again with the control code END_UPDATE.

This routine can also take control of the mouse functions, relieving the screen
manager of its control over the mouse, menus, and window control points until it
tells GEM AES that it again has control. This is done by passing wind_update
a control code of BEG..MCTRL. When the application is finished with the mouse,
control may be returned to GEM by calling wind_update with a control code
of END ..MCTRL.

The udpate control codes are defined in the gemdefs . h header file.

DIAGNOSTICS

The result of the function is zero if an error occurs.

Chapter 1 7

VDI

Introduction

GEM VDI (Virtual device interface) handles all drawing and graphic I/0 for
GEM. VDI attempts to provide a program interface which is device and machine
independent. VDI is designed to be able to drive a large variety of graphics
hardware devices for both input and output . This is accomplished by using
normalized values rather than device dependent values. The problem with
normalized values is that they are slow (since everything must be converted to
the actual device specific value) and suffer from round off errors which can make
a program's output look trashy. For these reasons, most programs by-pass the
normalizing mechanism and use device specific values.

A VDI drawing environment is called a workstation. It is referenced in a
program by a number called a handle which is returned when the workstation is
opened. A workstation specifies the output device, any input devices, the cur­
rently selected color, pattern, line width and many other attributes (it doesn't
include a coordinate origin, however) . All drawing is done in the absolute co­
ordinate system of the output device. A program can choose to use normalized
coordinates (NDC) or device specific raster coordinates (RC) when it opens a
workstation. The GEM desktop program opens a workstation for the screen
using raster coordinates. GEM can only have one workstation open for a par­
ticular device at a time, and since the desktop program is always run before
user applications, there is no way for an application program to open a work­
station on the ST. It can however open a virtual workstation that inherits the
device specific information from the currently open workstation . Nevertheless,
a program on the ST must use raster coordinates (which are probably prefered

308 CHAPTER 1 7. VDI

anyway) .
The origin (location (0, 0)) for raster coordinates is the upper left corner of

the screen. Positive coordinates extend to the right and down from the origin .
The range of values that appear on the screen is dependent upon the device
resolution. Information about a raster (the term used for the memory where
the pixels are stored) is passed in a structure called a Memory Form Definition
Block :

typedef struc t fbdstr {
char *fd_addr ; I* address of raster memory *I
int fd_w ; I* width of raster in pixels *I
int fd_h ; I* height of raster in pixels *I
int fd_wdwidth ; I* fd_w I 1 6 *I
int fd_stand ; I* ! =normalized , O=raster c oo rd . * I
int fd_nplanes ; I* number of bits I pixel *I
int fd_r [3] ; I* re served *I

} MFDB ;

An fd_addr value of - 1 indicates the device doesn' t have a bitmap. Al­
though some VDI routines use MFDBs, the only way to get one is to create it
yourself with the information returned after opening a virtual workstation.

Raster functions that operate on pixels combine a source (S) and destination
(D) pixel according to a mode flag. The bitwise logical operation performed for
a particular mode flag value is as follows:

Mode Operation Mode Operation
0 set to 0 8 - (s I D)
1 S & D 9 - (s - D)
2 S & -D 10 -D
3 s 1 1 S I -D
4 -s & D 12 -s
5 D 13 -s I D
6 s · D 14 - (s & D)
7 S I D 15 set to 1

Parameters passed to (and results returned) from VDI routines are placed
into five global arrays which must be defined in the application program:

int contrl [12] , intin [128] , ptsin [128] , intout [128] , ptsout [128] ;

These arrays are referenced by the GEM library interface routines, the appli­
cation doesn 't have to worry about them beyond just defining them.

Color numbers used in VDI routines refer to the ST color palette which
provides three bits per color gun . The palette will have to be initialized if
specific colors are required by an application since the palette is not reset each
time a program is run.

VDI angles are integer values ten times the angle desired in degrees (i .e .
0 - 3600) . Angles are measured counterclockwise from the positive x-axis.

v_opnwk

v_clrwk

v_opnvwk

v _gtext

v_pline

v Jillarea
vr_recfl

v_rbox

v_bar

v _circle

v _ell arc

v_ell ipse

vswr..mode

vsLtype

vsLwidth

vsLends

vsm_height

vst_height

vst_rotation
vst_color

vst.Joad.iont
vst_alignment

vsf..s tyl e

vsf_p eri meter

vro_cpyfm

vr_trnfm

open workstation

clear workstation

Worksta tion Functions

v_clswk

open virtual workstation

v_updwk

v_clsvwk

text output

polyline

fi l led area

fill rectangle

Output Functions

v ..j ustified

v_pmarker

rounded corner rectangle

bar
circle

ell iptical arc

ell ipse

v _con to urfi I I
v _cellarray

v_rfb ox

v_arc

v _pieslice

v _ell pie

vs_cl ip

Attribute Functions
set writing mode vs_color

set polyline l ine pattern vsLudsty

set p olyline l ine width vsLcolor

set p olyline end styles vsm_type

set p olymarker height vsm_color

set character height, absolute vst_point
mode

set character baseline vector vst_font
set graphic text color vst_effects

close workstation

update workstation

close virtual works tation

j ustified text

p olymarker

contour fill

cell array

filled rounded corner rectan­
gle

arc
pie

ell iptical pie

set clipping rectangle

set color palette entry

set user-defined line pattern

set polyline color

set p olymarker type

set polymar ker color

set character cell height,

points mode

set text font
set graphic text special effec ts

load ext ended fonts vst_unload.iont unload extended fonts
set graphic text alignment vsfJnterior

set fil l pattern vsf_color

set fill p erimeter visibil ity vsLudpat

Raster Functions
copy raster, opaque

transform form I
vrt_cpyfm

v _get_pixel

set fil l interior style

set fil l color

set user defined fill pattern

copy raster, transparent

get pixel

309

3 1 0

vsc_form

v_hide_c

vex_timv

vex..motv

vq..key..s

set mouse form

hide cursor

Input Func tions

v..show_c

vq_mouse

exchange t imer i nterrupt vec­

tor

vex_butv

exchange mouse movement vex_curv
vector

sample keyboard state infor­
mation

Inquire Functions

CHAPTER 1 7. VDI

show cursor
sample mouse button state

exchange button change vec­

tor

exchange cursor change vec­
tor

vq_extnd extended inquire function vq_color inquire color representation

vqLattributes i nquire p olyline attributes vqm...att ributes inquire polymarker attributes

vqLattributes inquire fil l area attributes vqt_attributes inquire graphic text

vqt_extent

vqt_name

vqt_fontinfo

vq_chcells

v_enter_cur

v_c urdown

v_c urleft

v_eeos
vs_curaddress

v_rvon

i nquire text extent vqt_width

inquire face name and index vq_cel larray

inquire current face i nforma-
tion

Escapes

inquire addressable character v _exit_cur

cells

enter alpha mode

cursor down

cursor left

erase to end of screen
direct cursor address

reverse video on

v_curup

v_curright

v_curhome

v_eeol
v_curtext

v_rvoff

1 7. 1 VDI Examples

attributes

inquire character cell width

inquire cell array

exi t alpha mode

cursor up

cursor right

c ursor home

erase to end of line
output cursor addressable

text
reverse video off

Included with most of the function descriptions is a small example that illus­
trates the usage of the particular example. However, due to space constraints
in the documentation it was necessary to omit the repetetive portion of the
example which initialized the operating system. For each of the examples in
the VDI it is necessary to add the example source to the file vmain . c . This file
contains the code that initializes GEM, VDI, and calls the example function.

mai n () - This is the main func tion for the example VDI func ti ons .
* I
#inc lude <gemdef s . h>

Define VDI Global Vari abl es
*I

1 7. 1 VDI EXAMPLES

int contrl [1 2] ;
int intin [266] , pts in [266] ;
int int out [266] , pts out [266] ;

main()
{

}

MFDB
int

theMFDB ;
handle ;

Start up ROM .
• I
appl_ini t O ;

I • Screen definition struc ture * I
I • Virtual Workstation Handle • I

handle = open_works tation{ lthe MFDB) ;

Call example func tion here .
• I
sample _function{) ;

Wai t for a Carri age Re turn .
• I
wai t (handl e) ;

Cl o s e the virtual works tation , and shutdown application .
• I
v_c l s vwk (handl e) ;
appl_exi t O ;

The file "GRAFSTUF .C" contains functions that some of the examples
depend on. If an example calls a function defined in this source file then compile
"GRAFSTUF.C" and link the example file with "GRAFSTUF.O" .

3 1 1

Ifill

3 1 2 v__ARC

NAME

varc - Arc ; draw an arc

SYNOPSIS

int v_arc (handle , x , y , radius , start_angle , end_angle)
int handle ;
int x , y ;
int radius ;
int start_angle , end_angle ;

DESCRIPTION

This function draws a hollow arc centered on the point (x, y) . The beginning
and ending angles are in start_angle and end_angle . The angles are expressed
in tenths of degrees {0 - 3600) , clockwise, with the positive x-axis as 0. The
radius is in radius , which is expressed in pixels . The arc is drawn with the
current line attributes.

EXAMPLE

draw_arcs - show how to use the v_arc () vdi func tion .
The handle that is passed as a parameter is the
vdi workstation handle . For further informat ion
refer t o the vdi func tion v_opnvwk () .

draw_arc s (handl e)
int handl e ;

{

}

int px
int py

= 60 ;
= 70 ;

int start_angle = 0 ;
int end_angle = 3600 - 900 ;
int radius ;

for (radius = 1 0 ; radius < 40 ; radius += 10) {
I •

}

draw an arc .
• I
v_arc (handle , px , py , radius , start_angle , end_angl e) ;

Make the arc larger while mo ving the s tart angl e .

end_angle += 300 ;
s tart_angle += 300 ;

SEE ALS O

vswr_mode , vsLcolor , vsl_type , vsl_width, vsLends

V_ARC 313

3 1 4 V..BAR

NAME

v _bar - Draw a filled bar.

SYNOPSIS

int v_bar (handle , rect)
int handle ;
int rec t [4] ;

DESCRIPTION

The bar is drawn by placing the lower lefthand and the upper righthand corners
into the array rect . The lower lefthand corner and the upper righthand corner
are defined in the array as [xb Y1 > x2 , y2] respectively. The bar is drawn with
the current fill area attributes.

EXAMPLE

draw_bars - An example of how to us e the v_bar () func tion to
draw s o l i d rec tangl e s . The parameter handl e i s the vdi
workstation handle that is re turne d from the function
v_opnvwk () .

draw_bars (handle)

{

}

SEE ALS O

int handle ;

int rec t [4] ;
int px = 200 ;
int py = 1 00 ;
int y = 90 ;
int x ;

for (x=O ; x < 1 00 ; x + = 26 , px += 2 6 , y - = 10) {
re c t_s e t (re c t , px , py , px+20 , py-y) ;

v_bar(handle , rec t) ;
}

vswr_mode, vsf_interior, vsf..style, vsf_color, vsf_perimeter

NAME

v _circle - Draw a Circle .

SYNOPSIS

int v_c irc le (handle , x , y , radius)
int handle ;
int x , y ;
int radius ;

DESCRIPTION

V_CIRCLE 315

This function draws a solid circle with center (x, y) and with a radius in pixels
defined by the parameter radius . The current fill area attributes will be used
to fill the circle when it is drawn.

EXAMPLE

draw_c irc l e s - An example of ho w to us e the v_c i rc l e ()
func tion t o draw circles . In this c as e a c ircle
wi thin a circ l e , . . . The parameter handle is the
vdi works tation handle that is re turne d from the
func tion v_opnvwk () .

draw_c irc l e s (handle)
int handle ;

{

}

SEE ALSO

int radius ;
int px = 1 6 0 ;
int py = 70 ;

for (radius = 1 0 ; radius < 40 ; radi us += 1 0)
v_c irc l e (handl e , px , py , radius) ;

vswr_mode , vsfinterior, vsf....style, vsf_color, vsf_perimeter

3 1 6 V_CLRWK

NAME

v _clrwk - clear the workstation .

SYNOPSIS

int v_c lrwk (handle)
int handle ;

DESCRIPTION

This function sets the defined workstation to its initial state. If the workstation
is defined as the screen it is cleared to the background color (index 0) . If the
device is a printer a form feed is given to the device, and it 's buffer is cleared.
If the device is a plotter with manual paper load, the operator is prompted to
load a new sheet . Finally, if the device is a metafile the opcode is flushed to
the output file.

NAME

v _clsvwk - close virtual workstation

V_CLS VWK 3 1 7

SYNOPSIS

int v_c lsvwk(handle)
int handle ;

DESCRIPTION

This function closes a virtual workstation, preventing furthur output through
the handle. All virtual workstations opened by a program should be closed
before the program exits.

SEE ALS O

v_clswk, v_opnvwk

3 1 8 V CLSWK

NAME

v _clswk - close the workstation defined by handle.

SYNOPSIS

int v_c lswk (handle)
int handle ;

DESCRIPTION

NOTE

v _clswk closes the workstation device and prevents any further output to be
received by the device. If the device was a printer, then an update results
unless one occurred previously. For screens, the graphics device is released, and
the alpha device is selected. For metafiles, the buffer is flushed and the metafile
closed.

You should close virtual work stations before closing the workstation.

SEE ALSO

v_clsvwk, v_opnwk

NAME

V_CONTO URFILL 3 1 9

v _contourfill - Contour Fill; flood or seed fill, fill an area to the edge or a color .

SYNOPSIS

int v_c ontourfill (handle , x , y . color)
int handle ;
int x , y ;
int c olor ;

DESCRIPTION

This fills an area to either the edge of the display surface, or a specified color.
Also called flood or seed fill, the algorithm starts coloring at a seed (x, y) and
colors the area until it reaches the color specified by the parameter c o lor . This
parameter is an index into the workstation's color table . If c olor is negative,
the function will fill the area until any color other than the color at the seed.
The area is filled using the current fill area attributes other than fill perimeter.

EXAMPLE

do_f i l l (handl e)

{

}

SEE ALS O

int handl e ;

int x
int y

= 300 ;
= 70 ;

int c o l or = 1 ;

Draw an empty c irc l e
* I
v_arc (handle , x , y , 70 , 0 , 3600) ;

Fi ll the c ircle

v_c ontourfill (handle , x, y, c o l or) ;

vswr_mode , vsfJnterior, vsf_style, vsf_color, vq_extnd

320 V CURSOR MO VEMENT

NAME

v _curd own, v _curhome, v _cur left , v _curright, v _curup - Cursor movement op­
erations .

SYNOPSIS

int v_c urdown(handle)
int handle ;

int v_c urhome (handle)
int handle ;

int v_c urleft (handle)
int handle ;

int v_c urright (handle)
int handle ;

int v_c urup (handle)
int handle

DESCRIPTION

v _curd own moves the cursor down one row; unless the cursor is on the bottom,
in which case, the cursor stays put.

v _cur home moves the cursor to the home position, generally the upper left
corner cell.

v _cur left moves the cursor left one column, but not past the left margin.

v _curright moves the cursor right one column. It will not move the cursor past
the right margin .

v _curup moves the cursor up one row; unless the cursor is at the top , in which
case the cursor is not moved.

EXAMPLE

An example of the VDI cursor movement routines is shown on the examples
disk vcursor . c .

SEE ALSO

v _enter _cur

NAME

v_curtext - Output Cursor Addressable Alpha Text

SYNOPSIS

int v_c urtext (handle , string)
int handle ;
c har * string ;

DESCRIPTION

V_CURTEXT 3 2 1

This prints string starting at the current cursor location . The current alpha
text attributes are used for the text attributes (reverse or standard video) .

EXAMPLE

print_hello (handl e)
int handl e ;

{
c har * s tring = "Hello world . . . " ;

v_curtext (handl e , string) ;
}

SEE ALS O

v_enter_cur, v_cursor movement, v_rvon, v...Ivoff

::tlll£1£1

322 V..EEOL

NAME

v _eeol - Erase to End of Alpha Text Line

SYNOPSIS

int v_eeol (handle)
int handle ;

DESCRIPTION

This erases the text from the present cursor location to the end of the line . The
cursor location remains the same.

SEE ALS O

v _enter_cur, v _cursor movement

NAME

v _eeos - Erase to End of Alpha Screen

SYNOPSIS

int v_eeos (handle)
int handle ;

DESCRIPTION

V..EEOS 323

The v _eeos function erases the text from the current cursor position to end of
screen . The cursor location is not changed.

EXAMPLE

c l e ar_screen(handle)
int handl e ;

{

}

SEE ALS O

int row 1 ;
int c o l 1 ;

Plac e the cursor at the top left part of screen .

vs_curaddress (row , c o l) ;

Cle ar to the end of the screen .
• I
v_e e o s (handle) ;

v_enter_cur, v_cursor movement

3 2 4 V _ELLARC

NAME

v _ellarc - Elliptical Arc

SYNOPSIS

int v_ellarc (handle , x , y , xradius , yradius , start_angle ,
end_angle)

int handle ;
int x , y ;
int xradius , yradius ;
int start_angle , end_angle ;

DESCRIPTION

v _ellarc draws a hollow elliptical arc with the center at (x, y) and the beginning
and ending angles in start....angle and end_angle . The x and y radius, defined
in pixels, are in xradius and yradius . The arc is drawn using the current line
attributes .

EXAMPLE

draw_e llarc - An example of ho w to use the v_e l l arc ()
func tion t o draw ell iptic al hol l o w arcs .

Note : c ircul ar drawing func tions us e tenth ' s of degre ss
for angles .

draw_e llarc (handl e)

{

}

SEE ALS O

int handle ;

int x = 6 0 ;
int y = 1 30 ;
int xradius = 1 0 ;
int yradius = 30 ;
int start_angle = 0 ;
int end_angl e = 3600 ;

Draw the elliptic al arc .
* I
v_ellarc (handle , x , y , xradius , yradius , start_angl e , end_angl e) ;

vswrJnode, vsLtype, vsLwidth, vsLcolor , vsLends

NAME

v _ellipse - draw an ellipse.

V_ELLIPSE 325

SYNOPSIS

int v_ellipse (handle , x , y , xradius , yradius)
int handle ;
int x , y ;
int xradius , yradius ;

DESCRIPTION

This routine draws a filled ellipse with the center at (x, y) . The x-radius and
the y-radius are defined by xradi us and yradi us in pixels . This function uses
the current fill area attributes .

EXAMPLE

draw_e llipse - An example of how to use the func tion v_ellipse () .
Thi s example will draw a solid ell ipse at the point x , y .

• I
draw_e llips e (handle)

int handle ;
{

}

SEE ALS O

int x
int y
int xradius
int yradius

= 1 80 ;
= 1 30 ;
= 40 ;
= 1 0 ;

v_e l l i ps e (handle , x , y , xradius , yradius) ;

vswr_mode , vsfinterior, vsf...style, vsf_color, vsf_perimeter

326 V ..ELLPIE

NAME

v _ellpie - draw an elliptical Pie Slice

SYNOPSIS

int v_ellpie (handle , x , y , xradius , yradius , start_angle ,
end_angle)

int handle ;
int x , y ;
int xradius , yradius ;
int start_angle , end_angle ;

DESCRIPTION

v _ellpie draws a filled elliptical pie slice with its center at (x, y) and the begin­
ning and ending angles in start_angle and end__angle . The x and y radius,
defined in pixels , are in xradius and yradius . This function uses the current
fill area attributes .

EXAMPLE

NOTE

draw_e llpie - An example of ho w to us e the func tion v_ellpi e () t o
draw and ellipti c al p i e slic e . Thi s func tion will us e the
c urrent fill attributes when drawing the s l i c e of pie .

draw_e llpie (handl e)

{

}

int handl e ;

int x
int y
int xradius

= 2 60 ;
= 1 30 ;
= 30 ;

int yradius = 1 0 ;
int start_angle = 0 ;
int end_angle = 1200 ;

v_ellpie (handl e , x , y , xradius , yradius , start_angle , end_angl e) ;

All angles are expressed in tenths of degrees.

SEE ALS O

vswrJnode, vsf_interior, vsf....style, vsf_color, vsf_perimeter

NAME

v _enter_cur - Enter Alpha Mode

SYNO PSIS

int v_enter_cur (handle)
int handle ;

D E S C RIPTIO N

V _ENTER_CUR 3 2 7

This switches from graphics mode to alpha mode , or cursor addressing mode
(text) . The function will clear the screen and leave the cursor in the upper left
character cell.

SEE ALS O

v _cursor movement , v _exit _cur

3 2 8 VEX_B UTV

NAME

vex_butv - Exchange Button Change Vector.

SYNO PSIS

int vex_butv(handle , user_c ode_ptr , save_area_ptr)
int handle ;
void (*user_c ode_ptr) () ;
long *save_area_ptr ;

D E S C RIPTIO N

N O T E

vex_bu tv will change the interrupt vector for the mouse button handler to
point to a user defined interrupt handler. This allows the user to write a
routine which will be executed each time a mouse button changes state. The
parameter user _c ode_ptr is the address of the function to be executed during
the interrupt . The parameter save _area_ptr points to a 4 byte area where the
address of the old interrupt handler will be stored .

The new interrupt routine will be executed from a JSR instruction with the
interrupts disabled and should exit by an RTS instruction. The state of the
mouse keys will be passed in the lower 16 bits of the 68000's DO register . The
least significant bit of the word will contain the state of the leftmost mouse
button with a 1 indicating that the button has been depressed.

The user routine receives control after the buttons are decoded, but prior to
the driver, so any changes made to the DO register before exiting will affect the
driver's knowledge of the button states.

Preserve the states of any registers that are used during the interrupt, and do
not enable the interrupts.

EXAMPLE

int lef tbutton , rightbutton ;
l ong o l dmouse ;

set_mymous e (handl e)
int handl e ;

{
extern mymouse () ;

vex_butv (handl e , mymouse , loldmouse) ;
}

restore_mouse (handl e)

int handle ;
{

long dummy ;

vex_butv (handl e , o l dmouse , Adummy) ;
}

mymous e ()
{

}

SEE ALS O

unsigned buttonstate ;

S ave re gi s ters us e d by c ompiler and
mo ve button state into l o c al var .

* I
asm {

}

* I

movem . l AO-A1 ID 1 - D2 , - (A7)
mo ve DO , buttonstat e (A6)

Handle the button event

leftbutton = buttons tate A 1 ;
rightbutton = buttonstate A 2 ;

Res tore the registers us ed and put the
new button s tate into DO .

* I
asm {

}

movem . l (A7) + , AO-A1 ID1 - D2
move buttonstate (A6) , DO

Available Registers (pg. 24)

VEXJ3 UTV 3 2 9

3 3 0 VEX_CURV

NAME

vex_curv - Exchange Cursor Change Vector .

SYNO PSIS

int vex_curv (handle , user_c ode_ptr , save_area_ptr)
int handle ;
void (*user_c ode_ptr) () ;
long *save_area_ptr ;

D ES C RIPTION

N O T E

vex_curv will change the vector for the mouse cursor drawing routine to a user
defined drawing routine. This allows the user to write a function which will be
executed each time the mouse cursor is drawn. The parameter user _c ode _ptr is
the address of the function that will be executed . The parameter save_area_ptr
points to a 4 byte area where the address of the old drawing routine will be
stored .

The new drawing routine will be receive control from a JSR instruction with
the interrupts disabled and should exit by an RTS instruction . The x location
of the new cursor is passed in lower 16 bits of the 68000's DO register , and the
new y is passed in the lower 16 bits of the D1 register.

Preserve the states of any registers that are used during the interrupt, and do
not enable the interrupts.

EXAMPLE

long ol d_mous e_draw ;

s e t_mo us e_draw (handle)
int handle ;

{
extern my_mous e_draw () ;

vex_c urv (handl e , my_mous e_draw , told_mous e_draw) ;
}

re store_mous e_draw (handle)
int handle ;

{
long dummy ;

vex_curv (handl e , o l d_mous e_draw , tdummy) ;
}

VEX_CURV 3 3 1

my_mous e_drav ()
{

}

unsi gned mous ex , mo usey ;

Save registers us e d by c ompiler and move mous e position
into l o c al variabl e s .

• I
asm {

}

I *

movem . l AO-Al iD0- 02 , - (A7)
move DO , mousex(A6)
mo ve Dl , mousey (A6)

Drav the mouse cursor .
* I
a_fillre c t (mousex , mousey , mousex+ 1 6 , mous ey+ 1 6) ;

Restore the registers use d .
• I
asm {

}
movem . l (A7) + , AO-A1 IDO-D2

3 3 2 V _EXIT_CUR

NAME

v _exit_cur - Exit Alpha Mode

SYNO PSIS

int v_exit_cur (handle)
int handle ;

D E S C RIPTION

This function is used to exit cursor addressing mode, and to enter graphics
mode.

SEE ALS O

v _enter_cur, v _cursor movement

NAME

vex_motv - Exchange mouse movement vector.

VEX_MOTV 3 3 3

SYNO PSIS

int vex_motv(handle , user_c ode_ptr , save_area_ptr)
int handle ;
void (*user_c ode_ptr) () ;
long *save_area_ptr ;

DES C RIPTION

NOTE

vex_motv will change the interrupt vector for the mouse handler to point to a
user defined interrupt handler. This allows the user to write a routine which will
be executed each time the mouse is moved. The parameter user_c ode _ptr is
the address of the function to be executed during the interrupt . The parameter
save_area_ptr points to a 4 byte area where the address of the old interrupt
routine will be stored.

The new interrupt routine will be executed from a JSR instruction with the
interrupts disabled and should exit by an RTS instruction. The x location of
the mouse is passed in lower 16 bits of the 68000's DO register , and the new y
is passed in the lower 16 bits of the Dl register.

The user routine receives control after the new (x, y) position is computed, but
prior to the driver receiving the information. This means that any changes
that are made to the DO or Dl registers will affect the driver 's knowledge of the
mouse's position.

Preserve the states of any registers that are used during the interrupt, and do
not enable the interrupts.

EXAMPLE

long ol d_mous exy ;

se t_mous exy(handl e)
int handle ;

{
extern mousexy () ;

vex_mo tv(handl e , mousexy , tol d_mousexy) ;
}

re store_mousexy (handle)
int handle ;

334 VEX_MOTV

{
long dummy ;

vex_mo tv(handle , o l d_mous exy , ldummy) ;
}

mousexy ()
{

}

Save regis ters used in interrupt tunc tion and set up l o c al
variables to use in tunc tion .

* I
asm {

}

* I

movem . l AO-A1 IDO-D2 , - (A7)
move DO , mousex
move D1 , mouse y

Work wi th the n e w (x , y) position ot the mous e .

it (mousex > 300)
mousex 300 ;

it (mouse y > 1 60)
mous ey 1 6 0 ;

Restore registers c hanged during interrupt and reset DO l D 1
to contain the moditied mouse (x , y) c oordinates .

* I
asm {

}

movem . l (!7) + , AO-A1 1DO-D2
move mousex , DO
move mousey , D1

NAME

vex_timv - Exchange Timer Interrupt Vector .

VEX_TIMV 3 3 5

SYNOPSIS

int vex_timv(handle , user_c ode_ptr , save_area_ptr , mi ls_per_tic k)
int handle ;
void (*user_c ode_ptr) () ;
long *save_area_ptr ;
int *mi ls_per_tic k ;

DES C RIPTION

NOTE

vex_timv will change the interrupt vector for the timer interrupt handler to
point to a user defined interrupt handler. This allows the user to write a rou­
tine which will be executed each time the timer clock ticks. The parameter
user_c ode _ptr is the address of the function to be executed during the inter­
rupt . The parameter save _area_ptr points to a 4 byte area where the address
of the old interrupt routine will be stored. The last parameter mils_per _ti ck
is a pointer t o a 2 byte area where the number of milliseconds p er tick will be
stored .

The new interrupt routine will be executed from a JSR instruction with the
interrupts disabled and should exit by an RTS instruction.

Preserve the states of any registers that are used during the interrupt, and do
not enable the interrupts.

EXAMPLE

long tickc o unt , o ld_timer ;

se t_timer (handl e)
int handle ;

{

}

extern mytimer () ;
int mils_per_tick ;

vex_timv (handle , mytimer , to ld_timer , tmil s _per_tick) ;

restore_timer(handl e)
int handle ;

{
long dummy ;

vex_ti mv (handl e , o l d_timer , tdummy , tdummy) ;

3 3 6 VEX_TIMV

}

mytime r O
{

}

Pres erve register s tates

asm {
movem . l AO-A1IDO- D2 , - (A7)

}

Handle the tick e vent .
• I
tickc o unt+ + ;

Restore register states .
• I
asm {

}
movem . l (A7) + , AO-A1IDO- D2

NAME

v Jillarea - fill a complex polygon.

V Ji'ILLAREA 3 3 7

SYNO PSIS

int v_f illarea (handle , c ount , points)
int handle ;
int count ;
int points [] [2] ;

D E S C RIPTION

v Jillarea fills a complex polygon defined in the parameter points .

points contains a series of points which define the lines in the polygon .

c ount contains the number of points in the polygon array. The lines are drawn
begining at points [0] and continuing through points [count - 1] . The current
fill area attributes are used when drawing the polygon.

EXAMPLE

do _f i l larea(handl e)
{

int ex = 1 00 ;
int c y = 1 00 ;
int c ount = 6 ;
int points [6] [2] ;

Create a di amond .
• I
pt_set (points [O] , ex .

pt_s e t (points [1] , ex + 60 ,
pt_s e t (points [2] , ex .

pt_set (points [3] , ex - 6 0 ,
pt_s e t (po ints [4] , ex .

Nov f i l l the diamond .

c y - 60) ;
cy) ;
c y + 60) ;
cy) ;
c y - 60) ;

v_f i l l area(handl e , count , points) ;
}

SEE ALS O

vsf_perimeter, vsf_interior, vsf_color, vswr_mode, vsf_style

3 3 8 V GETYIXEL

NAME

v _get_pixel - Get Pixel

SYNOPSIS

int v_get_pixel (handle , x , y , state , c olor)
int handle
int x, y ;
int *state ;
int *c olor ;

DESCRIPTION

v_get_pixel returns the color and state of the pixel at then point (x, y) .

The parameters x and y represent the point where the pixel to be checked is
present. The variable state is a pointer to a two byte location where the state
of the pixel is to be stored . A one will be stored if the the pixel is set and a
zero will be stored if the pixel is not set . The last parameter c olor is a pointer
to a two byte area where the color index of the pixel is stored.

EXAMPLE

#ldefine O N 1

check_pixe l (handl e)
int handle ;

{

}

SEE ALSO

int x = 1 00 ;
int y = 1 00 ;
int s tate ;
int c o l or ;

v_ge t_pixe l (handl e , x , y , lstate , lc olor) ;

printf (" The Pixel at (Xd , Xd) i s " , x , y) ;

if (s tate == ON)
puts (" on") ;

else
puts (" off ") ;

v _opnwk, vq_extnd

NAME

V_G TEXT 3 3 9

v _gtext - text; write text to the display

SYNOPSIS

int v_gtext (handle , x , y , text)
int handle ;
int x ;
int y ;
char *text ;

DESCRIPTION

v_gtext writes the string, defined by the character pointer text, to the display
device. The string is written at the reference position: (x, y) . The relationship
between the reference position and the actual location of the text on the display
is determined by the Set-Graphic-Text-Alignment function , vst_alignment . By
default the alignment of the string is the left baseline position.

If a character is not defined by the character set , an undefined character symbol
is displayed.

EXAMPLE

drawte xt (handle)

{

}

SEE ALSO

int handl e ;

int x = 1 00 ;
int y "' 1 00 ;
c har • t ext = " Hello , World " :

v_gtext (handl e , x , y , text) ;

vst_alignment, vst_height , vstJotation, vstJont, vst_color, vst_effects

340 V JIIDE_C

NAME

v _hide_c - Hide Cursor

SYNOPSIS

int v_hide_c (handle)
int handle ;

DESCRIPTION

v _hide_c makes the mouse cursor invisible . The cursor visibility may be "nested"
to any depth. Every call to v_hide_c must be balanced with a call to v..show_c .
The cursor may be shown at any time with a call to v_show_c with the reset
parameter set to zero.

The parameter handle is the virtual device handle obtained from the v_opnvwk
call.

SEE ALSO

v..show_c

NAME

V JUSTIFIED 341

v _justified - Justify Graphics Text; write justified text to the device .

SYNOPSIS

int v_ j ustified(handle , x , y , string , length , word_spac e ,
char_spac e)

int handle ;
int x , y ;
int length ;
int word_spac e ;
int char_spac e ;
c har * string ;

DESCRIPTION

The v _justified outputs left and right justified text to the device, starting at
the alignment point (x, y) . Extra spacing may be inserted or deleted between
words and/ or characters so that the string is the expected length. The inter­
word spacing modification is determined by the value of word_spac e . If it is
set to TRUE, then the inter-word spacing modification is used. If the value of
c har_spac e is set to TRUE, then the inter-character spacing is used .

The desired output length of the string, in x-coordinate units, is the value of
length. The string is in string.

This function uses the current text attributes.
EXAMPLE

j usttext (handl e)

{

}

SEE ALSO

int handl e ;

int x = 1 00 ;
int y "' 1 6 0 ;
char • t ext = " Hell o , World" ;

v_j ustified(handl e , x , y , text , 1 6 0 , 0 , 1) ;

vst..height, vst..rotation, vstJont, vst..color, vst..effects

342 V OPNVWK

NAME

v _opnvwk - open virtual workstation

SYNOPSIS

v_opnvwk (work_in , handleptr , work_out)
int work_in [1 1] ;
int *handleptr ;
int work_out [57] ;

DESCRIPTION

This function creates a virtual workstation from an existing physical work­
station for a device. A workstation is a drawing environment ; it defines all
attributes used by VDI functions. Only one physical workstation is allowed
per device. The screen's workstation is opened by GEM Desktop , so virtual
workstations must be used by all applications running under GEM Desktop .

The parameters work_in and work_out are described in the function description
of v_opnwk. The difference between the call to v_opnwk and v_opnvwk is that
the function v _opnvwk requires the parameter handleptr to point to a handle
of an open physical workstation.

EXAMPLE

open_workstation - Open a VDI virtual workstation .

Note :
information about the workstati on is returne d in the
parame ter ' form ' . appl_ini t () must be c alled pre viously .

int ope n_workstati on(form)
register MFDB *form ;

{
register int x ;
int work_in [1 1] ;
int work_out [67] ;
int handl e ;
int dummy ;
int GDO S = 0 ;

Does GDOS exist?
*I
asm {

move . w #-:Z , DO

trap #:Z

c mp . w # - 2 , DO
beq gdo s_not_installed
mo ve . w #1 , GDOS (A6)

gdo s_not_install e d :
}

I *
Initialize works tation variabl es .

* I
if (GDO S)

work_i n [O]
else

work_in [O]

Getre z () + 2 ;

1 ;

for(x= 1 ; x< 1 0 ; x++)
work_in [x] = 1 ;

S e t for Ras ter Coordinate Syste m .
* I
work_in [1 0] = 2 ;

Open Virtual Workstation
*I
handle = graf_handl e (tdummy , tdummy , tdummy , tdummy) ;
v_opnvwk(work_in , thandl e , work_out) ;

Che ek for error .
* I
if (! handle) {

}

Cc onws (" \033E Error : Canno t open Virtual Devi c e ") ;
Bconin (2) ;
exi t (1) ;

V_OPNVWK 3 43

S e t up the Memory Form Definition Block (MFDB) . Thi s
struc ture is define d in <gemdefs . h> .

I *
The Bas e addre ss o f the drawing s c reen .

* I
f orm - > fd_addr = Logbas e () ;

The width of the screen in pixels .

344 V_OPN V WK

NOTE

}

* I
form - > fd_w work_o ut [O] + 1 ;

The hei ght of the screen in pixels .
* I
form - > fd_h work_o ut [1] + 1 ;

The number of words in the width of the screen .
* I
form - > fd_wdwidth = form - > fd_w I 1 6 ;

I *
Working i n a raster c o ordinate system .

* I
form - > fd_stand = 0 ;

The number o f drawing plane s .
* I
switc h (work_out [1 3]) {

c ase 1 6 : form - > fd_nplanes
c ase 08 : f orm - > fd_npl anes
c as e 04 : form - > fd_nplanes
defaul t : form - > fd_nplanes

}

Return the works tation handl e .
* I
re turn handl e ;

4 ; bre ak ;
3 ; bre ak ;
2 ; break ;
1 ; bre ak ;

Not all input devices associated with the virtual workstation will work.

SEE ALSO

v_opnwk

NAME

v _opnwk - initialize a workstation .

V_OPNWK 345

SYNOPSIS

v_opnwk (work_in , handle , work_out)
int work_in [1 1] ;
int *handle ;
int work_out [57] ;

DESCRIPTION

This function prepares a workstation for use. It initializes the workstation to
the parameters in work_in, and places information about the workstation in
handle and work_out . The display of the workstation is cleared and set to
graphics mode.

A failure to open or initialize the device returns a zero as the device handle.

work_in [O]

[1]

Device id number. The drivers loaded are determined by the
file "assign . sys"

1 Screen
21 Printer
41 Camera

Linetype
1 solid
2 long dashes

3 dots
4 dashes plus dots

5
6

7

1 1 Plotter
31 Metafile
51 Tablet

short dashes
dash, dot , dot

user defined
> 7 device dependent

[2] Polyline color index. See page 349.
[3] Marker type

1 dot 5 diagonal cross

2 plus sign 6 diamond

3 asterisk 7 device dependent

4 square

[4] Polymarker color index. See page 349.
[5] Text face; refer to vqtJont_info description
[6] Text color index. See page 349.

346 V_OPNWK

[7] Fill interior style
0 holow
1 solid
2 patterned
3 cross-hatched
4 user defined.

[8] Fill style index; refer to vsf_interior
[9] Fill color index. See page 349.

[10] NDC to RC transformation flag
0 Map the full NDC space to the full RC space
1 Reserved
2 Use the RC system

The following data is returned by v _opnwk:

work_ out [0]

[1]
[2]

Addressable width of device in rasters or steps. A value of 512
means one could address from 0 - 512 .
Height of device in rasters or steps.
Device Coordinate units flag ; tells if the image can be precisely
scaled as on a printer , or only close as on a a film recorder.

0 precise scaling.
1 no precise scaling .

[3] Micron width of one addressable unit for the device .
[4] Micron height of one addressable unit of the device .
[5] Number of character heights, or zero if the device has contin­

uous scaling.
[6] Number of line types
[7] Number of line widths, or zero if the device has continuous

scaling .
[8] Number of marker types
[9] Number of marker sizes, or zero if the device has continuous

scaling .
[10] Number of type faces supported by the device, not the highest

numbered face.
[1 1] Number of patterns
[12] Number of hatch styles
[1 3] Number of available, predefined colors the device can display

at one time.

[1 4]
[1 5 - 24]

[25 - 34]

[35]
[36]
[37]
[38]
[39]

[40]

[41]
[42]
[43]
[44]

V OPNWK 347

Number of Generalized Drawing Primitives (GDP) .
The G DPs supported by the device. If the device supports less
than 10, the list will be terminated be a - 1 . The 10 GEM VDI
GDPs will be represented by the following numbers :

1 Bar
2 Arc
3 Pie slice
4 <Jircle
5 Ellipse
6 Elliptical arc
7 Elliptical pie
8 Rounded rectangle
9 Filled rounded rectangle
10 Justified graphics text

a list of attributes available for each GDP above:
0 Polyline
1 Polymarker
2 Text
3 Fill area
4 None

<Jolor; 1 if capable, 0 if not
Text rotation ; 1 if capable, 0 if not
Fill area; 1 if capable, 0 if not
<Jell array operations; 1 if capable, 0 if not
Number of available colors . Zero indicates the device has more
than 32767 , while 2 indicates black and white .
Locator devices: 1 - keyboard only, 2 - keyboard and some-
thing else.
Valuator device: 1 - keyboard only, 2 - another available
Keypads: 1 - function keys on keyboard, 2 - another available
String devices: 1 - keyboard
Workstation type :

0 output only
1 input only
2 input/output
3 reserved
4 metafile output

348 V_OPNWK

The following dimensions are all in the current coordinate system.

[45] Minimum character width
[46] Minimum character height, excluding extends.
[47] Maximum character width
[48] Maximum character height, excluding extends
[49] Minimum line width (x-axis) . Line widths of 1 device unit may

not display.
[50] 0
[5 1] Maximum line width
[52] 0
[53] Minimum marker width
[54] Minimum marker height
[55] Maximum marker width
[56] Maximum marker height

The default values for certain VDI attributes are listed in the following table.

Defaults
Attribute
Character Height
Character baseline rotation
Text alignment
Text Style
Line width
Marker height
Polyline end styles
Writing mode
Input mode
Fill area perimeter visibility
User-defined line style
User-defined fill pattern
Cursor
Clipping

Default Value
Nominal character height
0 degrees
Left baseline
Normal intensity
Nominal line width
Nominal marker height
Squared
Replace
Request for all input classes
Visible
Solid
Solid
Hidden
Disabled

The default assignment of colors to color indices is shown in the table on the
next page:

Default Color Index Values
0 White 8 White
1 Black 9 Black
2 Red 10 Light Red
3 Green 1 1 Light Green
4 Blue 12 Light Blue
5 Cyan 13 Light Cyan
6 Yellow 14 Light Yellow
7 Magenta 15 Light Magenta

Color numbers 16 and greater are device dependent .

SEE ALS O

vq_extnd

V_OPNWK 349

350 V _pJESLICE

NAME

v _pieslice - Pie slice ; draw a pie slice

SYNOPSIS

int v_pieslic e (handle , x, y , radius , start_angle , end_angle)
int handle ;
int x , y ;
int radius ;
int start_angle , end_angle ;

DESCRIPTION

v _pieslice draws a filled pie slice with its center at (x, y) . The beginning and
ending angles are defined in tenths of degrees in the parameters start_angle
and end_angle . The radius is set by the parameter radius and is defined in
pixels . This function uses the current fill area attributes when filling the pie
slice .

EXAMPLE

draw_pieslice - Thi s is an example of how to use the vdi
function v_pieslic e () .

draw_pieslice (handl e)
int handle ;

{

}

SEE ALSO

int x
int y
int radius
int start_angle
int end_angle

= 320 ;
= 1 30 ;
= 30 ;
= 0 ;
= 1200 ;

v_pi e s l i c e (handle , x , y , radius , start_angl e , end_angl e) ;

vswr_mode, vsfJ.nterior, vsLstyle, vsf_color, vsf_perimeter

NAME

VYLINE 351

v _pline - polyline; connects n vertices

SYNOPSIS

int v_pline (handle , c ount , points)
int handle ;
int count ;
int points [] [2] ;

DESCRIPTION

NOTE

v_pline draws a complex polygon defined in the parameter points .

The array points contains a series of points which define the lines i n the poly­
gon . The parameter c ount contains the number of points in the polygon array.
The lines drawn begin at the point points [0] and connect the points in the
array until points [c ount] . All points are represented in pixels . The current
line attributes are used to draw the polygon.

The line must have at least two coordinate pairs, though they may be coincident.
EXAMPLE

do_pol yline (handl e)
{

}

SEE ALS O

int e x = 400 ;
int c y = 70 ;
int c o unt = 6 ;
int points [6] [2] ;

Create a di amond .
• I
pt_set (points [O] , ex , c y - 60) ;
pt_set (points [1] , ex + 6 0 , c y) ;
pt_se t (po ints [2] , ex , c y + 60) ;
pt_s e t (points [3] , ex - 6 0 , c y) ;
pt_s e t (points [4] , ex , c y - 60) ;

Now draw the di amond .
• I
v_pline (handle , c o unt , points) ;

vsLtype , vsLwidth, vsLcolor, vsLends, vswrJllode

352 V YMARKER

NAME

v _pmarker - polymarker; draws c ount number of markers in pxyarray

SYNOPSIS

int v_pmarker (handle , c ount , points)
int handle ;
int c ount ;
int points [] [2] ;

DESCRIPTION

v _pmarker draws a hollow complex polygon defined in the parameter points .
At each of the points the function will draw a mark to highlight the point using
the current marker attributes.

The array points contains a series of points which define the lines in the poly­
gon . The parameter c ount contains the number of points in the polygon array.
The lines drawn begin at the point points [0] and connect the points in the
array until points [c ount] . All points are represented in pixels . The current
polymarker attributes are used when drawing the polygon.

EXAMPLE

I •
do_pol ymarker - Thi s func tion draws a diamond with a marker at

each of the points of the di amond .
* I
do_pol ymarker(handle)
{

int ex
int cy

= 400 ;
= 1 30 ;

int count = 6 ;
int points [6] [2] ;

Create a diamond .
* I
pt_s e t (points [O] , ex
pt_set (po ints [l] , ex +
pt_s e t (points [2] , ex
pt_s e t (po ints [3] , ex -
pt_set (po ints [4] , ex

.

6 0 ,
.

6 0 ,
.

Now draw the di amond .
* I
vsm_type (handle , 3) ;
vsm_he ight (handl e , 30) ;

c y - 60) ;
c y) ;
c y + 60) ;
c y) ;
c y - 60) ;

I • As terisks * I
I * Make that BIG as terisks * I

}

SEE ALSO

v_pmarker (handle , c ount , points) ;

vsm_type , vsm_height, vsm_color, vswrJnode

V YMARKER 353

3 5 4 VQ_CHCELLS

NAME

vq_chcells - Inquire Addressable Character Cells

SYNOPSIS

int vq_chc ells (handle , rows , c olumns)
int handle ;
int *rows ;
int *c olumns ;

DESCRIPTION

vq_chcells returns the maximum number of rows and columns that are used by
the text mode screen. The number of rows is stored at the location pointed
to by rows . The number of columns is stored at the location pointed to by
c olumns . If such addressing is not possible, the returned values will be - 1 .

EXAMPLE

show_dimensions (handle)

{

}

SEE ALSO

int handle ;

int ro ws ;
int c ol a ;

vq_chc ells (handl e , trows , le o l a) ;

printf (" The screen has %d addres s able rows . \n" , rows) ;
printf (" The screen has %d addres s able c o lumns . \n" , c o l a) ;

v _enter_cur, v _cursor movement

NAME

VQ_COLOR 355

vq_color - Inquire Color Representation

SYNOPSIS

int vq_c olor(handle , c olor , set_flag , rgb)
int handle ;
int c olor ;
int set_flag ;
int rgb [3] ;

DESCRIPTION

vq_color returns the red, green and blue settings for the color index specified
by c olor (see page 349 for the default values) . The values are returned in the
rgb array as integer values from 0 to 1000.

The ST only allows 8 levels per color which are mapped into the 0 - 1000 range.
These numbers are called the actual levels and are returned when set_flag is
1 . The values used to set the color index on the last vs_color call are returned
when set ..:f lag is 0.

EXAMPLE

tde:fine SET 1
tdefine ACTUAL 1

tdefine B.ED 0
tdefine GREEN 1
tdefine BLUE 2

fade_t o _black(handl e)
int handle ;
{

int rgb [3] ;
int c o l or ;

For each c olor

for (c o lor=O ; color< 1 6 ; c olor+ +) {
vq_c o l o r (handl e , c olor , ACTUAL , rgb) ;

Fade each color gun value
• I
while (rgb [lED] I rgb [GlEEN] I rgb [BLUE]) {

if (rgb [B.ED]) rgb [lED] - - ;
if (rgb [GlEEN]) rgb [GB.EEN] - - ;

356 VQ_COLOR

if (rgb [BLUE]) rgb [BLUE] - - ;

va_c o l or(handle , c olor , rgb) ;
}

}
}

NOTE

If the index c olor is out of range a random value will
'
be returned.

SEE ALS O

vs_color , v_opnwk

NAME

VQ_CURADDRESS 357

vq_curaddress - returns the current position of the text cursor .

SYNOPSIS

int vq_c uraddre ss (handle , row , c olumn)
int handle ;
int *row , *c olumn ;

DESCRIPTION

vq_curaddress returns the current row and column position of the text cursor .
The row position is stored at the location pointed to by the parameter row .
The column position is stored at the location pointed to by c olumn.

EXAMPLE

sho w_c ursor_position(handle)
int handl e ;

{
int row , c o l ;

vq_curaddre ss (handl e , tro w , lc o l) ;

printf (" The cursor is at (%d , Xd) . \n" , c o l , ro w) ;
}

SEE ALSO

v_enter_cur, v_cursor movement

358 VQ_EXTND

NAME

vq_extnd - Extended Inquire Function

SYNOPSIS

int vq_extnd(handle , owflag , work_out)
int handle ;
int owflag ;
int work_out [57] ;

DESCRIPTION

This function allows access to information not returned in the open workstation
call, v _opnwk. If owflag is 1 the extended inquire values are returned , if it is a
0, the open workstation values are returned.

work_out [0] Screen Type:
1 Separate alpha, graphic controllers ; separate

video screens.
2 Separate alpha, graphic controllers ; common

video screen .
3 Common alpha, graphic controller; separate

image memory.
4 Common alpha, graphic controller ; common

image memory.
[1] Number of available background colors. This may not equal

the number returned from v_opnwk.
[2] Number of graphic special effects. See vst_effects.
[3] If 1 then scaling possible , if 0 then not possible.
[4] Number of planes.
[5] If 0 then look-up table supported , if 1 it is not supported .
[6] Number of 16 by 16 pixel raster operations per second.
[7] Contour fill capability.
[8] Character rotation :

0 None
1 in 90 degree increments (only)
2 arbitrary angles

[9] Number of writing modes available.
[10] Input modes available:

0 none
1 request only
2 sample and request

[1 1]
[1 2]
[1 3]

[1 4]

[1 5]
[1 6]
[1 7]
[1 8]

[1 9-56]

SEE ALS O

v_opnwk

0 - No text alignment; 1 - available
0 - device cannot ink ; 1 - device can
Rubberbanding:

0 none
1 rubberband lines

VQ_EXTND 359

2 rubberband lines and rectangles
Maximum number of vertices for polylines, polymarkers, or
filled areas ; or - 1 if there is no limit.
Maximum intin size, - 1 if no maximum
Number of available mouse keys
0 - no styles for wide lines ; 1 - there are
Writing modes for wide lines
Reserved, all O's

360 VQF_ATTRIB UTES

NAME

vqLattributes - Inquire Fill Area Attributes.

SYNOPSIS

int vqf_attributes (handle , attrib)
int handle ;
int attrib [5] ;

DESCRIPTION

vqf_attribu tes returns the current fill area attributes . The current settings of
the fill area attributes are returned in a ttri b:

attrib [O]
[1]
[2]
[3]
[4]

SEE ALSO

fill interior style
fill area color index
fill area style index
writing style
fill perimeter status

vswr_mode, vsf_interior, vsf...style, vsf_color, vsf_perimeter

NAME

VQ_KEY _s 361

vq_key_s - Sample Keyboard State Information

SYNOPSIS

int vq_key_s (handle , status)
int handle ;
int *status ;

DESCRIPTION

The vq_key_s function returns the status of the keyboard modifier keys. The
parameter status is a pointer to a two-byte area of memory where the status
of the keyboard modifiers will be stored .

The low byte of the status word contains the status of the four keys with a
1 indicating the key that has been depressed. The bits representations are as
follows:

EXAMPLE

Bit
0
1
2
3

Key
Left Shift key

Right Shift key
Control key

Alternate key

ldefine LSHIFT Ox001
ldefine RSHIFT Ox002
ldefine CTRL Ox004
ldefine ALT Ox008

check_ke y_s tatus (handl e)

{

int handle ;

int status ;

vq_key_s (handl e , tstatus) ;

if (status t RSHIFT)
puts (" The Left Shift ke y is down . ") ;

if (status t LSHIFT)
puts (" The Ri ght Shift key i s down . ") ;

if (status t CTRL)
puts (" The Control ke y is do wn . ") ;

362 VQ_KEY _B

}

if (s tatus • ALT)
puts (" The Al ternate ke y is down . ") :

NAME

vqLattributes - Inquire Polyline Attributes

SYNOPSIS

int vql_attributes (handle , attrib)
int handle ;
int attrib [6] ;

DESCRIPTION

VQL_ATTRIB UTES 363

vqLattributes returns the current line drawing attributes. These attributes are
returned in the array attrib as follows:

attrib [O]
[1]
[2]
[3]
[4]
[5]

Polyline type
Polyline color index
Current writing mode
Start point style
End Point style
Line width

The start and end point styles may be one of the following:

SEE ALS O

0 squared
1 arrow
2 rounded

vsLtype, vsLwidth, vsLcolor, vsLends, vswrJIIode

364 VQM..ATTRIB UTES

NAME

vqm_attributes - Inquire Polymarker Attributes

SYNOPSIS

int vqm_attributes (handle , attrib)
int handle ;
int attrib [5] ;

DESCRIPTION

vqm_attributes returns the current attributes for the line marker. The at­
tributes are returned in the array attrib as follows:

attrib [O]
[1]
[2]
[3]
[4]

SEE ALSO

type
color index
writing mode
width
height

vsm_type , vsm_height , vsm_color, vswr_mode

NAME

VQ_MO USE 365

vq_mouse - Sample Mouse Button State

SYNOPSIS

int vq_mouse (handle , status , x , y)
int handle ;
int *status ;
int *X , *y ;

DESCRIPTION

vq_mouse returns the current state of the mouse as well as it 's current position .
The parameter status points to a location where the status of the mouse
buttons can be stored. The bits in the status word represent the state of the
mouse buttons. The LSB , least significant bit , represents the leftmost button,
and a 1 indicates the button has been depressed. The mouse's current x position
will be stored at the location pointed to by the parameter x. The mouse's
current y position will be stored at the location pointed to by the parameter y.

EXAMPLE

lde1ine LBUTTON Oxl
lde1ine RBUTTON Ox2

int c heck_mouse (handle)
int handl e ;

{
int status , x , y ;

vq_mous e (handl e , tstatus , tx , ty) ;

print1 (" The mouse i s at (:4d , Xd) and \n" , x , y) ;

i1 (s tatus t LBUTTO N)
print1 (" the lett button i s down . \n") ;

i1 (status t RBUTTON)
print1 (" the right button is down . \n") ;

i1 (! status)
print1 (11no buttons are down . \n") ;

re turn status ;
}

366 VQT _ATTRIB UTES

NAME

vqt...attributes - Inquire Graphic Text Attributes

SYNOPSIS

int vqt_attributes (handle , attrib)
int handle ;
int attrib [10] ;

DESCRIPTION

vqt_attribu tes returns the current text attributes. The attributes are returned
in the array attrib as follows:

attrib [O]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

SEE ALSO

graphic text face
graphic text color
angle of text baseline rotation
horizontal alignment
vertical alignment
writing mode
character width
character height
character cell width
character cell height

vst_height, vstJont, vst_color, vst..a.lignment, vswrJIIode , vst_rotation

NAME

VQT _EXTENT 367

vqt_extent - Inquire Text Extent

SYNOPSIS

int vqt_extent (handle , string , extent)
int handle ;
int extent [B] ;
c har *string ;

DESCRIPTION

vqt_extent returns an array of points which defines a rectangle that surrounds
the text specified in the parameter string. The b ox corners returned in extent
are in a coordinate system where the lower left corner (point number 1) is on
the X-axis , and the last point is on the Y-axis . The points are enumerated as
follows:

Y -Axis
/ 4 3

S o m e thing
I"- 1 X -Axis "2

F igure 17. 1 : Text Box Extent

They are returned in extent in the following order: [xl , Y1 , x2 , Y2 , Xg , Y3 , X4 , y4] .

If the text baseline were to be rotated, the coordinate system would still have
the Y -axis vertical and the X-axis horizontal, but the box would be rotated and
the values of the points would reflect this .

The size of the box is affected by all current text attributes.

SEE ALSO

vst_heigh t, vst_rotation, vstJont, vst_color, vst_effects, vst_alignmen t

368 VQT_FONTINFO

NAME

vqt_fontinfo - Inquire Current Face Information

SYNOPSIS

int vqt_fontinfo (handle , firstchar , lastchar , distanc e s ,
maxwidth , effects)

int handle ;
int *firstc har , * lastchar ;
int distanc es [5] ;
int *maxwidth ;
int effec ts [3] ;

DESCRIPTION

vqtJontinfo obtains sizing information on the current face at the current height ,
taking account of the current special effects .

firstchar
lastchar

distanc es [0]
[1]
[2]
[3]
[4]

maxwidth

The AS CII equivalent of the first and last characters in the
current font.

the b ottom line distance, relative to the baseline.
the descent line distance, relative to the baseline.
half height distance , relative to the baseline.
ascent distance relative to the baseline .
top distance relative to the baseline.

Lin e

the maximum cell width , not including the left and right off­
sets.

effec ts [0]

SEE ALSO

[1]
[2]

C ha racte r Ce 1 1 Wi dt h

VQT _FONTINFO 369

Posi ti o n�� .{' Basel i ne

Left Offset Ri g ht Offset

the increase in character width due to sp ecial effects such as
italics.
left offset.
right offset .

vqt_width, vstJont , vst_effects

IDJ

370 VQT _NAME

NAME

vqt...name - Inquire Face Name and Index

SYNOPSIS

int vqt_name (handle , fac e_num , font_name)
int handle ;
int fac e_num ;
char *font_name ;

DESCRIPTION

vqt...name will derive the name and font ID from a type face number. The
parameter fac e ...num is the face number of the font whose name is required .
The number of faces available may be obtained through v_extnd with owflag
set to 0 by looking at output parameter work_out [10] . The last parameter
font...name is a pointer to an array of 32 characters where the name of the
font will be stored . The first sixteen characters are the font name , and the
next sixteen are the style. The function result is the ID number of the current
typeface.

EXAMPLE

show_f ont_info (handle , face_num)
int handle ;

{

}

SEE ALSO

int f ac e _num ;

struc t {
char font_name [1 6] ;
c har font_style [1 6] ;
int font_i d ;

} fontinfo ;

fontinfo . f ont_id = vqt_name (handle , face_num , tf ontinf o) ;

printf (" Font name == <Xs>\n" , fontinfo . f ont_name) ;
printf (" Font s tyl e == <Xs> \n" , fontinfo . font_style) ;
printf (" Font ID == < %d> \n11 , f ontinfo . font_i d) ;

vstJont, v_extnd

NAME

VQT_ WIDTH 371

vqt_width - Inquire Character Cell Width

SYNOPSIS

int vqt_width (handle , character , c ell_width , left_delta ,
right_delta)

int handle ;
char charac ter ;
int *c e ll_width ;
int *left_delta , *right_de lta ;

DESCRIPTION

vqt_width returns the width of a graphics character. The character to be mea­
sured is passed in the parameter charac ter . The total width of the graphical
representation of the charac ater is stored at a location pointed to by the
parameter c elLwidth. The unused space on the left and right side of the char­
acter will be stored at the locations pointed to by the parameter's left _del ta
and right_de 1 ta, respectively. The special effects and rotation of the character
do not affect the size.

Besel i ne

EXAMPLE

Left and Right C ha racter Al i g n me nt Del ta

l- 1 r - +-; --- ----

r:::::::::j�::
············

···�·
·· · ·· ···!

'

! !

Cel l
Hei ght

·····t········t·················· .. ········ ···

� �
, Characte r i
i Width i
�

Cel l Width

show_c har_info (handl e , thechar)
int handl e ;
c har thechar ;

{
int c e l l_wi dth , lef t , right ;

vqt_wi dth(handle , thechar , tc e l l_wi dth , tl eft , kright) ;

m

372 VQ T_ WID TH

printf (" The charac ter [Xc l is Xd pixels wide . \n" ,
the char , cell_width - (l eft + right)) ;

}

DIAGNOSTICS

The function will return a - 1 if the character cannot be measured.

SEE ALSO

vsLheight, vstJont

NAME

V_RBOX 373

v ..rbox - Rounded Rectangle

SYNOPSIS

int v_rbox(handle , rec t)
int handle ;
int rec t [4] ;

DESCRIPTION

v _rbox draws a hollow rectangle with rounded edges. rec t is an array of integers
which define the corners of the b ox to be drawn. The first two elements define
the lower left corner and the last two elements define the upper right corner of
the box. This function uses the current line attributes.

EXAMPLE

draw_bara - An example of how to ua e the v_rbox() func tion to
draw ho llow rounde d edge boxea .

* I
draw_bara (handl e)

{

}

SEE ALS O

int handle ;

int re c t [4] ;
int px = 200 , py = 1 00 ;
int x , y = 90 ;

for (x=O ; x < 1 00 ; x += 25 , px +• 25 , y - = 1 0) {
rec t_a e t (rec t , px , py , px+20 , py- y) ;
v_rbox (handle , rec t) ;

}

vswr_mode , vsLty�, vsLwidth, vsLcolor, vsLends

IIIJ

374 V_RFBOX

NAME

v _rfbox - Rounded and Filled Rectangle

SYNOPSIS

int v_rfbox(handle , rec t)
int handle ;
int rec t [4] ;

DESCRIPTION

v Jfbox draws a filled rectangle with rounded edges. rec t is an array of integers
which define the corners of the box to be drawn. The first two elements define
the lower left corner and the last two elements define the upper right corner of
the box. This function uses the current fill area attributes.

EXAMPLE

draw_f illed_bars - An example of ho w to use the v_rfbox ()
func ti on to draw filled rounded e dge boxes .

draw_f illed_bars (handl e)

{

}

SEE ALSO

int handle ;

int re c t [4] ;
int px � 200 , py � 1 00 ;
int x , y � 90 ;

for (x�O ; x < 1 00 ; x +� 26 , px +� 26 , y - � 10) {
rec t_s et (rec t , px , py , px+20 , py-y) ;
v_rfbox(handl e , re ct) ;

}

vswr_mode, vsf_jnterior, vsf..style, vsf_color, vsf_perimeter

NAME

VRO_CPYFM 3 7 5

vro_cpyfm - Copy Raster, Opaque

SYNOPSIS

#inc lude <gemdefs . h>

int vro_cpyfm (handle , write_mode , pxyarray , sourc e_MFDB ,
de stin_MFDB)

int handle ;
int write_mode ;
int pxyarray [8] ;
MFDB *sourc e_MFDB :
MFDB *destin_MFDB ;

DESCRIPTION

vro_cpyfm copies a source rectangle (defined by sourc e...MFDB) to a destination
rectangle (defined by de stin...MFDB) using the logical transfer operation passed
in writemode (see the VDI introduction, pg . 307 , for the writing modes avail­
able for raster functions) .

The two rectangles are each specified by two diagonally opposite corners . The
corners (xs t , ys i) , (xs2 , ys2) [source corners] and (xd� , ydi) , (xd2 , yd2) [destina­
tion] are passed in pxyaray in the order: [xst , ys 1 , xs2 , ys 2 , xd� , yd� , xd2 , yd2] .
If the "from" and "to" rectangles overlap, a copy is made of the original infor­
mation before any modification of the overlap area is performed .

No rotation results from this function . The data will be scaled i f t h e rectangles
are of different sizes and work_out [3] as obtained from vq_extend is a 1 .

The source and destination must b e in device-specific form (see vr_trnfm) .

The p ointers sourc e ...MFDB and destin...MFDB point to the source Memory Form
Definition Block and destination Memory Form Definition Block , respectively.
Refer to the VDI Introduction, pg . 307 for more information .

EXAMPLE

#inc lude <gemdef s . h>
#inc lude <osbind . h>
#inc lude <obdefs . h>

Declare VDI globals
* I
int c ontrl [1 2] ;

376 VRO_CPYFM

int intin [266] , pta in[266] ;
int intout [266] , pta out [266] ;

main()
{

}

SEE ALSO

int handle ;
int pxyarray [8] ;
MFDB sourc e , de stin ;

Initialize AES l VDI .
* I
appl_ini t O ;
handl e open_worka tation(laourc e) ;
de stin = sourc e ;

v_gtext (handl e , 80 , 60 , "Mo ving the Menu Bar . . . 11) ;

Set the source and de stination rec tangl e s .
• I
re c t_a e t (tpxyarray [O] , 0 , 0 , aourc e . f d_w , 40) ;
rec t_a e t (lpxyarray [4] , 0 , 1 00 , aourc e . fd_w , 1 40) ;

Do the Copy .

vro_cpyfm(handle , S_ONLY , pxyarray , laourc e , ldea tin) ;

v_gtext (handl e , 80 , 80 , " Preas RETURN to end . ") ;
Bconin (2) ;

appl_exi t O ;

VDI introduction (pg . 307) , vq_extnd , vr_trnfm

NAME

VRRECFL 377

vr..recfl - F ill Rectangle

SYNOPSIS

int vr_re c f l (handle , rec t)
int handle ;
int rec t [4] ;

DESCRIPTION

vr_recfl draws a filled rectangle without a perimeter. The rectangle is defined
by the parameter rect . The first two elements define the lower left corner and
the last two elements define the upper right corner of the box. This function
uses the current fill area attributes, but since it does not draw a perimeter it
does not use the fill perimeter setting.

EXAMPLE

draw_recfl - An example of how to use the vr_re c f l () function to
draw filled rec tangles .

• I
draw_rec f l (handl e)

{

}

SEE ALSO

int handl e ;

int rec t [4] ;
int px = 300 , py = 1 00 ;
int x , y = 90 ;

for (x=O ; x < 1 00 ; x += 26 , px += 26 , y - = 10) {
rect_s e t (rec t , px , py , px+20 , py-y) ;
vr_re c f l (handle , rect) ;

}

vsf_in terior, vsf...style , vsf_color, vswr_mode

litl1

3 7 8 VRT_CPYFM

NAME

vrt_cpyfm - Copy Raster, Transparent

SYNOPSIS

#inc lude <gemdefs . h>

int vrt_cpyfm(handle , write_mode , pxyarray , sourc e_MFDB ,
de stin_MFDB , c olor)

int handle ;
int write_mode ;
int pxyarray [B] ;
MFDB * sourc e_MFDB ;
MFDB *de stin_MFDB ;
int color [2] ;

DESCRIPTION

vrt_cpyfm copies a source rectangle (defined by sourc e..JIIIFDB) to a destination
rectangle (defined by destin..JIIIFDB) . The function is similar to vro_cpyfm, ex­
cept that it copies a single color raster to a color raster.

The two rectangles are each specified by two diagonally opposite corners . The
corners (xsl > ys!) , (xs2 , ys2) [source corners] and (xd1 , yd!) , (xd2 , yd2) [destina­
tion] are passed in pxyaray in the order: [xs� , ys1 , xs2 , ys2 , xd� , yd� , xd2 , yd2] .
If the "from" and "to" rectangles overlap, a copy is made of the original infor­
mation before any modification of the overlap area is performed.

No rotation results from this function . The data will be scaled if the rectangles
are of different sizes and work_out [3] as obtained from vq_extend is a 1 .

The source and destination must be i n device-specific form (see vr_trnfm) .

The pointers sourc e..JIIIFDB and destin..JIIIFDB p oint to the source Memory Form
Definition Block and destination Memory Form Definition Block , respectively.
Refer to the VDI introduction , pg. 307, for more information.

The writing mode in wri te Jilode can be:

Replace Mode (1) - All source pixels are transfered ; source pixels with a
1 will have c olor [0] in the destination, all those with a 0 will have
c olor [1] .

Transparent Mode (2) - Only the source pixels with a value of 1 will write
over the destination pixels. c olor [0] contains the color index to use for
writing .

VRT_CPYFM 379

XOR (3) - The source monochrome raster area i s logically XOR'd (Exclusive
O R 'd) with each destination plane. The values in c olor are ignored .

Reverse Transparent Mode (4) - This is the reverse of mode 2 , only the
destination pixels with associated source pixels of 0 are affected. Those
with a value of 0 are mapped to c olor [l] .

SEE ALSO

vro_cpyfm, vswr_mode , vq_extnd, VDI Introduction (pg . 307)

380 VR_TRNFM

NAME

vr _trnfm - Transform Form

SYNOPSIS

#inc lude <gemdefs . h>

int vr_trnfm (handle , sourc e_MFDB , destin_MFDB)
int handle ;
MFDB *sourc e_MFDB ;
MFDB *destin_MFDB ;

DESCRIPTION

vr _trnfm transforms the raster image from device-specific raster coordinates to
standard normalized coordinates and vice-versa.

The number of planes transformed is determined by the source MFD B , the
address of which is passed in sourc e ...MFDB. The format flag (fd_stand) from
the source is toggled and placed in the destination MFDB , who's address is
passed in destin...MFDB .

The user must ensure all the other parameters in the destination MF DB are
correct .

SEE ALSO

VDI Introduction (pg . 307)

NAME

v _rvoff, v .. rvon - Video switches.

V _.RVOFF & ON 381

SYNOPSIS

int v_rvoff (handle)
int handle ;

int v_rvon(handle)
int handle ;

DESCRIPTION

These functions set flags which determine where the alpha text will be displayed
in normal or reverse video. The parameter handle is a handle to the device's
virtual workstation.

v _rvon turns reverse video on for text

v _rvoff turns reverse video off for text

SEE ALSO

v .. enter .. cur, v .. cursor movement

382 VSC_FORM

NAME

vsc.iorm - Set Mouse Form; Change the cursor pattern

SYNOPSIS

int vsc _form(handle , pcur_form)
int handle ;
int pcur_form [37] ;

DESCRIPTION

vscJorm allows the user t o set his own form for the mouse cursor. The array
pcur _form contains the cursor definition information in the following positions:

pcur_form [O , l] the x and y locations, relative to the upper left corner of the
cursor, of the "center" of the cursor. The location of the pixel
in the center is defined as the location of the cursor.

EXAMPLE

[2] For future use , must be 1 .

[3] This is the color index the l ' s in the cursor background will
have.

[4] This the color index the l 's in the cursor foreground will have.

[5 - 20] The (16 X 16) array of background bits. The MS B (most sig­
nificant bit) of the first word (index 5) is the upper left corner,
and the LSB of the last word (index 20) is the lower right .

[2 1 - 36] The foreground data, organized as above .

s et_mo uae - redefine the current mous e c ursor using vsc_form() .

Note : s tuffbita () i s a routine that c onverts as c i i O ' s t 1 ' s to
re al bi nary and stores the result at the l o c ation pointed to
by the f irst parameter . It is defined in grafstuf . c

se t_moua e (handl e)

{
int handle ;

uns i gned form [37] ;
int x ;

}

SEE ALSO

Define the mous es ' ' Hot Spot ' '
* I
pt_set (kform[O] , 6 , 2) ;

S etup array information
* I
form [2]
form [3]
form [4]

1 ;
2 ;
3 ;

I * reserved by Atari * I
I * Bac kground color * I
I * Fore ground color * I

Define Background mous e form
* I
stuffbi ts (H orm [6] , " 0000000000000000") ;
stuffbi ts (kform [6] , " 000001 1 1 1 1 1 00000") ;
s tuffbits (kform [7] , 11 0000001 1 1 1 1 00000") ;
s tuffbits (H orm [8] , " 0000000001 1 00000 ") ;
s tuffbits (kform [9] , 11 0000000000000000") ;

for (x=1 0 ; x<2 1 ; x+ +)
s tuffbits (lrform [x] , " 0000000000000000 ") ;

Define Fore ground mous e form
* I
a tuffbi ta (Horm[2 1] , " 001 1 1 1 1 1 1 1 1 1 000011) ;
s tuffbi ta (tform [22] , " 001 1 1 0000001 000011) ;
a tuffbi ta (tform[23] , " 001 1 1 1 000001 0000") ;
a tuffbi ta (H orm [24] , " 001 1 1 1 1 1 1 001 0000") ;
a tuffbi ta (tform [2 6] , " 001 1 1 1 1 1 1 1 1 1 000011) ;

for (x=2 6 ; x<37 ; x++)
a tuffbits (Horm[x] , " 000000000000000011) ;

vac _form(handl e , form) ;

v....show_c, graf_mouse

VSC_FORM 383

384 VS CLIP

NAME

vs_clip - set clipping rectangle; set or reset clipping of all primitives

SYNOPSIS

int vs_c lip(handle , c lip_flag , rec t)
int handle ;
int c lip_flag ;
int rec t [4] ;

DESCRIPTION

vs_clip defines a rectangular area within which all future drawing will b e re­
stricted until clipping is disabled or redefined. Clipping is enabled if c lip_:flag
is 1 and disabled if it is 0. Open workstation (v _opnwk) initially disables clip­
pmg .

The rectangle is defined by 2 diagonally opposed (x, y) coordinates in rec t in
the following order: [xl , Y1 , x2 , Y2 J .

NAME

VS_COLOR 385

vs_color - S e t Color Representation ; define colors

SYNOPSIS

int vs_color(handle , c o lor , rgb)
int handle ;
int c o lor ;
int rgb [3] ;

DESCRIPTION

NOTE

vs_color sets the intensity values of the color electron guns for the color index
specified . The intensities of the three colors have a range of 0 - 1000. Any
intensity above 1000 is mapped to 1000, and any less than 0 is mapped to 0.
If the device is monochrome, each of the colors are mapped to a percentage of
white . The first parameter c olor is an index into the color table defined by
the v _opnvwk call. The second parameter is the rgb defines the values of each
color gun where rgb [O] is red, rgb_in [l] is green, and rgb_in [2] is blue.

No action takes place if the device does not have a color look-up table, or
the color index (index) is out of range. See page 349 for the default color
assignments.

SEE ALSO

v_opnwk, vq_extnd, vq_color

3 8 6 VS_CURADDRESS

NAME

vs_curaddress - Direct Alpha Cursor Address

SYNOPSIS

int vs_curaddress (handle , row , c olumn)
int handle ;
int row ;
int column ;

DESCRIPTION

vs_curaddress moves the text cursor to (row, c olumn) . The cursor will not move
beyond the maximum displayable range of the screen if over range coordinates
are passed, instead it will move to the maximum value of each.

EXAMPLE

go toxy (handle , x, y)
int handl e , x , y ;

{

}

SEE ALSO

vs_c uraddre s s (handle , y , x) ;

vq_curaddress, v _enter_cur, v _cursor movement

NAME

vsLcolor - Set Fill Color Index

SYNOPSIS

int vsf_c olor (handle , c olor)
int handle ;
int c olor ;

DESCRIPTION

VSF_COLOR 387

vsf_color will set the color index used for future polygon fill operations. I f the
color requested in c olor is out of range, color 1 will be selected. The colors 0,
and 1 are always present , others may be available (see vq_extnd) .

SEE ALSO

v_opnwk, vq_extnd, vs_color, vsfjnterior, vsf_style

388 VSF JNTERIOR

NAME

vsfjnterior - S et Fill Interior Style

SYNOPSIS

int vsf_interior(handle , style)
int handle ;
int style ;

DESCRIPTION

vsf_interior will set the fill style used in future interior fill operations. The
function result is the value of the style selected. The value selected will be 0,
or hollow if the requested style does not exist. See vsf..style for a complete list
of the pattern and hatch styles .

Available fill styles
0 Hollow - fills with background color (index 0)
1 Solid - fills with current fill color
2 Pattern
3 Hatch
4 User-defined style

SEE ALSO �����!i:!J:J!ml vsf_color , vs_color, vsf_udpat, vsLstyle

NAME

VSF YERIMETER 389

vsLperimeter - S e t Fill Perimeter Visibility

SYNOPSIS

int vsf_perimeter (handle , visible)
int handle ;
int vi sible ;

DESCRIPTION

vsf_perimeter sets a flag which determines whether or not the perimeter of a
polygon when drawn should be visible . If visible is 0, the perimeter of a filled
area is not visible. If visible is any value other than 0 the perimeter is visible.
If the perimeter is set visible, it is drawn as a solid line in the current fill color .
The default perimeter set by v_opnwk is visible .

390 VSFSTYLE

NAME

vsf...style - Set Fill S tyle Index

SYNOPSIS

int vsf_style (handle , style_index)
int handle ;
int style_index ;

DESCRIPTION

vsf....style sets a fill style which is based on the fill interior style, set with
vsf_jnterior. This fill style has effect only if the fill interior style is set to Pattern
or Hatch . The desired index is passed in style _index, and the one chosen will
be the return value of the function. If the requested style does not exist or is
invalid then the function will default to style 1 .

2 , 1 6

2 , 1 0 � .. :., . : . , . : . , . : . [I]]]=.:. : . : . : .: . : . : .
: · : · : · : · : · ! · : · : · : . : . : . : . : .: . : .: .

2 , 5 2 , 7

� L.:..:..:J
2 , 1 1 2 , 1 2 2 , 1 3 2 , 1 4 2 , 1 5

2 , 1 7 2 , 1 8 2 , I 9 2 , 2 0

3 , 7

3 , 1 0

Figure 17 .2 : Available Fill S tyles

The available fill style indices start at 1 and continue to a device-dependent
maximum. The chart above shows the resulting patterns for some combinations
of the fill interior style and the fill style, set by this function. In the paired
numb ers on the chart, the left number is the fill interior style, and the right is
the fill style (set with this function) .

VSF ...STYLE 391

The two colors displayed will be the fill color set by vsf_color and the darkest
color on the device (index 1) .

SEE ALSO

vsLinterior, vsf_color

392 VSF_UDPAT

NAME

vsf_udpat - S et User-defined F ill Patte
'
rn

SYNOPSIS

int vsf_udpat (handle , fill_pattern , planes)
int handle ;
int fill_pattern [] ;
int planes ;

DESCRIPTION

NOTE

vsf_udpat allows the user t o define a customized fill pattern and make i t the
user-defined fill pattern, (see vsf_interior. The pattern is a 16 x 16 bit array.
The defined pattern may consist of more than one plane. The number of planes
is defined by the parameter planes . For single plane patterns, a 1 maps to the
present foreground color, and 0 to the background. The foreground color is set
by vsf_color . The bit pattern is stored in filLpatttern as follows:

1010101010101010 word 0, fi1Lpattern [16 x i] for plane i
0101010101010101 word 1 , fi1Lpattern [16 x i + 1] for plane i

1010101010101010 word 15 , fi1Lpattern [16 X i + 15] for plane i

The interior fill style must be set to 4 (user defined) using vsf_interior.

EXAMPLE

s e t_f i l l _pattern(handl e)
int handle ;

{
unsi gned x ;
unsigned fill_pattern [1 6] ;

Cre ate checker board fill pattern
* I
f o r (x=O ; x<1 6 ; x+= 2)

s tuffbits (l:fill_pattern [x] , " 01 01010101 0 1 01 01 ") ;

for (x=1 ; x< 1 6 ; x += 2)
stuffbits (l:fill_pattern [x] , " 1 0101010101 01010") ;

vsf_udpat (handl e , fill_pattern , 1) ;
}

SEE ALSO

vsf.in terior, vsf...style , vsf_color

VSF_UDPAT 393

394 V....SHO W_C

NAME

v ...show_c - S how Cursor

SYNOPSIS

int v_show_c (handle , re set)
int handle ;
int reset ;

DESCRIPTION

v ..show _c will cause the cursor t o be displayed based upon its level o f visibility.
reset indicates if the level of visibility should be reset . C alling this funntion
with reset = 0 will make the cursor appear and reset the visibility level to 0. If
reset is non-zero, the cursor will be displayed based upon its level of visibility.

The cursor visibility may be "nested" to any depth. Every call to v _hide_c must
be balanced with a call to v..show_c. If the cursor needs to be shown at any
time, a call to v_show_c with the reset parameter set to zero will cause the
cursor to become visible despite its "nesting" level. This also causes the nesting
level to be set to zero.

SEE ALSO

v_hide_c

NAME

vsLcolor - Set Polyline Color

SYNOPSIS

int vsl_c olor (handle , c olor)
int handle
int c olor ;

DESCRIPTION

VSL_COLOR 395

vsLcolor sets the color index with which polylines are drawn. An out of range
c o lor results in a color of 1 being set . The color index actually used will be
returned as the value of the function.

SEE ALSO

v_opnwk, vq_extnd, vqLattributes, vsLends

396 VSL...ENDS

NAME

vsLends - Set Polyline End Styles

SYNOPSIS

int vsl_ends (handle , start_style , end_style)
int handle ;
int start_style , end_style ;

DESCRIPTION

NOTE

vsLends defines how the ends o f a line appear. The first parameter start_style
defines the style of the b eginning of the line. The second parameter end_style
defines the style of the end of the line . The types of styles available are :

0 squared
1 arrow
2 rounded

The rounded style extends past the end point of the line by one-half the line
width, or the radius of the half-circle. The others end at the end point .

If an out of bounds style is asked for , then style 0, the default, is used .

SEE ALS O

vqLattributes

NAME

VSL_TYPE 397

vsLtype - Set Polyline Type

SYNOPSIS

int vsl_type (handle , style)
int handle ;
int style ;

DESCRIPTION

vsLtype sets the line style to style . Although the total number of styles
available is device dependent , at least six will always be available . If the style
requested is out of range, style 1 will be used.

In the chart below, a bit value of 1 represents a pixel on and 0 off. The MSB
(most significant bit) is displayed first . The user defined style (7) defaults to
all on, it is set with vsLudsty.

1 solid
2 long dash
3 dot
4 dash-dot
5 dash
6 dash-dot-dot
7 User-defined
8 - n

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 10000
1 1 1000001 1 100000
1 1 1 1 1 1 10001 1 1000
1 1 1 1 1 1 1 100000000
1 1 1 100011001 1000
16 bits defined by vsLudsty
Device dependent

If a non-default line width is used , the device may use the solid pattern , and
may change the writing mode.

SEE ALSO

vsLudsty, v_opnwk, vq_extnd, vql_attribu tes

llill

398 VSL_UDSTY

NAME

vsLudsty - Set User-defined Line Style Pattern ; define your polyline

SYNOPSIS

int vsl_udsty (handle , pattern)
int handle ;
int pattern ;

DESCRIPTION

The argument pattern contains a sixteen bit pattern which is used to define
which pixels of the user-defined line style (style 7) are on. The default for style
7 is a solid line, or all l 's. The pattern is displayed MSB (most significant bit)
first , with O's indicating off and l ' s on.

EXAMPLE

s e t_li ne_pattern(handle)
int handl e :

{

}

int pattern :

Define the line pattern . (1 6 bits vide)

s tuffbits (tpattern , 11 0101010101 010101 ") :

Set the pattern to the user define d line drawing pattern .

vsl_udsty(handl e , pattern) :

SEE ALSO

vsLtype

NAME

VSL_ WIDTH 399

vsLwidth - Set Polyline Line Width

SYNOPSIS

int vsl_width (handle , width)
int handle ;
int width ;

DESCRIPTION

NOTE

vsLwidth defines the width that all lines will be drawn at . If the width of the
line requested does not exist then the next smaller available line width will be
used . The function's return value will be the set width of a line. The number
of line widths available may be obtained through v _extnd with owflag set to 0
by looking at output parameter work_out [7] .

W ide lines may be rendered with a solid pattern .

SEE ALSO

v _opnwk, vq_extnd

400 VSM_COLOR

NAME

vsm_color - S et Polymarker Color

SYNOPSIS

int vsm_c olor (handle , c o lor)
int handle ;
int color ;

DESCRIPTION

vsm_color sets the output color index for polymarkers , and returns it as the
value of the function. The colors 0 and 1 will always be present . If the value
requested is out of range, the color selected will default to 1 (black) .

SEE ALSO

v _opnwk, vq_extnd

NAME

VSMJIEIGHT 401

vsm..height - Set Polymarker Height

SYNOPSIS

int vsm_height (handle , height)
int handle ;
int height ;

DESCRIPTION

vsm_height changes the height of a marker . The value in height sets the height
of the p olymarker's output in y-axis units. If the height of the marker requested
does not exist then the next smaller available marker height will be used . The
function's return value will be the actual height the marker was set at. The
number of line widths available may be obtained through v _extnd with owflag
set to 0 by looking at output parameter work_out [7] .

SEE ALS O

vq_extnd , vqm_attributes

402 VSM_TYPE

NAME

vsm_type - S et Poly Marker Type

SYNOPSIS

int vsm_type (handle , symbol)
int handle ;
int symbol ;

DESCRIPTION

vsm_type sets the polymarker type. Although the number o f types i s device
dependent, a minimum of six will always be available .

1 · - dot
2 + - plus
3 * - asterisk
4 D - square
5 X - diagonal cross
6 0 - diamond
> 6 device dependent

The function returns the value of the marker used. If the value requested is out

IIJlil NOTE

of range the function will default to marker type 3 .

The smallest displayable dot is type 1 , and it cannot be scaled .

SEE ALSO

v_opnwk, vq_extnd, vqm_attributes, vsm_height , vsm_color

NAME

VSM_VALUATOR 403

vsm_valuator - input Valuator, S ample Mode

SYNOPSIS

int vsm_valuator(handle , val_in , val_out , term , status)
int handle ;
int val_in ;
int *val_out ;
int *term ;
int *status ;

DESCRIPTION

NOTE

This function returns the new valuator value in vaLout if a key was pressed.
The result of the function is nothing happened. The parameter status contains
a 0 if nothing happened, a 1 if the valuator has changed, or a 2 if a key was
pressed . The parameter term contains the keypress if one occurred.

As this function is not required, it may not be available on all devices.

SEE ALSO

vrq_valuator

404 VST _ALIGNMENT

NAME

vst_alignment - Set G raphic Text Alignment

SYNOPSIS

int vst_alignment (handle , horiz , vertic al , new_horiz , new_vertical)
int handle ;
int horiz ;
int vertical ;
int *new_horiz ;
int *new_vertical ;

DESCRIPTION

vst_alignment sets the horizontal and vertical alignment of graphic text. The
parameters horiz and vertical are the requested values that the horizontal
and vertical alignment be set at. The actual values that are set are stored at
the locations pointed to by new...horiz and new_vertic al .

There are 6 valid values for the vertical alignment :

0
1
2
3 =

Baseline, the default
Halfline
Ascent line
Bottom

4 Descent
5 Top

Lin e

There are three valid values for horizontal alignment :

NOTE

0 Left justified, the default
1 Center j ustified
2 Right j ustified

VST _ALIGNMENT 405

The default alignment of the text vertically is on the base line. The default
alignment of the text horizontally is against the left edge.

SEE ALSO

v....gtext

406 VST_COLOR

NAME

vst_color - S et G raphic Text Color

SYNOPSIS

int vst_color (handle , c olor)
int handle ;
int c olor ;

DESCRIPTION

vst_color sets the color index for all future graphic text output . The parameter
c olor is an index into the color table defined by the v_opnvwk function. If the
value passed in c olor is out of range then the color index is set to 1 (black) .
All devices support at least 2 colors 0 (white) and 1 (black) . The result of the
function is the color that was actually set.

SEE ALSO

v_opnwk, vq_extnd, vs_color, v_gtext

NAME

VST ..EFFECTS 407

vst_effects - Set G raphic Text S pecial Effects

SYNOPSIS

int vst_effec ts (handle , effec ts)
int handle ;
int effects ;

DESCRIPTION

vst_effects controls the setting of special effects for graphic text. The special
text effects are controlled by the bits set in the argument effec ts . The bits
0 - 5 have represent the following effects:

0 Thickened (bold)
1 Light Intensity
2 Skewed (italicized)
3 Underlined
4 Outline
5 S hadow

If the bit is set then that particular type style is in effect . Any combination of
these styles may be used. Example :

0000 0000 0000 1001 indicates bold underlined text .

The result of the function is an integer which contains the bits that are actually
set . If an effect is not supported that bit will be set to 0. If the function is not
available then the result will be 0.

EXAMPLE

#define BOLD Ox001
#define PLAIN Ox002
#define I TALICS Ox004
#def ine UNDERLINE Ox008
#define OUTLINE Ox0 1 0
#define SHADO\f Ox02 0

laserpro c (grafhandl e)
int grafhandl e ;

{
int dummy , c w , c h ;
c har * text = " Las er C 11 ;

408 VST _EFFECTS

}

SEE ALSO

Set text size 26 pta i
set slant mo de t
wri te mode = transparent .

vst_he ight (grafhandl e , 26 , tdummy , tdummy , le w , tch) ;
vst_ef f e c ts (grafhandl e , OUTLI NE I ITALICS I UNDERLINE) ;
vs wr_mo de (grafhandl e , 2) ;

v_gtext (grafhandl e , 40 , 80 , text) ;

v....gtext

NAME

VST_FONT 409

vst_font - Set Text Face

SYNOPSIS

int vst_font (handle , font)
int handle ;
int font ;

DESCRIPTION

NOTE

vstJont changes the type face for all future graphics text output. The new font
is defined in the parameter font . The result of the function is the font number
of the type face that was set. There are several pre-defined font numbers as
follows:

1 System face
2 Swiss 72 1
3 Swiss 72 1 Thin
4 Swiss 72 1 Thin Italic
5 = Swiss 72 1 Light
6 Swiss 72 1 Light Italic
7 Swiss 72 1 Italic
8 Swiss 721 Bold
9 Swiss 721 Bold Italic
10 Swiss 721 Heavy
1 1 Swiss 721 Heavy Italic
12 = Swiss 72 1 Black
13 Swiss 721 Black Italic
14 D utch 801 Roman
15 Dutch 801 Italic
16 Dutch 801 Bold
17 Dutch 801 Bold Italic

Only type face number 1 is built-in. Any others, if available, will need to be
loaded by vstJoadJonts.

The number of type faces available may be obtained through v_extnd with
owflag set to 0 by looking at output parameter work_out [10] .

SEE ALSO

vq_extnd, vqt_name , vstJoadJonts

l:iOii:I:JJ!l

410 VSTJIEIGHT

NAME

vst__height - Set Character Height , Absolute Mode

SYNOPSIS

int vst_height (handle , height , char_width , char_height ,
c e ll_width , c ell_he ight)

int handle ;
int height ;
int *char_width ;
int *char_height ;
int *c e ll_ width ;
int *c e ll_height ;

DESCRIPTION

vst_height sets the character height (not the cell height) in units of pixels .
The requested height is defined in the parameter height . If the height of the
character cell is not available then the next smaller height will be used. The
character and cell widths and heights are stored at the locations p ointed to by
their associated variables. If the face (or font) has prop ortional spacing , the
width returned is that of the widest character and cell.

Basel i ne

Left a nd Ri ght C haracter Al i g n me nt Del ta

l:�t�==:t:i ------- - - - ----- --

!

'

: :

Cel l
Hei g ht

: f········+············· .. ·················

! i .

�
C haracte r i

Width i
�

Cel l Width

The function's return value will be the set height of the character cell.

SEE ALSO

vst_point, v _gtext , graf_handle

NAME

VST _LOADJi'ONTS 411

vstJoad_fonts - Load Fonts

SYNOPSIS

int vst_load_fonts (handle , select)
int handle ;
int selec t ;

DESCRIPTION

NOTE

vstJoadJonts loads the fonts for a driver into RAM. The number of fonts loaded
is returned as the function result. Zero is returned if the fonts for the driver are
already in RAM. The selec t parameter is reserved for future use and should
be set to 0.

This function need not be called if the default fonts for a driver are sufficient .

This function should only be used with the GDOS driver installed . Any use of
this function outside of that environment will have disasterous results.

SEE ALSO

vst_unload Jon ts

412 VST YOINT

NAME

vst_point - Set Cell Height, Points Mode

SYNOPSIS

int vst_point (handle , points , char_width , char_he ight ,
c e ll_width , c e ll_height)

int handle ;
int points ;
int *char_width , *char_height ;
int *c e ll_width , *c e ll_height ;

DESCRIPTION

vst_point sets the character height based upon a system o f points. After this
call characters drawn will not be based upon graphic pixels, but upon printer
points where (one point = 1/72 inch) . The height is the distance from the
base line of one text line to base line of the next and is defined by the parameter
points . If the height of the character cell is not available then the next smaller
height will be used. The character and cell widths and heights are stored at
the locations pointed to by their associated variables. If the face (or font) has
proportional spacing, the width returned is that of the widest character and
cell .

Basel i ne

Left and Right C ha racter Al i g n me nt Del ta

, I '\
!······· ···(······ ··········· !

'

Cel l
Height

·····t· ··· ··· ·t····· � !
C haracte r !

�
Cel l Width

The function's return value will be the set height of the character cell .

SEE ALSO

vst_heigh t, v _gtext, graf_handle

NAME

VST _ROTATION 413

vst..rotation - Set Character Baseline Vector

SYNOPSIS

int vst_rotation(handle , angl e)

int handle ;
int angle ;

DES C RIPTIO N

NOTE

vst_rotation sets the angle at which all future text will be drawn. This sets
the character baseline vector for the best fit of the angle requested in angle.

The angle is specified in tenths of degrees (0 - 3600) , with 0 being the positive
x-axis . The angle actually set will be returned as the function result .

This function may not be available for every workstation device.

SEE ALS O

vq_extnd

414 VST_UNLOAD_FONTS

NAME

vst_unloadJonts - Unload Fonts

SYNOPSIS

int vst_unload_fonts (handle , selec t)
int handle ;
int selec t ;

DESCRIPTION

NOTE

T h e vst_unloadJonts function unloads (disassociates from t h e driver and pos­
sibly removes from RAM) the fonts for a driver loaded by the vst_loadJonts
function. The fonts will only be removed from RAM if all workstations which
have loaded them have been closed or have called vst_unloadJonts.

Only fonts loaded with the vst_loadJonts function are unloaded ; the default
fonts will continue to be available.

The sele ct parameter is reserved for future use and should be set to 0 .

This function should only be used with the GDOS driver installed . Any use of
this function outside of that environment will have disasterous results .

SEE ALSO

vsLloadJonts

NAME

VS WR_MODE 415

vswrJnode - Set Writing Mode; define how output affects existing information
on the display.

SYNOPSIS

int vswr_mode (handle , mode)
int handle ;
int mode ;

DESCRIPTION

vswrJnode changes the way graphics is written to the display. The requested
mode is defined in the parameter mode . If the mode number is out of range then
this function will default to mode 1 . The writing mode is used when drawing
lines, markers, filled areas and text. The four modes available are listed below.
The source pixels come from the line style, fill pattern, or black parts of graphic
text .

The writing mode in wri te JIIode can be:

Replace Mode { 1) - All source pixels are transfered; source pixels with a 1
will write the foreground color in the destination, all those with a 0 will
write color index 1 .

Transparent Mode {2) - Only the source pixels with a value of 1 will write lt[l[zj]�!�
over the destination pixels . The foreground color is used.

XOR {3) - The foreground color is XOR'd (exclusive OR'd) with a destina­
tion pixel when the source pixel value is 1 . Otherwise the background
color is XOR'd with the destination pixel.

Reverse Transparent Mode (4) - This is the reverse of mode 2, only the
destination pixels with associated source pixels of 0 are written. Color
index 1 is used.

The mode actually set will be returned as the function result.

416 V_UPD WK

NAME

v _updwk - update workstation ; execute all pending workstation commands,
start printers

SYNOPSIS

int v_updwk(handle)
int handle ;

DESCRIPTION

v _updwk causes the workstation defined by handle to be updated, and any
pending graphics commands to be executed in the order of their occurrence in
the command queue. If the workstation is a printer or plotter, this will cause
the device driver to begin output to the device. If a picture is drawn to a
printing device, no form feed will be issued. If the device is the screen, there
is no effect . If the workstation is defined as a metafile, GEM VDI outputs the
opcode.

SEE ALS O

v_clrwk

C hapt er 1 8

B IO S , GEMD O S , XBIO S

Rout ines

Int roduction

Digital Research Corp . ' s GEMDOS operating system is the programmer's inter­
face to the Atari ST hardware. GEMDOS was designed to be portable, in that
it's hardware dependent functions are isolated in a section called the BIOS (Ba­
sic Input Output System) . A computer manufacturer may port GEMDOS by
providing the BIOS routines for his particular hardware . Additional hardware
functionality not required by G EMDOS is included in the XBIOS (eXtended
BIOS) . GEMDOS, BIOS , and XBIOS routines are called through the Motorola
68000's TRAP instruction. The header file "OSBIND.H" contains C preproces­
sor macros for the various calls, and must be included by a GEM application .

1 8 . 1 B I O S Interface

The BIOS interface routines provide the basis for higher level GEMDOS m­
putjoutput functionality. Basic input/output includes :

Screen Output

Keyboard Input

Printer Output

RS-232 Input/Output

417

418 CHAPTER 18. BIOS, GEMDOS, XBIOS RO UTINES

Disk Input/Output

"O SBIND.H" contains macros which convert the name of the function to
a call to the function bios with an appropriate opcode. The opcode is then
passed to the ROM via a 68000 instruction TRAP #13 . All BIOS functions are
accessed through this trap .

1 8 . 2 XBIOS Interface

The XBIOS interfaces special hardware features of the Atari ST, including :

68901 MFP (Multi-Function Peripheral) Timer Chip

YM-2149 Sound Generator Chip

6850 ACIA (Asynchronous Communications Interface Adapter)

MIDI Port Input/Output

"OSBIND.H" contains macros which convert the name of the function to
a call to the function xbios with an appropriate opcode. The opcode is then
passed to the ROM via a 68000 instruction TRAP #14 . All XBIOS functions are
accessed through this trap .

1 8 . 3 GEMD O S Interface

GEMDOS routines include high level file input/output, disk directory manage­
ment , and memory allocation. The "OSBIND.H" header file contains macros
which convert each GEMDOS function call into a call to the function gemdos
with an appropriate opcode. The gemdos function then calls the ROM via a
68000 instruction TRAP #1 .

1 8 . 4 G E M Run-time Structure

When executed, a GEM application is loaded into the section of RAM known as
the TPA (Transient Program Area) . The base page , a data structure containing
run-time information, marks the base of the TPA. The TP A is contiguous and
extends from the base page to the top of usable RAM. In the TP A are the
program's code, globals, stack, and heap. The heap is the memory pool from
which memory is dynamically allocated. The format of the base page is :

1 8. 4 GEM R UN- TIME STR UCTURE

Offset Name Description
OxOO p_lowtpa Base address of TP A
Ox04 p..hitpa Address of byte just past end of TP A
Ox08 p_tbase Address of text segment (code of program)
OxOC p_tlen Length of text segment
Ox10 p_dbase Address of data segment (strings)
Ox14 p_dlen Length of data segment
Ox18 p_bbase Address of BSS segment (globals)
OxiC p_blen Length of BSS segment
Ox2C p_env Address of environment string
Ox80 p_c mdlin Address of command line image

The extern variable _base points to the base page of the currently executing
program. Figure 18 . 1 shows how the memory in the TPA is partitioned .

S TA C K

B S S

DATA

Text (code)

Base Page
._ ______ .. � Low TPA

Figure 1 8 . 1 : Transient Program Area

When a program is loaded into memory it is stored in the heap of its parent
program (the program from which it is executed) . The parent waits until its
child program terminates before continuing . As a program terminates, its mem­
ory is returned to the heap from which it was allocated. Program termination
is extremely fast since the parent program remains in memory.

A program's stack is initially 8K bytes. This size may be changed in Laser
C by declaring the initialized global variable ...stksize . For example:

I* Make this program ' s stac k 4K bytes *I
long _stksize = 4096L ;

Note that the error codes for the G EMDOS functions are described in the
DOS Error Codes, pg. 587.

419

420 A UXILIARY PORT I/0

NAME

Cauxin , Cauxout, Cauxis, Cauxos - Auxiliary port read/write/status

SYNOPSIS

#inc lude <osbind . h>

int CauxinO

Cauxout (chr)
int chr ;

int Cauxis ()

int Cauxos ()

DESCRIPTION

These function handle 1/0 through the serial ports. These routines are defined
as macros in <osbind . h>

Gauxin returns the next character from the RS232 port .

Gauxout writes c hr to the RS232 port.

Gauxis returns non-zero if a character is available at the RS232 port.

Gauxos returns non-zero if the RS232 port is ready to send a character.

EXAMPLE

linc lude <osbind . h>

ldefine ES C 27

main()
{

c har c ;

while (c ! = ESC) {
I *

Display c harac ters that come across the serial port .

i:f (Cauxis ())
Cc onout ((int) Cauxin () t127) ;

I•

•I
if

}
}

}

Che ck for keybo ard data

(Cc o nis ()) {
I •

Get keyboard data
• I
c = Cc oninO ;

I •

A UXILIARY PORT 1/0 421

Wait for OK to send char to RS - 232
•I
while (! Cauxos ())

I •
Send charac ter to serial port .

•I
Cauxout (c) ;

422 CHARACTER I/0

NAME

Bconstat, Bconin, Bconout, Bcostat - Character input , output, status

SYNOPSIS

#inc lude <osbind . h>

int Bc onstat (dev)
int dev ;

long Bc onin(dev)
int dev ;

Bc onout (dev , c)
int dev , c ;

long Bc ostat (dev)
int dev ;

DESCRIPTION

dev is one of the following:

0 PRT : (parallel printer port)
1 AUX : (auxiliary RS-232 port)
2 CON : (console/keyboard)
3 MIDI port
4 Keyboard port (KBD)

Legal operations for each device:

Operation PRT : AUX : CON :
Bconstat no yes yes
Bconin yes yes yes
Bconout yes yes yes
Bcostat yes yes yes

MIDI
yes
yes
yes
yes

KBD
no
no
yes
yes

Bconstat checks the status of a specified devi c e and determines if any data
is available for input. Bconstat returns - 1 if characters are available for
input , 0 if no characters are available.

Bconin waits until a character is available on the device specified by dev. The
result of the function is a 32-bit long which contains the character typed

CHARACTER 1/0 423

and a keycode . The character is returned in the low word of the long . If
bit 3 of the system global c onterm is set , then the high word will contain
the value of the system variable kbshift at the time of the keystroke .

Bconout writes the character c to the device specified in dev. Bconou t will
wait until the character has been written before returning .

Bcostat checks the status of a specified device and determines if the device is
available for output. It returns - 1 if the device is ready for output, and
0 if it is not .

These functions are defined as macros in <osbind . h> .

EXAMPLE

#inc lude <osbind . h>

#define ESC 27
#define AUX 1
#define CONSOLE 2

The dumb terminal Handler using Bean ' s

main()
{

char c ;

whil e (c I = ESC) {
I•

Display c harac ters that c ome across the serial port .

if (Bconstat (AUX))
Bc onout (CONS O LE , (int) Bc onin(AUX) t1 27) ;

Check f or keyboard data

if (Bcons tat (CONSO LE)) {
I •

Get keybo ard data
• I
c = Bconin(CONSOLE) ;

Wait for OK to s end char to RS - 2 32
Note : Bcostat () not Bc onstat () .

•I
whil e (! Bcostat (AUX))

424 CHARACTER I/O

Send charac ter to serial port .
•I
Bconout (AUX , c) ;

}
}

}

SEE ALSO

Printer I/0 , Console I/0

NAME

CONSOLE 1/0 425

Cconin, Cconout, Cconws, Cconrs, Cconis, Cconos , Crawio, Crawcin, Cnecin
- Console input/output/status.

SYNOPSIS

#inc lude <osbind . h>

int Cc oninO

Cc onout (chr)
int chr ;

Cc onws (str)
c har * str ;

Cc onrs (buf)
char *buf ;

int Cc onis ()

int Cc onos ()

int Crawi o (wrd)
int wrd ;

int Crawc inO

int Cne c inO

DESCRIPTION

Cconin returns and echoes (to the console) the next character from the console.

Cconou t writes chr onto the console .

Cconws writes the null terminated string str to the console.

Cconrs reads an edited string from the console . buf [0] is the size of the buffer
beginning with buf [2] . buf [1] contains the number of characters read
on exit with the characters starting at buf [2] . The returned string is
also null terminated.

426 CONSOLE 1/0

Cconis returns non-zero if a character is available at the console .

Cconos returns non-zero if the console is ready to receive a character.

Crawio writes wrd to the console if wrd isn 't OxFF. If it is then a character is
read from the console and returned.

Crawcin returns the next character from the console without echoing . All con­
trol characters are returned.

Cnecin returns the next character from the console without echoing , but the
control characters : · s (stop output) , -Q (continue output) , · c (terminate
program) are trapped and acted upon.

These routines are defined as macros in <osbind . h>

SEE ALS O

Printer I/0 , Character I/0

NAME

CURSCONF 427

Cursconf - Configure the VT52 emulator cursor

SYNOPSIS

#inc lude <osbind . h>

int Cursc onf (func tion , operand)
int func tion , operand ;

DESCRIPTION

The VT52 emulator cursor is configured according the the value in func tion:

function
0
1
2
3
4
5

Operation performed
Hide cursor
Show cursor
Set blinking cursor
Set non-blinking cursor
Set blink time according to value in operand.
Return cursor blink time .

The cursor blink rate is based on the vertical blanking interrupt (which occurs
at a 70hz rate on the B/W monitor, a 60hz rate on the color monitor and a
50hz rate for PAL) . The time for the cursor to turn off and back on again is
two times operand divided by the screen frequency.

Cursconf is defined as a macro in <osbind . h>

428 DCREATE

NAME

Dcreate - Create a subdirectory

SYNOPSIS

#inc lude <osbind . h>

int Dc reate (path)
char *path ;

DESCRIPTION

Dcreate creates a new subdirectory on a disk with the path name specified by
the parameter path.

Dcreate is defined as a macro in <os bind . h>

DIAGNOSTICS

A non-zero error code is returned if an error occurred.
EXAMPLE

linc lude <osbind . h>

main()
{

mkdir (" C : \MEGAM.U\ 11) ;
}

mkdir(path)
char •path ;

{

}

SEE ALSO

i! (Dcreate (path)) {
printi (" Error in creating path < Xs>\n" , path) ;

} else
print! (" Suc cess in creating path <Xs>\n" , path) ;

Ddelete , DOS error codes (pg . 587)

NAME

Ddelete - Delete a subdirectory

SYNO PSIS

#inc lude <osbind . h>

int Dde lete (path)

c har *path ;

DES C RIPTIO N

DDELETE 429

Ddelete deletes the directory specified by the parameter path.

Ddelete is defined as a macro in <osbind . h>

DIAG NOSTIC S

A non-zero error code is returned if an error occurs.
EXAMPLE

tinc lude <oabind . h>

rmdir ("A : \JUNKDIIl\ ") ;
}

rmdir (path)
char •path ;

{

}

SEE ALS O

if (Dde lete (path))
rmdir (" Error in del eting path <Xa>\n" , path) ;

else
rmdir (" Suc c e a a in deleting path <Xa>\n" , path) ;

Dcreate , DOS Error Codes (pg . 587)

430 DFREE

NAME

Dfree - Get information about disk allocation

SYNOPSIS

#inc lude <osbind . h>

Dfree (buf , drv)
disk_info *buf ;
int drv ;

DESCRIPTION

The Dfree function returns allocation information about drive drv where a 0
means the default drive, 1 means drive A : , 2 means drive B : , etc . The parameter
buf points to the following structure which is filled in by the call :

typedef struc t _disk_info {
long b_free ; I* no . of free c lusters on drive *I
long b_total ; I* total no . of c lusters on drive *I
long b_sec siz ; I* no . of bytes in a sec tor *I
long b_c lsiz ; I* no . of sec tors in a c luster *I

} disk_info ;

Dfree is defined as a macro in <osbind . h>
EXAMPLE

linc lude <osbind . h>

shov_disk_info (drive)

{
int drive ;

disk_info myinfo ;

Dfre e (tmyinfo , dri ve) ;

if (! drive)
printf (" The def aul t di sk has : \n") ;

else
printf (" The di sk Xc : \ has : \n" , ' A ' + (drive - l)) ;

printf (" Xld free clusters\n" , myinfo . b_fre e) ;
printf (" Xld total c lus ters\n" , myinfo . b_to tal) ;
printf (" Xld bytes per sec tor\n" , myinfo . b_s ecsiz) ;
printf (" Xld s e c tors per c luster\n" , myinfo . b_clsiz) ;

printf (" Xid free bytes in diak\n" ,
myinfo . b_free * myinfo . b_c laiz * myinfo . b_a e c aiz) :

}

DFREE 431

432 DOSOUND

NAME

Dosound - Set sound process "program counter"

SYNOPSIS

#inc lude <osbind . h>

Dosound(ptr)
char *ptr ;

DESCRIPTION

NOTE

The Dosound function starts the sound generator . The sound process "program
counter" is set to ptr. The parameter ptr points at a series of " instructions"
with the following meanings:

OxOO - OxOF Put the next byte into a sound register. OxOO puts the byte in

register 0, Ox01 in register 1 etc.

OxBO Put the next byte into the temporary register.

Ox8 1 for (regi ster no . next byte = t emp . re g . t ;
temp . reg . ! = next + 2 byt e ; t emp reg + = next + 1

byt e)
wai t unti l next updat e ; I * next + 1 byt e i s

s i gned *I
Ox82 - OxFF Set update t ime. If next byte is zero t hen the sound is t ermi­

nated. Otherwise the update rate is set to the next byte divided

by 50 hertz.

Dosound is defined as a macro in <osbind . h>

The sound chip registers are defined in detail in giaccess.
EXAMPLE

8inc lude <osbind . h>

Sound definition

unsigned char crash [] = {
Ox06 , Oxl f , I* Noise Period *I
Ox07 , Ox2f , I* Mixer *I
Ox09 , Ox1 0 , I * Channel B volume * I
OxOc , Ox2 0 , I* Duration Course tune * I
OxOd , OxOO , I• Envel ope Shape •I

} ;

Ox81 , Ox1 2 , Ox02 , Oxf 8 , I* Sus tai n time for tone * I
Oxff , OxOO I * End Tone • I

do_crash ()
{

Do sound (c rash) ;
}

SEE ALSO

Giaccess

DOSO UND 433

�
�

434 DRVMAP

NAME

Drvmap - Return bit vector of on-line drives

SYNOPSIS

#inc lude <osbind . h>

long Drvmap ()

DESCRIPTION

NOTE

Drvmap returns a bit map of availabie drives. Each bit in the returned long
represents the availability of a drive. A value of 1 means the drive is available,
0 means it isn't (e.g . a 1 in bit 0 means drive 0 is available) .

Drvmap is implemented as a macro in <osbind . h> .

Mountable drives must set the _drvbi ts system global properly.
EXAMPLE

tinc lude <osbind . h>

show_drives ()
{

}

unsigned long drive s :
int drive :

drives = Drvmap () ;

for (drive= ' A ' : dri ve < ' P ' : drive++ , drives >>= 1)
i f (dri ves t Ox001)

printf (" Drive Xc : \ i s availabl e \n" , drive) :

SEE ALSO

Dsetdrv

NAME

DSETDRV 435

Dsetdrv , Dgetdrv - Set/get the default disk drive

SYNOPSIS

#inc lude <osbind . h>

long Dsetdrv (drv)
int drv ;

int Dgetdrv ()

DESCRIPTION

These functions are used in setting and discovering which drive is the default
disk drive. The default disk drive is the drive that is initially searched when
looking for a file.

Dsetdrv sets the default drive (the drive to use if a drive is not specified in
a path) to drv where a value of 0 means drive A, 1 means B, etc. The
return value of the function is a long containing a bit map of the available
drives, where bit 0 is 1 if drive A is on-line , bit 1 is 1 if drive B is on-line,
etc.

Dgetdrv returns the number of the current default drive (see above descrip­
tion) .

These routines are defined as macros in <osbind . h>

436 DSETPATH

NAME

Dsetpath, Dgetpath - Set/ get current working directory

SYNO PSIS

#inc lude <osbind . h>

int Dsetpath(path)

c har *path ;

int Dgetpath(pathbuf , drive)
c har *pathbuf ;

int drive ;

DESCRIPTIO N

These functions are used in setting and discovering the default path name. The
default path name is prepended to file names which contain no path (directory)
specification.

Dsetpath sets the default directory to path.

Dgetpath stores the name of the default directory for drive drive in the char­
acter array pointed to by pathbuf . A drive value of 0 means the default
drive, a value 1 means drive A : , 2 means B : etc.

pathbuf must point to a buffer space of at least 64 bytes.

These functions are defined as macros in <osbind . h>

D IAGN O S TICS

A negative error code is returned if an error occurs.

SEE ALS O

DOS Error Codes, (pg. 587)

NAME

FATTRIB 437

Fattrib - Get/set file attributes

SYNOPSIS

#inc lude <osbind . h>

int Fattrib(path , mode , attr)
c har *path ;
int mode , attr ;

DESCRIPTION

Fattrib gets and sets information about a file's attributes. The parameter path
is a path name to the file whose attributes are to be investigated. The parameter
mode is used to determine if the function attributes are to be returned or set .
If the value of mode is 0, the attributes of the file will be returned. If the value
of mode is 1, then the attributes from the attr parameter will be used to set
the file's attributes. The file attribute bits and meanings are:

Bit Meaning
0 Read only
1 Hidden from directory search
2 System file (implies hidden from directory search)
3 File is Volume label
4 File is really a subdirectory
5 The file has been written to and closed

Fattrib is defined as a macro in <osbind . h>
EXAMPLE

tinc lude <oabind . h>

�define READ 0

tdefine READONLY Ox01
�def ine HIDDEN Ox02
Ide fine SYSTEM Ox04
�define VO LUME Ox08
tdefine DIRECTO RY Ox1 0
tdefine WRITCLOSED Ox20

ahow_attributea (pathname)
char *pathname ;

{

438 FATTRIB

}

SEE ALSO

int mo de = READ ;
int attr ;

attr = Fattrib(pathname , mo de , attr) ;

printt (" <Xs> is 11 , pathname) ;
it (attr l READONLY) printt (" read onl y , ") ;
it (attr l HI DDEN) printt ("hidde n , ") ;
it (attr l SYSTEM) printt (" a system tile , ") ;
it (attr l VO LUME) printt (" a volume label , ") ;
it (attr l DI RECTORY) printt (" a direc tory , ") ;
printt (" and a tile . \n") ;

Fsfirst, Fsnext

NAME

F close - Close an open file

SYNOPSIS

#inc lude <osbind . h>

Fc lose (fd)
int fd ;

DESCRIPTION

FCLOSE 439

Fclose closes the file specified by the file descriptor fd. This will cause any data
in the file buffers to be flushed from memory and written to the file before the
file is closed.

Fclose is defined as a macro in <osbind . h>

DIAGNOSTICS

A negative error number is returned upon failure.

SEE ALSO

Fopen, DOS Error Codes (pg. 587)

440 FCREATE

NAME

Fcreate - Create a file

SYNOPSIS

#inc lude <osbind . h>

int Fc reate (name , attr)
char *name ;
int attr ;

DESCRIPTION

Fcreate creates files on disks. A file i s created and opened with the pathname
name . Bits in attr contain extra information about the file for the directory :

Bit Meaning
0 File is read only
1 File is hidden from directory search commands
2 File is a system file (also hidden from directory search)
3 name contains a volume label in first 1 1 bytes.

A positive file descriptor number is returned upon successful creation.

Fcreate is defined as a macro in <osbind . h>

DIAGNOSTICS

A negative error number is returned if an error occurs.

EXAMPLE

An example of Fcreate is shown in Fopen.

SEE ALSO

Fopen, DOS Error Codes (pg. 587)

NAME

Fdelete - Delete a file

SYNOPSIS

#inc lude <osbind . h>

int Fdelete (path)
char *path ;

DESCRIPTION

FDELETE 441

Fdelete deletes files from disks. The parameter path is the path name of the
file that is to be deleted.

Fdelete is defined as a macro in <osbind . h>

DIAGNOSTICS

A negative error number is returned if an error occurs.

EXAMPLE

An example of Fdelete is shown in Fopen.

SEE ALSO

Fopen, DOS Error Codes (pg . 587)

442 FDATIME

NAME

Fdatime - Get/set file "last modified" time and date stamp

SYNOPSIS

#inc lude <osbind . h>

int Fdatime (buf , fd , set)
long *buf ;
int fd , set ;

DESCRIPTION

Fdatime returns the date and time of a file. The parameter buff points to a
long integer with the time in the low word and the date in the high word . The
format is as described in the time functions. The next parameter fd is the file
descriptor of the file to set or get the time stamp for. If set is 1 then the file's
time stamp is set with the long at *buff , otherwise the time stamp is read into
the long at *buff .

This routine i s defined as a macro in <osbind . h>

DIAGNOSTICS

The function result is negative if an error occurs.
EXAMPLE

#inc lude <stdio . h>
#inc lude <osbind . h>

show_f ile_date_and_time (fname)

{

}

char *fname ;

int fd ;
int datime [2] ;
int err ;

if ((fd = Fopen(fname , 0)) < 0)
fatal (" Error in opening file . ") ;

if ((err = Fdatime (datime , f d , 0)) < 0)
fatal (" Error re ading date and time . 11) ;

Fc lose (fd) ;

if (err >)
showtime (datime [O] , datime [l]) ;

showtime - di splay the date and time .

showtime (mytime , mydate)
time mytime ;
date mydate ;

{

FDATIME 443

printf (" \t\t date \n Day : Xd \t Month : Xd \t Year : Xd\n" ,
mydate . part . day , mydate . part . month , mydat e . part . ye ar + 80

}

) :

print:f (11 \t\t time \n Hour : Xd \t Minute : Xd \t S e c onds : %d\n11 ,
mytime . part . hours , mytime . part . minutes , mytime . part . sec onds • 2

) :

:f atal - works l ike print:f () exc ept that it waits :for
a <CR> and then dies .

• I
:fatal (args)

{

}

SEE ALS O

char • args :

_:fprint:f (s tderr , largs) ;

puts (" Press RETURN to exit . . . ") :
getchar () ;
exit (l) ;

Protobt, DOS Error Codes (pg . 587)

444 FD UP

NAME

Fdup - Duplicate file handle

SYNOPSIS

#inc lude <osbind . h>

int Fdup (stdfd)
int stdfd ;

DESCRIPTION

Fdup duplicates the standard file descriptor defined in stdfd. The function
returns a file descriptor which is a normal file descriptor except that it refers
to the same file as the standard file descriptor. The first six, 0 - 5 , file de­
scriptors are considered "standard" file descriptors. The rest are considered
non-standard. The standard file descriptors are :

0 Console input (stdin)
1 Console output (stdout)
2 Serial interface (AUX:)
3 Printer interface (PRT:)
4 Not used by GEMDOS.
5 Not used by GEMDOS.

Fdup i s defined as a macro in <osbind . h>

DIAGNOSTICS

A negative error number is returned upon failure.

SEE ALSO

Fforce , DOS Error Codes (pg. 587)

NAME

FFORCE 445

Fforce - Force standard file descriptor to use same file as a non-standard one

SYNO PSIS

#inc lude <osbind . h>

int Fforc e (stdfd , nstdfd)
int stdfd , nstdfd ;

DES C RIPTIO N

Fforce forces the standard file descriptor stdfd to use the same file or device
as the non-standard file descriptor nstdfd. This permits standard input and
output to be redirected to a file. The first six, 0 - 5, file descriptors are con­
sidered "standard" file descriptors, while the rest are considered non-standard.
The standard file descriptors are:

0 Console input (stdin)
1 Console output (stdout)
2 Serial interface (AUX:)
3 Printer interface (PRT:)
4 Not used by GEMDOS .
5 Not used by GEMDOS.

A typical non-standard file descriptor i s returned by the function Fopen.

Fforce is defined as a macro in <osbind . h>

DIAGNOS TIC S

A negative error number is returned upon failure.

SEE ALS O

Fdup, Fopen, DOS Error Codes (pg. 587)

446 FGETDTA

NAME

Fgetdta, Fsetdta - Get/set DTA (disk transfer address)

SYNOPSIS

#inc lude <osbind . h>

long Fgetdta ()

Fsetdta (ptr)
c har *ptr ;

DESCRIPTION

These functions get and set the DTA, which is used in getting directory infor­
mation.

Fgetdta returns a pointer to the current DTA (disk transfer address) . The
DTA is a 44 byte buffer used when getting directory information .

Fsetdta sets the DTA to ptr.

Both routines are defined as macros in <osbind . h>

EXAMPLE

An example of this function is in Fsfirst () .

SEE ALSO

Fsfirst, Fsnext

NAME

FLOPPY 447

Floprd, Flopwr, Flopfmt , Flopver - floppy disk operations

SYNOPSIS

#inc lude <osbind . h>

int Floprd(buf , f iller , devno , sec tno , trac kno , sideno , c ount)
int *buf ;
long filler ;
int devno , sec tno , trac kno , sideno , c ount ;

int Flopwr (buf , filler , devno , sec tno , trac kno , sideno , c ount)

int Flopver (buf , f iller , devno , sec tno , trackno , sideno , c ount)

int Flopfmt (buf , filler , devno , spt , trac kno , sideno , interlv ,
magic , virgin)

c har *bu:f ;
long fi ller ;
int devno , spt , trackno , sideno , interlv ;
long magic ;
int virgin ;

DESCRIPTION

These functions are interface routines for the low-level disk operations. Great
care should be taken when using these functions .

buf

filler

devno

sec tno

trackno

points to a word aligned array of bytes for reading or writing .
It must be large enough to hold c ount sectors for read and
write, or an entire track when formatting.

an unused long value .

the floppy drive number (0 or 1) .

the first sector to read or write from/ to (usually 1 - 9) .

the track to read or write from/to, or the track to format (usu­
ally 0 - 79) .

448 FLOPPY

side no

c ount

the side number (0 or 1) .

the number of sectors to read o r write (must be less than or
equal to the number of sectors in a track.)

The following variables are used only when format-ting :

spt

interlv

magic

virgin

the the number of sectors per track (usually 9) .

the sector interleaving factor (the number of physical sectors
between two logical sectors.) This number must be relatively
prime with spt .

must be the long value Ox87654321 .

an int sized value with which t o fill the newly created sectors .

Floprd reads count sectors into buf .

Flopwr writes c ount sectors from buf . Writing to side 0, track 0, sector 1 will
cause Mediach and Rwabs to enter the "might have changed" state .

Flopfmt returns a 0 terminated int sized list of bad sectors in buf . virgin
should be set to OxE5E5 if another value isn't required . The high four
bits cannot be OxF. Formatting causes Mediach and rwabs to enter the
"definitely changed" state.

Flopver verifies c ount sectors by non-destructive reading. buf must point to
at least 1024 bytes. Bad sectors are returned in buf as in Flopfmt above.

These routines are defined as macros in <osbind . h>

DIAGNOSTICS

Each routine returns a non-zero error number if an error occurs.
EXAMPLE

linc lude <o sbind . h>
linc lude <stdio . h>

Program to format a f loppy disk

#define DRIVE
#define SECTORS
#define BUFSIZ

0
9
SECTORS * 1 024

char buf [BUFSIZ] ;

main()
{

}

s e tbuf (stdout , NULL) ;

printf (" Floppy di sk format program v1 . 0\n\n") ;

format () ;

create_boo t_bl ocks () ;

verify () ;

printf (" \nFormat Complete . ") ;
wait () ;

f ormat ()
{

Variables for formating floppy .
*I
int interleave 1 ;
long fi ller NULL ;
int devno DRIVE ;
int sec tors_pertrack SECTO RS ;
int trackno ;
int sideno 0 ;
long magic Ox8766 432 1 L ;
int virgin Oxe6e6 ;

printf (" Plac e disk to be formatted in drive A : . ") ;
wai t () ;

puts (" Formatting track : ") ;
for (trackno = 0 ; trackno < 80 ; trackno++) {

printf (11 [%02d] 11 , trac kno) ;

FLOPPY 449

450 FLOPPY

}
}

if (l ((trackno + 1) X 1 0))
printf (" \n") ;

if (Flopfmt (buf , filler , de vno , sectors_pertrac k , trac kno , s i deno ,
interl eave , magic , virgin))

printf (" \nError on trac k X02 d\n11 , trackno) ;

verify ()
{

}

Vari ables required for disk verify .
• I
l ong filler NULL ;
int devno DRIVE ;
int sec tno 1 ;
int trackno ;
int side no 0 ;

puts (" Verifying track : ") ;
for (trackno = 0 ; trackno < 80 ; trackno++) {

printf (" [Y,02 d] 11 , trackno) ;

}

if (! ((trackno + l) X 1 0))
printf (" \n") ;

if (Flopver (buf , filler , devno , sec tno , trac kno , sideno , SECTORS))
printf (" \nError on track X02d\n11 , trackno) ;

create _boo t_blocks ()
{

Variables required for disk write .

l ong filler = NULL ;
int devno DRIVE ;
int sec tno = 1 ;
int trackno ;
int side no = 0 ;
int i ;

Variables for Building Bo ot Blo c ks .
* I
l ong serialno = Ox01 000000L ;

int
int

disktype
exe c flag

2 ;
0 ;

printf (" \nCreating Boot Blocks . \n\n") ;

Zero out buffer .
• I
f o r (i=O ; i<BUFSIZ ; i++)

buf [i] = 0 ;

Write out zero ' d buffer t o track zero
•I
for(trackno = 0 ; trackno < 1 ; trac kno++)

FLOPPY 451

Flopwr (buf , filler , de vno , sec tno , trackno , sideno , SECTORS) ;

Build pro totype boo t blocks .
• I
Protobt (buf , seri alno , disktype , execflag) ;

Write boot blocks to disk .
• I
trackno = 0 ;
Flopwr (buf , filler , devno , s e c tno , trackno , sideno , 1) ;

}

A routine to keep the number of printf () t getchar () ' s to a minimum .
• I
wai t ()
{

}

SEE ALS O

printf (" \nPress B.ETUB.N to continue . \n") ;
getchar O ;

DOS Error Codes (pg. 587)

452 FOPEN

NAME

Fopen - Open a file

SYNOPSIS

#include <osbind . h>

int Fopen(name , mode)
char *name ;
int mode ;

DESCRIPTION

NOTE

Fopen opens the file defined in name . The mode that the file will be opened in
is defined in mode . The parameter mode has the following values:

mode Meaning
0 Read only mode
1 Write only mode
2 Read/write mode

A positive file descriptor number is returned upon successfully opening the file.

Fopen is defined as a macro in <osbind . h>

����jjj�JjJ�JjJOO If the file does not exist Fopen will not create the file .

DIAGNOSTICS

A negative error number is returned on failure .
EXAMPLE

tinc lude <stdio . h>
tinc lude <osbind . h>

tde:fine CREATE ' 1 '
tde:fine RENAME ' 2 '
#de:fine DELETE ' 3 '
tdefine READ ' 4 '
tdefine WRITE ' 6 '
tdefine QUIT ' 6 '

extern char • gname () ;

main()
{

char
char
int
int
int

fname l [80] ;
fname2 [80] ;
done = 0 ;
err ;
f d ;

FOPEN 453

whi le (! done) {
switc h (gmenu ()) {

c ase CREATE :
fd = Fcreate (gname (fname l , " File to create : ") , 0) :

if (fd < 0)
puts (" Error oc curred during cre ate . ") ;

printf (" File : · �s ' create d . \n\n" , fname l) ;
Fc lose (fd) ;

bre ak ;

c ase REN.ANE :
gname (fname l , " New filename : ") ;
gname (fname 2 , "Old filename : ") ;
err = Frename (O , fname 2 , fname l) ;

if (err < 0)
puts (" Error oc curred during rename . ") ;

printf (" File : · �s ' renamed to · �s ' . \n\n" , fname 2 , fname 1) ;
bre ak ;

c ase DELETE :
err = Fdelete (gname (fname l , " File to Delete : ")) :

if (err < 0)
puts (" Error oc curred during del e te . ") ;

printf (" Fil e : · �s ' delete d . \n\n" , fname l) ;
bre ak ;

c ase READ :
readfrom(gname (fname l , " File to re ad : ")) ;

puts (" \n") ;
bre ak ;

c ase WRITE :
write t o (gname (fname1 , " File to write : ")) ;

puts (" \n") ;
bre ak ;

454 FOPEN

}
}

}

c ase QUI T :
done 1 ;

bre ak ;

defaul t :
puts (11 \nError : Unknown func tion . \n") ;

bre ak ;

int gmenu ()
{

}

int c ;

puts (11 1) Cre ate a file . 11) ;
puts (" 2) Rename a file . ") ;
puts (" 3) Delete a fil e . ") ;
puts (" 4) Read text from file . ") ;
puts (" 6) lfrite text to file . ") ;
puts (" ") ;
puts (11 6) Quit . ") ;
puts (" ") ;
printf (" Enter number : ") ; fflush(stdout) ;

re turn Bc onin(2) ;

char • gname (fname 1 literal)
c har *fname l • literal ;

{

}

•I

printf (11 \n'b " 1 literal) ; fflush(stdout) ;
s c anf (" :4s " I fname) ;

re turn fname ;

re adfrom - reads the data from the file ' ' fname ' ' and di spl ays
that file ' s data on the screen .

re adfrom(fname)
char *fname ;

{
int f d ;
char c ;

}

• I

fd = Fopen (fname , 0) ;

if (fd < 0)
printf (" Error : Couldn ' t open file · �s ' . \n" , fname) ;

else {

}

while (Fread(fd , 1 L , lc))
printf (" Xc " , c) ;

Fc lose (fd) ;

writefrom - writes the data from the charac ter pointer
' ' tes ttext ' ' to the file defined by ' ' fname . ' '

FOPEN 455

wri teto (fname)

{

}

SEE ALS O

char *fname ;

int f d ;
int c ;
int err ;
char • testtext " This is a test line l \r\nThis is a test line 2 \r\n" ;
long 1 ;

fd = Fopen(fname , 1) ;

if (fd < 0)
printf (" Error : Couldn ' t open write file ' Xs ' . \n" , fname) ;

else {

}

err = Fwrite (fd , (long) strlen(te sttext) , testtext) ;

if (! err)
printf (" Error writing Data . . . , error Xd\n" , err) ;

Fe lose (fd) ;

DOS Error Codes, (pg . 587)

456 FREAD

NAME

Fread, Fwrite - File binary 1/0

SYNOPSIS

#inc lude <osbind . h>

long Fread (fd , c ount , buf)
int fd ;
long c ount ;
c har *buf ;

long Fwrite (fd , c ount , buf)
int fd ;
long c ount ;
c har *buf ;

DESCRIPTION

These functions are used to read and write data to/from disks. The number of
bytes actually read or written is returned.

Fread reads c ount bytes from the open file with file descriptor fd into the array
of bytes pointed to by buf .

Fwrite writes c ount bytes to the open file with file descriptor fd from the array
of bytes pointed to by buf .

Both functions are defined as macros in <osbind . h>

DIAGNOSTICS

A zero is returned if an error occurs.

EXAMPLE

Examples of Fread() and Fwrite() are in Fopen() .

SEE ALSO

Fopen, DOS Error Codes (pg . 587)

NAME

Frename - Rename a file

FRENAME 457

SYNOPSIS

#inc lude <osbind . h>

int Frename (zero , old , new)
int zero ;
char *old , *new ;

DESCRIPTION

Frename takes the name of an existing file and renames it . The first parameter
is zero whose value must be zero. The old file name is a pointer to the name
of the file to change . The new file name is a pointer to the name to change the
old file name to. Note that the new file name must not exist . This function
can also be used to move a file between subdirectories on the same drive.

Frename is defined as a macro in <osbind . h>

DIAGNOSTICS

A negative error number is returned upon failure.

EXAMPLE

An example of Frename() is shown in Fopen () .

SEE ALSO

Fopen, DOS Error Codes (pg . 587)

458 FSEEK

NAME

Fseek - Reposition file pointer

SYNOPSIS

#inc lude <osbind . h>

long Fseek(offset , fd , mode)
long offset ;
int fd ;
int mode ;

DESCRIPTION

The file pointer (the location in the file where the next read or write will occur)
is set for file descriptor fd . The location set is offset bytes from the location
defined by mode as follows:

mode Start location for offset
0 From beginning of file
1 From current position
2 From end of file

The location of the file pointer from the beginning of the file is returned upon
successful operation .

Fseek is defined as a macro in <osbind . h>

DIAGNOSTICS

A negative error number is returned upon failure.
EXAMPLE

#inc lude <osbind . h>

Seek mo des
• I
#define BEG 0 I • seek from beginning of file . * I
#define CUR 1 I • seek from current file mark . • I
#define END 2 I • seek from end o f f i l e . • I

long re c s i ze ; I • the s i z e o f a re cord in the data f i l e . • I

Read a rec ord from a file .

DBre ad (f d , buf , rec num)
int f d , recnum ;
char •buf ;

{
long re cpos ;

Calcul ate the record pos ition
•I
recpos = recnum * rec size ;

Seek to mark .
• I
Fs eek(recpos , f d , BEG) ;

Read in the rec ord .
* I
Fre ad (f d , re csize , buf) ;

}

SEE ALSO

DOS Error Codes (pg. 587)

FSEEK 459

460 FSFIRST

NAME

Fsfirst, Fsnext - Search a directory

SYNOPSIS

#inc lude <osbind . h>

int Fsfirst (path , attr)
char *path ;
int attr ;

int Fsnext ()

DESCRIPTION

These functions are used to read a disk 1s directory information . The Fsfirst be­
gins a directory search. Any further directory entries may be obtained through
calls to the Fsnext function.

path

attr

A pathname which may contain the wildcard characters ' * 1 and
' ? 1 in the file name part (but not in the drive or directory part) .

A word containing the file attribute settings that the search
will be limited to. The bit meanings of attr are:

Bit Meaning
0 Readonly
1 Hidden from directory search
2 System file (implies hidden from directory search)
3 File is Volume label
4 File is really a subdirectory
5 The file has been written to and closed

If attr is 0, then no volume labels , subdirectories, hidden or
system files will be matched. If the hidden, system or subdi­
rectory bits are set then those file types are included in the
search along with normal files. If the volume label bit is set
then only volume labels will be searched.

Information on matched file names is returned in the DTA (disk transfer ad­
dress) as follows:

Offset
00
21
22
24
26
30

Size
21 bytes
1 byte
2 bytes
2 bytes
4 bytes
14 bytes

Meaning
Reserved for OS
File attribute
File time stamp (int)
File date stamp (int)
File size (long)
File name and extension

FSFIRST 461

Fsnext finds the next file in the search, and places the information about the
file in the DTA. The end of the search is indicated by a negative error result
from either function.

Both functions are defined as macros in <osbind . h>
EXAMPLE

linc lude <osbind . h>
linc lude <stdio . h>

DTA Disk Transfer Address . i buffer where direc tory information
is stored .

main()
{

}

ls (" * · * ") ;

printf (" Press re turn . . . ") ;
getchar () :

ls - list a disk direc tory using the path specification ' pathspec ' .
• I
ls (pathspec)

{
char •pathspec ;

long
int

o l ddta ;
err ;

struc t {
char
char
int
int
long
char

} newdt a ;

re aerved[21] ;
fattr ;
ftime ;
fdate ;
fsize ;
fname [14] ;

462 FSFIRST

olddta = Fgetdta () ;
Fsetdta(tne wdta) ;

print:f (11 File Size Date Time Attributes \n11) ;

err = Fs:firs t (pathspec , Ox003:f) ;
while (! err) {

I• :find all :files • I

}

• I

}

print:f (11 X- 1 4 . 1 4s 11 , newdta. :fname) ;
print:f (11 X8ld 11 , newdta . :fsize) ;
ls_date (newdta . :ftime , newdta . :fdate) ;
print:f (11 OxX02x\n11 , ne wdta . :fattr) ;

err = Fsnext () ; I • :find next :file • I

Fsetdta(olddta) ;

Print time and date in human-readable :form

la_date (date , time)

{

}

SEE ALS O

int

int
int
int
int
int
int

i:f (hrs == 0)
hrs 1 2 ;

dat e ,

mth =
day
yr =
hrs
min
sec

time ;

(date»6) t Ox:f ;
(date) t OxU ;
((date»9) t Ox7:f)
(time» H) t OxU ;
(time»6) t Ox3:f ;
((time) t OxU)

print:f (11 X02d-X02d- X02 d11 , mth , day , yr) ;
print:f (11 X02d : X02d : X02d11 , hra , mi n , s e c) ;

Fattrib, Fgetdta, Gettime

+ 80 ;

* 2 ;

NAME

GETBPB 463

Getbpb - Get BIOS parameter block

SYNOPSIS

#inc lude <osbind . h>

bpb *Getbpb (dev)
int dev ;

DESCRIPTION

Getbpb returns a pointer to a BIOS parameter block . The block contains
information pertaining to the disk that is contained in the drive specified by
the parameter dev. The parameter dev is the device number where 0 indicates
drive A: and 1 indicates drive B : . The result of the function is a pointer to the
BIOS parameter block .

Getbpb is implemented as a macro in <osbind . h> .

DIAGNOSTICS

If no block exists then a null pointer (OL) is returned.
EXAMPLE

linc lude <osbind . h>
linc lude <obdefs . h>

show_bios_info (de vi c e)

{
int devic e ;

bpb •mybpb ;

mybpb = Ge tbpb (devi c e) ;

printf (" S e c tors size
printf (" Cluster size
printf (" Cluster size
printf (" Direc tory size
printf (" FAT size

== Xd (byte s) \n" ,
== Xd (sec tors) \n" ,
== Xd (byte s) \n" ,
== Xd (s e c tors) \n" ,

%d (s e c tors) \n" ,

mybpb ->
mybpb - >
mybpb - >
mybpb - >
mybpb - >

sec tor_size_byte s) ;
c l_sec tors) ;
cl_byte s) ;
dir_l ength_s ectors) ;
FAT_size_s e c tors) ;

printf (" Se c ond FAT Sec tor
printf (" Start Data Clusters
printf (" Total Data Clus ters
printf ("Mi sc ellaneous Flags

== Y.d\n" ,
== Y.d\n" ,
== Xd\n" ,
== Y.x\n" ,

mybpb -> FAT_sector) ;
mybpb - > data_sector) ;

}

SEE ALS O

Rwabs

mybpb -> total_data_c lus ters) ;
mybpb - > flags) ;

464 GETMPB

NAME

Getmpb - Get Memory Parameter Block

SYNOPSIS

#inc lude <osbind . h>

Getmpb (mpb)
mpb *mpb ;

DESCRIPTION

NOTE

Getmpb stores a copy of the initial memory parameter block at the location
pointed to by the parameter mpb. The parameter mpb will contain a information
about the internal memory structure of the machine as follows:

typedef struct _md {
struc t _md *m_link ; I* next memory block *I
long m_start ; I* start address of block *I
long m_length ; I* No . of bytes in bloc k *I
long m_own ; I* Memory bloc k ' s owner ID *I

} md ;

typedef struc t _mpb {
md *mp_mfl ; I* memory free list *I
md *mp_mal ; I* memory alloc ated list *I
md *mp_rover ; I* roving pointer *I

} mpb ;

Getmpb is defined as a macro in <osbind . h> .

The memory parameter block lists are in protected memory. Since this i s the
case any accesses to the memory data structure will have to be done in super­
visor mode.

EXAMPLE

#inc lude <oabind . h>

ahow_:freemem()
{

mpb my_mpb ;
md *:fre e , •use d ;
long :fre emem = 0 ;

}

long us edmem = 0 ;

Do supervisor mo de .
• I
long save_ssp = Super (OL) ;

Get the memory parameter block
•I
Getmpb (lnny_mpb) ;

Let ' s c ount tree memory chunks
* I
tor (tree = my_mpb . mp_m11 ; tree ; tree

treeme m += tree - > m_length ;

How muc h have we use d?
• I
tor (used = my_mpb . mp_mal ; us e d ; us ed

use dme m += used - > m_length ;

Restore to user mode .
• I
Supe r (s ave_ssp) ;

Print the compiled s tatistics .
• I
printt (" Free memory : Xld\n" , treemem) ;
printt ("Us ed memory : Xld\n" , us edmem) ;

tree - > m_link)

us ed -> m_link)

GETMPB 465

466 GETTIME

NAME

Gettime, Settime - Get/Set time of day clock

SYNOPSIS

#inc lude <osbind . h>

long Gettime ()

Settime (thedatetime)
datetime thedatetime ;

DESCRIPTION

These functions are designed to manipulate and read the system date and time.
The parameter thedatetime to Settime is defined as follows:

Bits
0 - 4

5 - 10
1 1 - 15
16 - 20
21 - 24
25 - 31

Meaning
Seconds times 2 (range 0 - 30)
Minutes (range 0 - 60)
Hours (range 0 - 24)
Day in month (range 1 - 31)
Month (range 1 - 12)
Year since 1980 (range 0 - 119)

Gettime returns the current date and time in the above format as the function
result.

Settime sets the date and time with the value in datetime .

Both functions are defined as macros in <osbind . h>

EXAMPLE

#inc lude <stdio . h>
#inc lude <osbind . h>

This struc ture is a bit field that represents the different components of
the dat e and time words . A union struc ture waa used so that a long
c ould be us ed for the as signment from the gettime () func tion and the
bit-field struc ture could be use d to e asily de c o de the long word .

Note : Thi s data struc ture was designed to work with Megamax C . Ho t all
c ompil ers allocate bi t-fields in the s ame manner . rpt

GETTIME 467

Note : To set the time j us t assign the ' ' part ' ' f i e lds of the
s truc ture and then pass Se ttime () the real datetime . Ex :

mytime . part . day 1 0 ;
mytime . part . ye ar 7 ;

Settime (mytime . re altime) ;

typedef union {
atruc t {

uns i gned day 6 ;
unsi gned month 4 ;
unsigned year 7 ;
unsigned sec onds 6 ;
uns i gned minutes 6 ;
unsi gned hours 6 ;

} part ;
l ong realtime ;

} time ;

Exampl e of how to get inf ormation from the Ge ttime Ibi o s functi ons .

main()
{

}

time my time ;

Get the date and time with the long word of the time data struc ture .

mytime . re altime = Gettime () ;

Send it off to be printe d .

aho wtime (mytime) ;
puts (" Preas return") ;
ge tchar O ;

Print the date and time baaed on the time data s truc ture .
• I
ahowtime (mytime)

time mytime ;
{

468 GETTIME

}

• I

Print the date .

Note : The years are represented from 1 980 .

printf (" \t\t date \n Day : Xd \t Month : Xd \t Year : Xd\n" ,
mytime . part . day ,

) ;

mytime . part . month ,
mytime . part . year + 80

Print the time .

Note : The sec onds are represente d in multiples of 2 .

printf (" \t\t time \n Hour : Xd \t Minute : Xd \t S e c onds : Xd\n" ,
mytime . part . hours ,
mytime . part . minutea ,
mytime . part . aeconda • 2

) ;

NAME

GIACCESS 469

Giaccess> Offgibit , Ongibit - Modify register on the sound chip

SYNOPSIS

#inc lude <osbind . h>

char Giac c e ss (data , regno)
char data ;
int regno ;

Offgibi t (bi tno)
int bitno ;

Ongibit (bitno)
int bitno ;

DESCRIPTION

These functions are a high level interface used to modify the sound chip sound
registers.

Giaccess reads or writes a sound chip register. Logically OR the value Ox80
with regno to write data. The Giaccess function will return the register
value for a read operation.

Offgibit clears bit number bi tno in the PORT A register.

Ongibit sets bit number bi tno in the PORT A register.

The sound chip contains 16 8-bit registers (labeled 0 - F) . Registers E and F
are not used for sound but to control the floppy disk drives. These registers are
called ports A and B respectively. Offgibit and Ongibit modify selected bits of
port A. The other registers are modified with Giaccess.

The Port A bits are defined as follows:

0 Disk side select (for double sided drives)
1 Drive A select
2 Drive B select
3 RS-232 RTS (Request to Send) line
4 RS2322 DTR (Data Terminal Ready) line
5 Centronics data strobe
6 General purpose output on video connector
7 Unused

470 GIACCESS

NOTE

The sound chip used in the Atari is Yamaha's YM-2149 programmable sound
synthesis chip. This chip was initially designed to be used by arcade games
before it found it's home in the Atari ST. Some of the special features of the
YM-2149 are:

• Three independent programmable tone generators (called channels A, B
and C)

• Programmable noise generator

• Software controlled analog output

• Programmable mixer for tone and noise

• Programmable envelopes (ADSR)
• Two bi-directional 8-bit data ports

All of the sound capabilities of the YM-2149 are controlled through sixteen
8-bit registers. These registers are defined as follows:

Reg. 0
Reg. 1

Reg. 2

Reg. 3

The period for the channel A freqency generator. This is a
twelve bit number with the low eight bits in register 0 and the
high four bits in the low four bits of register 1 .
The period determines the frequecy of the tone generator by
use of the following formula:

frequency (Hz) = 62500 I (12-bit register value) ;

The register values may be calculated accordingly :

register 0 = (62500 I frequency (Hz)) & OxOOff ;
register 1 = ((62500 I frequency (Hz)) » 8) & OxOOOf ;

This register is the same as register 0 except that it affects the
frequency of the channel B tone generator.

This register is the same as register 1 except that it affects the
pitch of the channel B tone generator.

Reg. 4

Reg. 5

Reg. 6

Reg. 7

Reg. 8

Reg. 9

Reg. A

GIACCESS 471

This register is the same as register 0 except that it affects the
frequency of the channel C tone generator.

This register is the same as register 1 except that it affects the
pitch of the channel C tone generator.

This register controls the pitch of the noise generator. Only
the low order 5 bits are used. Note that smaller values cause
the noise to be generated at a higher pitch.

This register is the mixer for all of the tone generators and
the noise generator. The bits for this register are defined as
follows:

Bit Description
0 Channel A tone generator on/ off
1 Channel B tone generator on/ off
2 Channel C tone generator on/ off
3 Channel A noise generator on/ off
4 Channel B noise generator on/ off
5 Channel C noise generator on/ off
6 Port A 1/0 select input/output
7 Port B 1/0 select input/output

Note that in the bit settings above a value of zero indicates
that the channel is on . Conversely, if the value of the bit is 1 {(j : :tili1Jl!Jj!i
then the channel is off.

This register controls the amplitude or volume of the Channel
A tone generator. The lower 4 bits, bits 0 - 3, contain the
volume of the channel. If bit 4 is set then bits 0 - 3 are ignored
and the tone's loudness will decay (e .g . go from loud to soft or
from soft to loud) . The waveform of this decay is determined
by registers B, C , and D .

This register is the same as register 8 except that i t controls
the volume of the Channel B tone generator.

This register is the same as register 8 except that it controls
the volume of the Channel C tone generator.

472 GIACCESS

Reg. B
Reg. C

Reg. D

Reg. E

This register contains the low-byte of the sustain counter .
This register contains the high-byte of the sustain counter.

This register determines the waveform of the envelope gen­
erator. The lower 4 bits, bits 0 - 3, are used to select the
waveform, and have the following representations:

Bit

0

1

Descript ion
'

Hold : If this bit is set then the tone and the end
of the initial decay will be held . (see Continue)
Alternate : If this bit is set then the Attack will al­
ternate directions while being repeated. (see Con-
tinue)

2 Attack : A value of zero in this field will cause
the tone to go from loud to soft (decay) , whereas
a value of one in this fields will cause the tone to
go from soft to loud (attack) .

3 Continue : If this bit is set then the Attack will
repeat itself until stopped by another sound. Note
that the Alternate and Hold bits are only valid
when this bit is set .

The possible envelopes are:
OOxx Decay and hold.
01xx Attack, sharp decay, and hold.

1000 Decay, sharp attack , decay (reverse saw-
tooth wave) .

1001 Decay and hold.

1010 Decay, attack (Triangle wave) .

101 1 = Decay, sharp attack, and hold .

1 100 = Attack, sharp decay, Attack (saw-tooth
wave) .

1 101 Attack and hold .
1 1 10 Attack , Decay (Triangle wave) .

1 1 1 1 Attack , sharp decay, and hold.

This register controls port A of the sound chip (not to be con­
fused with channel A) . These ports are not used for sound

GIACCESS 473

generation on the Atari ST. They are used to control the floppy
disk drive select signals. Note that the state of this port (in­
put/output) is determined by register 7 .

Reg . F This register performs the same function as register E, except
that Port B of the sound chip is affected .

These routines are defined as macros in <osbind . h> .
EXAMPLE

#inc lude <o sbind . h>

#define \fB.ITE Ox80

I •
Define register set for e ach tone .

• I
c har tonel [] = { Oxlb , Ox01 , Oxi c , Ox01 , Oxl d , Ox01 ,

Ox38 , Ox1 0 , Ox1 0 , Ox1 0 , OxOO , Ox30 ,
} ;

c har tone2 [] { Oxa7 , OxOO , Oxab , OxOO , Oxa9 , OxOO ,
Ox38 , Ox1 0 , Ox1 0 , Ox1 0 , OxOO , Ox30 ,

} ;

c har tone 3 [] = { Oxd3 , OxOO , Oxd4 , OxOO , Oxd6 , OxOO ,
Ox38 , Ox1 0 , Ox1 0 , Ox1 0 , OxOO , Ox30 ,

} ;

c har tone4 [] = { Oxa8 , Ox01 , Oxa9 , Ox01 , Oxaa , Ox01 ,
Ox38 , Ox1 0 , Ox1 0 , Ox1 0 , OxOO , Ox30 ,

} ;

c har • s ong [] = { tone 1 , tone2 , tone 3 , tone 4 , tone 1 } ;

main()
{

OxOO ,
Ox03

OxOO ,
Ox03

OxOO ,
Ox03

OxOO ,
Ox03

int x ;
int reg7 ; I • bits 7 and 6 are used by the OS • I

puts (" Phone home? ") ;

Save bits 7 and 6 of register 7

reg7 = Giac c ess (O , 7) ;

474 GIACCESS

}

• I

I •
Play e a c h tone .

for(x=O ; x< (s i zeof (song) I sizeof (char *)) ; x++) {
I •

}

Play tone .
• I
do_tone (s ong [x] , reg7 t Oxc O) ;

Wai t for tone to fini sh .
• I
wait60 (30) ;

Bc onin (2) ;

do_tone - s etup the s ound chips registers .
As the regis ters change the tone i s produc e d .

do_tone (the tone , mask)
char • thetone ;

{

}

int mas k ;

int x ;

for(x=O ; x<OxOe ; x+ +)
if (X • • 7)

Giac c e s s ((unsigne d) thetone [x] ! mask , x i WRITE) ;
else

Giac c e s s ((unsigne d) thetone [x] , x i WRITE) ;

wai t60 - wait for del ay 1 l60th sec onds
• I
wait60 (delay)

int del ay ;
{

}

SEE ALSO

while (delay- -)
Vsync () ;

Dosound

NAME

IKBD WS 475

lkbdws - Write a string to the intelligent keyboard processor

SYNOPSIS

#inc lude <osbind . h>

Ikbdws (cnt , ptr)
int cnt ;
c har *ptr ;

DESCRIPTION

NOTE

The Ikbdws functions writes a string of characters to the intelligent keyboard
processor. The parameter ptr points to an array of characters whcih are com­
mands for the keyboard processor. The last parameter cnt is the number of
characters to write minus one .

Ikbdws is defined as a macro in <osbind . h>

There is a set of commands that the keyboard processor understands pertaining
to the handling of the mouse and keyboard. These are defined as follows:

Ox07

Ox08

Return the result of the mouse buttons when pressed. This
command is only valid in absolute mode. The following byte
defines how the keyboard controller will react to mouse events tRJ;:::� as follows:

Bit Meaning
0 return position when the button is pressed .
1 return position when the button is released.
2 affect mouse position through keyboard.

3 - 7 zero.

Return the mouse position in relative mode. This will return
the mouse position in terms of the distance from the last po­
sition of the mouse . A mouse packet is generated when the
threshold value of the mouse is exceeded. The mouse packet
returned in this mode is as follows:

Header byte whose values range from Oxf8 to Oxfb (The
low order bits represent the state of the mouse buttons)

416 IKBDWS

Ox09

OxOa

OxOb

OxOc

OxOd

1 byte msb x position .
1 byte lsb x position.
1 byte msb y position .
1 byte lsb y position.

Return the mouse position is absolute mode. This will return
the mouse position in terms of an absolute coordinate system.
This command must be followed by two bytes. The first byte
indicates the maximum X value of the mouse and the second
byte indicates the maximum Y value.

Sets the keyboard controller to treat the mouse movement like
the movement described by the cursor keys. This command
must be followed by two bytes. The first byte indicates the
stepping for the X coordinate counter, and the second indicates
the stepping for the Y coordinate counter when the mouse
keyboard equivalent is struck .

Sets the threshold value for the mouse. This function deter­
mines how responsive the mouse is in terms of how far the
mouse must move before a mouse packet is sent to the mouse
handler. The command must be follwed by two bytes. The
first byte defines the threshold for movement in the X direc­
tion. The second byte defines the threshold for movement in
the Y direction. This command can only be used in relative
mode (command Ox08) .

Set the mouse scale. This function determines how responsive
the mouse is in terms of how far the mouse must move before
the coordinate is changed . The command must be followed by
two bytes. The first bytes defines the X scale. The second
bytes defines the Y scale. This command an only be used in
absolute mode (command Ox09) .

Get the mouse's absolute position. This function will cause a
keyboard packet to be returned via the keyboard packet han­
dler. The following bytes will be returned:

1 byte header = Oxf7
1 byte mouse button status.

OxOe

OxOf

Ox10

Ox1 1

Ox12

Ox13

Ox14

Ox15

Bit Meaning

IKBD WS 477

0 right button pressed since the last read.
1 right button not pressed since last read .
2 left button pressed since the last read.
3 left button not pressed since last read.

1 byte msb X coordinate
1 byte lsb X coordinate
1 byte msb Y coordinate
1 byte lsb Y coordinate

Set the mouse position . This command requires five bytes. The
first bytes is a 0 byte. The next two bytes define the mouse's
X position. The last two bytes define the mouse's Y position.

Set mouse Y-axis origin at bottom.

Set mouse Y -axis origin at top.

Resume the sending of data packets. (see command Ox13)

Turn off mouse handling . If the mouse mode is changed the
keyboard controller will resume mouse handling.

Pause the sending of data packets and buffer any keyboard or
mouse commands.

Force the keyboard controller to return a data packet for each
movement of the joystick . The data packet returned has the
following format:

1 byte Header (Oxfe = joystick 0, Oxff = joystick 1)
1 byte status:

Bits 0 - 3: position of joystick .
Bit 7 : status of fire button.

stop the keyboard controller from automatically returning joy­
stick data packets.

478 IKBD WS

Ox16

Ox17

Ox1a

Ox1b

Oxic

Ox80

read the joystick . This command causes the keyboard con­
troller to send a data packet to the joystick packet handler .
The format of the packet is the same as with command Ox14 .

joystick timeout . This command sets the interval in 1/100'ths
of a second between each joystick packet that is sent . Once this
command is invoked the following packet is sent at the end of
every interval:

1 byte time since last message in 1/100 'ths of a second.
1 byte (bit 0 fire button joystick 1, bit 1 fire button joy­
stick 2)
1 byte

bits 0 - 3: position of joystick 1
bits 4 - 7: position of joystick 0.

turn off joystick handling .

set clock time. This command is followed by 6 bytes which are
defined in BCD (Binary Coded Decimal, every four bits is a
decimal digit) format . These bytes are defined as follows:

1 byte year
1 byte month
1 byte day
1 byte hour
1 byte minute
1 byte seconds

read block time. This command will cause the keyboard con­
troller to send a data packet to the clock packet handler. The
header byte for this packet is Oxfc . The header byte will be
followed by BCD values in the format described in command
Ox1b.

reset keyboard controller without affecting the internal clock.
This command must be followed by a single byte Ox01 .

NOTE

IKBD WS 479

The packet handling routines may be defined by the Kbdvbase function. Also,
for a complete discussion of the keyboard commands refer to the HD-6301
technical reference manual.

SEE ALSO

Kbdvbase

480 INITMO US

NAME

Initmous - Initialize mouse packet handler

SYNOPSIS

#inc lude <osbind . h>

Initmous (type , paramp , vee)
int type ;
mouse_data
int

*paramp ;
(*vee) 0 ;

DESCRIPTION

Initmous sets up the mouse's initial state and the mouse's interrupt handler .
The parameters are defined as follows:

type

par am

indicates the operation to be performed:

0 = disable mouse
1 enable mouse and set to relative mode
2 enable mouse and set to absolute mode
3 unused
4 enable mouse and set to keycode mode

points to a param struct :

struc t _mouse_data {
char topmode ;
char buttons ;
char xparam ;
char yparam ;
int xmax , ymax ;
int xinital , yinital ;

}

topmode values:

I* absolute only *I
I* absolute only *I

0 y position of 0 at bottom of screen
1 y position of 0 at top of screen

vee

INITMO US 481

buttons is a parameter to the keyboard 's "set mouse buttons"
command.
txparam and yparam have the following meanings depending
on the mode:

mode
relative
absolute
key code

meaning of xparam and yparam
x and y interrupt threshold values
x and y scale factors
x and y delta factors

The absolute mode requires the additional x and y maximum
and x and y initial values.

points the the mouse interrupt handler (see kbdvbase) .

Initmous is defined as a macro in <osbind . h>

SEE ALS O

kbdvbase

li!l11:1

482 IOREC

NAME

Ioree - Get serial device input buffer descriptor

SYNOPSIS

#inc lude <osbind . h>

iorec * Iorec (devic e)
int devi ce ;

DESCRIPTION

Iorec returns a pointer to a device input buffer descriptor record. The result
returned is a pointer to the input buffer record for the device specified in the
parameter devi ce . The parameter device will be defined as one of the follow­
mg :

Devic e Number
0
1
2

Device Name
RS232
Keyboard
MIDI

The structure the returned pointer points to is defined as follows :

typedef struct _iorec {
char *ibuf ; I* pointer to queue *I
int ibufsiz ; I* size of queue in bytes *I
int ibufhd ; I* head index of queue *I
int ibuftl ; I* tail index of queue *I
int ibuflow ; I* low water mark *I
int ibufhigh ; I* high water mark *I

} iorec ;

ibuf is a pointer to the 1/0 buffer. ibuftl points at the last character to enter
the queue. ibufhd points just before the next character to be removed from
the queue. The queue is empty if i bufhd equals i buftl .

The ST will request the sender to stop transmitting when the number of char­
acters in the queue equals ibufhigh. It will request the sender to resume when
the number drops to i buflow. Output flow control for RS-232 operates in a
similar manner.

Ioree is defined as a macro in <osbind . h>

NOTE

IOREC 483

An output buffer descriptor (just like the input descriptor) immediately follows
the input descriptor in memory if the device is RS-232 .

EXAMPLE

tinc lude <osbind . h>

sho w_i ore c (devi c e)

{
int devi c e ;

iorec * therec ;

therec = (i orec *) Iorec (devic e) ;

printf (" \n!he de vi c e Xd is : \n" , devi c e) ;
printf ("buffer = = Xlx\n" , there c - >
printf (" buffer size = = Xd\n" , therec ->
printf (" he ad index Xd\n" , the rec ->
printf (" tail index Xd\n" , therec ->
printf (" low mark Xd\n" , there c ->
printf (" hi gh mark Xd\n" , therec ->

}

ibuf) ;
ibufs iz) ;
ibufhd) ;
ibuftl) ;
ibuflow) ;
ibufhigh) ;

484 KBRATE

NAME

Kbrate - Get/set keyboard repeat rate

SYNO PSIS

#inc lude <osbind . h>

int Kbrate (initial , repeat)
unsigned char initial , repeat ;

DES C RIPTION

Kbrate establishes the time before a key repeat is performed and how much
of a delay between each repeat . The parameter initial establishes the delay
before the auto-repeat begins. The last parameter repeat determines the delay
between each repeated key. If a value of - 1 is passed for either of the parameters
then that value will not be changed. Note that all times are measured in ticks,
each tick being about 20 microseconds. The previous setting of initial and
repeat is returned as an integer with initial in the high byte and repeat in
the low byte.

Kbrate is defined as a macro in <osbind . h>
EXAMPLE

tinc lude <osbind . h>

set_ke yrepeat () - s e t the keyboard repeat rate at 1 sec ond before
repeat and repeat 4 keys per second .

set_ke yrepeat ()
{

}

int ini tial = 6 0 ; I• delay f o r a s e c ond . 1 000 per sec ond I 20 ticks • I
int repeat = 1 2 ; I• repeat . 60 ticks per sec I 4 reps per sec

• • 1 2 ti cks per rep •I

Kbrate (60 , 1 2) ;

NAME

KBDVBASE 485

Kbdvbase - Get list of various system vectors

SYNOPSIS

#inc lude <osbind . h>

kbdvec s *Kbdvbase ()

DESCRIPTION

Kbdvbase returns a pointer to a list of system vectors. The pointer to the
following structure is returned:

typedef struc t {
int (*midivec) 0 ; I* MIDI - input *I
int (*vkbderr) 0 ; I* keyboard error *I
int (*vmiderr) () ; I* MIDI error *I
int (*statvec) 0 ; I* ikbd status pac ket *I
int (*mousevec) () ; I* mouse pac ket *I
int (*c lockvec) 0 ; I* c loc k pac ket *I
int (* j oyvec) 0 ; I* j oystick pac ket *I
int (*midisys) () ; I* system MIDI vec tor *I
int (*ikbdsys) () ; I* system IKBD vec tor *I

} kbdvec s ;

midi vee points to a routine in the BIOS that returns the character read from
the MIDI port in the low byte of DO.

vkbderr and vmiderr are called whenever an overrun condition is detected on
the keyboard or MIDI 6850s.

statvec , mousevec , c lockvec and j oyvec point to ikbd (intelligent keyboard)
packet handlers for the status, mouse, real-time clock and joystick . A pointer
to the packet is passed to the routine in AO and on the stack. The handler
returns with an rts instruction (as opposed to rte) and must not spend more
than 1 millisecond in the routine.

midisys and ikbdsys are called when characters are ready on the appropri­
ate 6850. They dispatch to the other vectors. The initial midisys just calls
midi vee . The initial ikbdsys figures out what kind of thing has happened and
calls one of statvec , mouseve c , c lockvec or j oyvec .

Kbdvbase is defined as a macro in <osbind . h>
EXAMPLE

486 KBDVBASE

#inc lude <o sbind . h>

extern packet_handler () ;
extern status 0 ;
extern state 0 ;

kbdvec s * theve c s ;
int • thes tate (int •) state ;
long saveve c ;

main()
{

int x , y ;

appl_ini t O ;

Get poi nter to vec tor tabl e and replac e the mouse
packet handler .

the ve c s = (kbdvec s *) Kbdvbas e () ;
savevec = (long) thevecs - > mous e ve c ;
the ve c s - > mousevec = packet_handler ;

Loop Until done .
• I
while (x < 1 00) {

}

* I

if (* thestate) {
char *P = (c har •) s tatus ;
printf (" s tatus == X02x X02x X02x X02x X02x X02x\n11 ,

* (p+O) lOxff , • (p+ 1) l0xff , • (p+ 2) l0xff ,
* (p+3) l0xff , * (p+4) l0xff , • (p+ 6) l0xff) ;

x++ ;

• the state = 0 ;
} else

if (y++ > 1 00) {
puts (11 Waiting . . . 11) ;
y = 0 ;

}

Re store the old mous e packet handler .

theve c s - > mouse vec = (int (*) ()) s aveve c ;

}
appl _exi t () ;

KBDVBASE 487

Packet_ha.ndler
plac e .

mo ve packe t inf ormation to a more easily ac c e s sible

asm {
status :

state :
dc . b 0 , 0 , 0 , 0 , 0 , 0

dc . w 0

packet_ha.ndler :
l e a status (PC) , A1 I • ge t the address of our status work spac e * I

move . b (AO) + , (A1) + I • move i t over f ast .
move . b (AO) + , (A1) +
move . b (AO) + , (A1) +
move . b (AO) + , (A1) +
move . b (AO) + , (A1) +
move . b (AO) + , (A1) +

lea state (PC) , AO
addq 11 , (AO)
rta I • kiss i t goodbye .

}

488 KBSHIFT

NAME

Kbshift - Gets or sets the keyboard shift bits

SYNOPSIS

#inc lude <osbind . h>

long Kbshift (mode)
int mode ;

DESCRIPTION

Kbshift returns information about the keyboard's special keys. The parameter
mode controls the setting or getting of the keyboard shift bits. If mode is negative
then the current settings are returned . If mode is non-negative then the value
of mode is used to set the shift bits. The shift bit assignments are as follows:

Bit Key
0 Right shift key
1 Left shift key
2 Control key
3 ALT key
4 Caps-lock key
5 Right mouse button (CLR/HOME)
6 Left mouse button (INSERT)
7 Reserved

Kbshift is implemented as a macro in <osbind . h> .

NAME

KEYTBL 489

Keytbl , Bioskeys - Sets key board translation tables

SYNOPSIS

#inc lude <osbind . h>

long Keytbl (unshift , shift , capslock)
char unshift [128] , shift [128] , c apsloc k [1 28] ;

Bioskeys ()

DESCRIPTION

Keytbl sets the keyboard translation tables . unshift , shift and c apsloc k
point to keycode-to-ASCII translation tables for unshifted , shifted and
capslock down while pressed keys respectively. The pointers are stored
into the following structure for which a pointer to is returned (as a long) :

struc t keytab {
char *unshift ;
char *shift ;
c har *c apsloc k ;

} ;

Bioskeys restores the initial boot up values of the translation tables.

Both routines are defined as a macro in <osbind . h>

490 MALLOC

NAME

Malloc , Mfree, Mshrink - Memory allocator

SYNOPSIS

#inc lude <osbind . h>

long Malloc (amount)
long amount ;

int Mfree (addr)
char *addr ;

int Mshrink(zero , mem , size)
int zero ;
char *mem ;
long size ;

DESCRIPTION

These functions are used to manipulate memory dynamically.

Malloc allocates amount bytes of memory from the current program's heap and
returns a pointer to the beginning of the block . The block is word aligned.
If amount is - lL then the amount of free space in the heap is returned. A
NULL value is returned if the requested number of bytes is not available
or an error occurs

Mfree releases the block pointed to by addr and returns the space to the pro­
gram's heap. The block must have been allocated by Malloc. A non-zero
value is returned if an error occurs.

Mshrink changes the size of the heap. The parameter zero must have a value
of zero. mem points to the base of the TPA. size is the number of bytes to
retain in the TP A for the program (basically the size of the base page +
code + data + bss + stack) . This function is used by the system library
before main is called. A non-zero value is returned if an error occurs.

These functions are defined as macros in <osbind . h>
EXAMPLE

#inc lude <osbind . h>

MALLOC 491

show_freememO
{

printf (11 There are Ud bytes fre e in the heap . \n" , Malloc (- l L)) ;
}

492 MEDIACH

NAME

Mediach - Return current "media-changed" value for a device

SYNOPSIS

#inc lude <osbind . h>

long Mediach(dev)
int dev ;

DES C RIPTIO N

Mediach is used internally by BIOS before reading and writing to ensure the
disk has not been replaced by another disk . The parameter dev is the device
to return the "media-changed" value for.

The return value is one of:

0 Media definitely has not changed
1 Media might have changed
2 Media definitely has changed

Mediach is implemented as a macro in <osbind . h> .

NAME

MFPINT 493

Mfpint, Jdisint , Jenabint - Set, disable and enable interrupts on the MFP

SYNOPSIS

#include <osbind . h>

Mfpint (interno , vec tor)
int interno ;
int (*vec tor) 0 ;

Jdisint (interno)
int interno ;

Jenabint (interno)
int interno ;

DESCRIPTION

Mfpint sets the 68901 MFP chip to interrupt to a user defined routine. The
interrupt number is specified in the parameter interno . The user defined
interrupt handler is defined by the parameter vec tor.

Jdisint disables the interrupt specified by the parameter interno.

Jenabint enables the interrupt specified by the parameter interno.

The 68901 MFP (Multi-Function Peripheral) supports up to 16 interrupt func­
tions. The address of each function is stored in the 68000's vector numbers
64 - 79 (4 bytes each starting at address Ox100) . Interrupt functions on the
68000 must return with the RTE instruction instead of the usual RTS . See the
Morotola 68000 reference manual for more information . Additionally, the bit
in the 68901 's "Interrupt Status Register" (ISR) corresponding to the interrupt
number must be cleared before returning.

There are two 8-bit ISRs labeled ISRA and ISRB. ISRA has a bit for functions
8-15 while ISRB has a bit for functions 0-7.

Interrupt numbers are assigned as follows:

494 MFPINT

interno ISR bit Used for
0 ISRB 0 Parallel port (initially disabled)
1 1 RS232 Carrier Detect (initially disabled)
2 2 RS232 Clear-To-Send (initially disabled)
3 3 Unused, disabled
4 4 Unused, disabled (Timer D)
5 5 200hz system clock (Timer C)
6 6 Keyboard/MIDI (68�0)
7 7 Polled FDC/HDC (initially disabled)
8 ISRA O HSync (initially disabled) (Timer B)
9 1 RS232 transmit error
10 2 RS232 transmit buffer empty
1 1 3 RS232 receive error
12 4 RS232 receive buffer empty
13 5 Unused, disabled (Timer A)
14 6 RS232 Ring detect (initially disabled)
15 7 Polled monitor type (initially disabled)

ISRA is stored at memory location OxfffaOf . ISRB is at Oxfffal l .

See Xbtimer for information about programming the four timers (A,B,C and
D) .

These routines are defined as macros in <osbind . h>

NOTE

The interrupt priority levels are from 0 to 15 , lowest to highest priority.

EXAMPLE

An example of a 68901 interrupt routine is provided in Xbtimer.

SEE ALS O

Xbtimer(), Rsconf()

NAME

MIDIWS 495

Midiws - Write a string to the MIDI port

SYNOPSIS

#inc lude <osbind . h>

Midiws (cnt , ptr)
int cnt ;
char *ptr ;

DESCRIPTION

NOTE

Midiws writes characters out accross the MIDI out port of the ST. The param­
eter cnt is the number of characters to write minus 1 . The parameter ptr is a
pointer to the data that is to be written out .

MIDI is an acronym which stands for "Musical Instrument Device Interface."
This interface is a standard for most of the electronic synthesizers on the market
today.

Below is listed some of the commands that are defined in the MIDI standard.
This is not a complete list, nor can it be due to the fact that each synthesizer
has a set of commands which shows of it's own individual talents as well as
the manufacturers thoughts. These channel messages are defined as three 8-bit
bytes where the individual bits are represented as follows:

Flag Description
c Channel. There are sixteen total channels available (0 - 15) .
k Key pressed. From piano: 21 (low D) - 108 (high C) .

Middle C
Sharps

Flats
Octave jumps

60
note number + 1
note number - 1
note number + 12

v Velocity. Determines how loud a note is to be played.
(soft) 0_ 1 _ _ _ _ _ _ _ _ _ _ _ 64 _ _ _ _ _ _ _ _ _ _ _ _ 127 (loud)

PPP pp mp mf f ff fff
p Program number (0 - 127) .
b Pitch bender range (0 - 127) . 64 = center (i .e . no bend)
x Don't care

496 MIDIWS

MIDI command Message Description in bits
note OFF 1 000 e c c e + Okkk kkkk + 0 1 00 0000
note ON 1 001 e c c e + Okkk kkkk + Ovvv vvvv

OSC modulation 1 01 1 e c c e + 0000 0001 + Ovvv vvvv
VCF modulation 1 01 1 e c c e + 0000 001 0 + Ovvv vvvv

Damper pedal OFF 1 01 1 e c c e + 0 1 00 0000 + 0000 0000
Damper pedal ON 1 01 1 e c c e + 0 1 00 0000 � 01 1 1 1 1 1 1
Portamento OFF 1 01 1 e c c e + 0 1 00 0001 + 0000 0000
Portamento ON 1 01 1 e c c e + 0 1 00 0001 + 01 1 1 1 1 1 1

Program change 1 1 00 e c c e + Oppp pppp + XXXlC xxxx
Channel Pressure 1 1 01 e c c e + Ovvv vvvv + xxxx xxxx
Pitch bender change 1 1 1 0 e c c e + 0000 0000 + Obbb bbbb

Note that if a note is specified that is outside the range of the synthesizer, then
the note is transposed to the nearest octave.

Midiws is defined as a macro in <osbind . h>

EXAMPLE

An example of Midiws is in the file midi . c on the Examples disk supplied with
the Laser package.

NAME

PEXEC 497

Pexec - Load another program

SYNOPSIS

#inc lude <osbind . h>

long Pexec (mode , path , c ommandline , environment)
int mode ;
char *path , *c ommandline , *environment ;

DESCRIPTION

NOTE

Pexec is used to launch an application from another application. There are
several modes that may be specified by the mode parameter. These modes are
defined as follows:

Mode Funct ion

0 load and go

3 just load

4 just go

5

Description

Set up the parameters as described in the de­
scription section.

Exactly like mode = 0, however, the address of
the base page is returned and the application
is not executed.
pathname = address of the base page.

create a base page and allocate free memory.

path the file containing the program to load.

c ommandline the command line image to be placed in the base page. The
command line may include I/0 redirection.

environment the environment string to be placed in the base page. If envi­
ronment is OL then the parent program's environment string
is used.

Pexec is defined as a macro in <osbind . h>

The c ommandline parameter is actually a Pascal style string (i .e . length byte
with character data following) .

DIAGNOSTICS

498 PEXEC

If the load fails, then a negative error number is returned .
EXAMPLE

linc lude < osbind . h>
#inc lude <stdio . h>

lde1ine LOADNGO 0
I •

This program demons trates using the Pexe c () 1 unc tion to launch
itsel1 . Note that in order to work it ' s executable name
mus t be ' ' pexec . prg ' ' .

main (argc , argv)
int argc ;
char • argv [] ;

{

}

i1 (argc < :Z) {
print1 (11 Thia is the 1irst time through the Pexec Tes t Program\n") ;
launc h ("pexec . prg" , " Hello world . . . ") ;

} else {

}

print1 (11 This is the sec ond time through the Pexec Tea t Program\n") ;
exi t (O) ;

puta (" End o1 program . 11) ;

launc h (c ommand , c o mmandline)
char • c ommand ;

{

}

SEE ALSO

char • c ommandline ;

c har work [1 2 8] ; I• the max size o1 a c ommand l ine is 1 2 8 c hars . • I

Convert to Pasc al Style string .
• I
work [O] = atrlen (c o mmandline) ;
atrcpy (twork [l] , c ommandline) ;

Pexe c (LOADNGO , c o mmand , work , " ") ;

DOS Error Codes (pg. 587)

NAME

PRINTER PORT I/0 499

Cprnout, Cprnos - Printer port write and status.

SYNOPSIS

#inc lude <osbind . h>

int Cprnout (chr)
int chr ;

int Cprnos ()

DESCRIPTION

The Printer I/0 functions are designed to facilitate output to a printing device.

Cprnout writes the character chr to the printer port. If the character was
successfully sent to the printer then a value of - 1 is returned as the
function's result . If the printer is offline or inactive for more than 30
seconds then a value of zero will be returned.

Cprnos returns non-zero if the printer port is ready to receive a character.

These routines are defined as macros in <osbind . h>
EXAMPLE

print_text (thetext , thec ount)
c har •the text ;

{

}

SEE ALSO

int the c ount ;

i:f (! Cprnos ())
:f atal (" Printer i s o:f:fline . \n") ;

else
vhile (thecount - -)

i:f (! (Cprnout (• the text+ +)))
:fatal (" Error during print . \n") ;

Character I/0 , Console I/0

500 PROTOBT

NAME

Protobt - Construct a prototype boot sector

SYNOPSIS

#inc lude <osbind . h>

Protobt (buf , serialno , disktype , execflag)
char buf [512] ;
long serialno ;
int disktype , execflag ;

DESCRIPTION

Protobt creates a prototype boot sector at the memory pointed to by the pa­
rameter buf which may be written to the disk . The rest of the parameters are
defined as follows:

serialno

disktype

exec flag

A serial number to be stamped into the boot sector. buf may
already point at an existing boot sector, if it does and serialno
is - 1 then the previous serial number will be used . If serialno
is greater than Ox01000000 then a random serial number will
be used.

The disk type. If it is - 1 and buf points at an existing boot
sector then the disktype information is left unchanged. Other
values for disktype are:

0 single sided 180K, 40 tracks
1 double sided 360K, 40 tracks
2 singed sided 360K , 80 tracks
3 double sided 720K, 80 tracks

The executable status of the boot sector. If execflag is - 1
and buf points at an existing boot sector, then the sector is
left unchanged with respect to executable status. If execflag
is 1, the boot sector is made executable. If it is 0 then the boot
sector is made non-executable.

Protobt is defined as a macro in <os bind . h>

EXAMPLE

Refer to Floppy () for an example of Protobt

S:E:E�A::LS::-O

__

__

__

__
__

__

__

jP�R�O�T�OQ�BT��SOl

Floppy

502 PTERMO

NAME

PtermO, Pterm, Ptermres - Terminate current process

SYNOPSIS

#inc lude <osbind . h>

PtermO ()

Pterm (c ode)
int c ode ;

Ptermres (keep , ret)
long keep ;
int ret ;

DESCRIPTION

These Pterm functions terminate the current program and return control to
the calling program. Each of these functions has a slightly different behavior
as follows:

PtermO terminates the current process with an exit status of 0.

Pterm terminates the current process with an exit status of c ode .

Ptermres terminates the current process with an exit status of ret , but leaves
it in memory. The keep parameter is the number of bytes to leave in the
process descriptor.

These routines are defined as macros in <osbind . h>

NAME

Puntaes - Throw away GEM AES freeing up its space

SYNOPSIS

#inc lude <osbind . h>

Puntaes ()

DESCRIPTION

P UNTAES 503

Puntaes will cause the system to reboot , but won't load the AES routines or
GEM desktop. Puntaes will just return if it has already been called.

Puntaes is defined as a macro in <osbind . h>

NOTE

This won't work with the system in ROM.

504 RANDOM

NAME

Random - Generate a 24-bit pseudo-random number

SYNOPSIS

#inc lude <osbind . h>

long Random ()

DESCRIPTION

Random generates a 24-bit pseudo-random number which is returned as the
function's result as a long . A linear congruential algorithm is used :

S = (S x C) + K

K is 1 and C is 3141592621 . The initial value for S is taken from the frame­
counter global (_frc loc k) . S » 8 is returned.

Random is defined as a macro in <osbind . h>

NAME

RSCONF 505

Rsconf - Configure the RS232 port

SYNOPSIS

#inc lude <osbind . h>

Rsc onf (speed , flowc tl , ucr , rsr , tsr , scr)
int speed , flowc tl , ucr , rsr , tsr , sc r ;

DESCRIPTION

Rsconf sets communication parameters for the serial port .

speed

flowc tl

Sets the baud rate for the RS232 port as follows:

speed Baud rate
0 19,200
1 9600
2 4800
3 3600
4 2400
5 2000
6 1800
7 1200
8 600
9 300
10 200
1 1 150
12 134
1 3 1 10

14 75
15 50

Sets the flow control as follows:

flowc tl
0
1
2
3

Type of :How control
No flow control {default value)
XON/XOFF
RTS/CTS
Both XON/XOFF and RTS/CTS

506 RSCONF

uc r, rsr,
tsr, s cr

Set the corresponding 68901 registers. A -1 for one of these
parameters will not set the register (so you don 't have to set
them all) . Only the ucr register is useful:

Bit Meaning

0 Not used
1 Parity. 1=even parity, O=,odd parity
2

3 ,4

5 ,6

Parity enable. 1=enabled.

Start/Stop bits:
Bit 4 Bit 3 Start S top

0 0 0 0
0 1 1

1 0 1

1 1 1

Word length:

1

1 . 5

2

Bit 6 Bit 5 Word length
0 0 8 bits
0 1 7 bits
1 0 6 bits
1 1 5 bits

Format
Sync.
A sync.
Async.
A sync.

7 Clock mode. 1 = 1/16 rate (use this one) ,
0 = full speed.

Rsconf is defined as a macro in <osbind . h> . The 68901 MFP Timer D is used
to control the baud rate. See Xbtimer for information on how to program the
timer for other baud rates.

EXAMPLE

#define BAUD1 9200 0
#define XON_XOFF 1

Initialize 18 - 232 port to 1 9 . 2 kbaud using XON/XDFF
flow c o ntrol .

• I
initlS232 ()
{

la c onf (BAUD1 9200 , XON_XOFF , - 1 , - 1 , - 1 , � 1) ;
}

SEE ALS O

Mfpint(), Xbtimer()

NAME

Rwabs - Read/write blocks on a device.

RWABS 507

SYNOPSIS

#inc lude <osbind . h>

long Rwabs (rwflag , buf , c ount , recno , dev)
int rwflag ;
char *buf ;
int count , recno , dev ;

DESCRIPTION

Rwabs allows the user to read and write to the disk using absolute block refer­
ences. The parameter rwflag is contains the operation to be performed which
is defined as follows:

0 Read
1 Write
2 Read, but doesn't affect "media-change"
3 Write, but doesn't affect "media-change"

If an error occurs during the requested operation then a negative value will be
returned. A return value of OL indicates successful operation. The rest of the
parameters are defined as follows:

buf

c ount

recno

dev

points to a buffer to be read or written. Note that if the buffer
begins on an odd address the performance of the operation will
decrease .

the number of blocks to transfer.

the logical sector to start transferring at.

the device number:

0 = Floppy drive A :
1 Floppy drive B :
> 1 Hard disks, networks or other devices.

508 RWABS

Rwabs is implemented as a macro in <osbind . h> .

SEE ALSO

mediach

NAME

Scrdmp - Dump B/W screen to printer

SYNOPSIS

#inc lude <osbind . h>

Scrdmp ()

DESCRIPTION

SCRDMP 509

Scrdmp sends the current screen data to the printer. Note that this only works
with the black and white monitor.

Scrdmp is defined as a macro in <osbind . h>

EXAMPLE

linc lude <osbind . h>

print_screen ()
{

}

i1 (Getrez () ! • 2)
print1 (" Cannot print screen i n thh screen re solution ! ") ;

else
Scrdmp () ;

510 SCREEN F UNCTIONS

NAME

Physbase, Logbase, Setscreen, Getrez - Screen functions

SYNOPSIS

#inc lude <osbind . h>

long Physbase ()

long Logbase ()

int Getrez ()

Setscreen(log_loc , phys_loc , rez)
char *log_loc , *phys_loc ;
int rez ;

DESCRIPTION

NOTE

These functions are designed to facilitate the manipulation of the graphics
screens. The functions are defined as follows:

Physbase returns the screen's physical location in memory at the next vertical
blanking interrupt.

Logbase returns the screen's logical location immediately. Note that the logical
screen base is where all drawing is done. This may contrast with the
physical screen base where the video hardware looks for the data to display
on the monitor.

Getrez returns the current screen resolution (O=low, l=medium, 2=high) .

Setscreen sets the logical base, physical base and resolution for the screen. A
negative value for a parameter is ignored so it is possible to set only one or
two of the values . The logical base is set immediately. The physical base
will not be changed until the next vertical blanking interrupt. Changing
the screen resolution causes the screen to be cleared and the VT52 emu­
lator to be reset. The address of the screen must be on a page (256 byte)
boundary.

These routines are defined as macros in <osbind . h>

SCREEN F UNCTIONS 511

Even when the screen resolution is changed certain parts of GEM are not aware
of the change.

EXAMPLE

tinc lude <stdio . h>
tinc lude <osbind . h>

Exampl e showing the use of Vsync () , Phyabaae () , Setacreen () .
• I
main()
{

register char • vis_screen , •bac k_screen , * temp ;
int rez ;
int count = 1 0 ;

Allocate memory for sec ond scre e n .

back_s creen = malloc (32768 + 266) ;

The screen addres s mus t be on a 266 byte boundary .

if ((long) back_screen i Oxff)
back_s creen = back_screen + (Oxl OO - (long) back_screen i Oxff) ;

Ge t visible screen address .
• I
vis_sc reen = (char •) Physbase () ;

Get the current reso lution
• I
rez = Getrez () ;

Res e t VT62 cursor to top-left of screen
• I
printf (" \033Y%c %c " , 0 + ' ' , 0 + ' ') ;
fflush(stdout) ;

puts (11 Example showing the uae of Vaync O , Phyabase O , Setscreen() ") ;
puts (" Press return to start the pageflip . . . ") ;
getchar O ;

Wai t until the verti cal blank interrupt and then s wap the sc reens .

512 SCREEN F UNCTIONS

}

The physical screen addres s is the s c reen image that is displ aye d .
The logical screen addres s is the back screen where everything i s
drawn .

while (count - -) {

}

Setscreen(back_s c reen , vis_s c reen , - 1) ;

do your thing .
•I
draw (back_screen , c ount) ;

swap sc reens .
•I
temp vis_screen ;
vis_screen back_s creen ;
back_s creen = temp ;

Setscreen(vis_screen , vis_screen , - 1) ;
puts (" Press return . . . ") ;
getchar () ;

draw (back , c ount)
c har •bac k ;

{

}

int i = 60 ;

whil e (i - -)
Vsync O ;

Draw and undraw the animation here in the background s c reen .

if (count t 1)
puts (" This is the first screen") ;

else
puts (" This is the s e c ond scre en") ;

NAME

SETCOLOR 5 13

Setcolor - Set an entry in the hardware color palette

SYNOPSIS

#inc lude <osbind . h>

int Setcolor(colornum , c olor)
int colornum , c olor ;

DES C RIPTION

Setcolor allows the user to change a color in the color palette . The color palette
entry c olornum is set to c olor. If the c olor is negative no change is made to
the color. The result of the function is the previous value of the c olornum
before the call . The color is defined by intensity values for each of the different
colors in the monitors rgb gun.

Bits
0 - 2
4 - 6
8 - 10

Description
The intensity of blue .
The intensity of green.
The intensity of red.

Setcolor is defined as a macro in <osbind . h>
EXAMPLE

tinclude <osbind . h>

tdefine KED 8
tdefine GREEN 4
tdefine BLUE 0

display_palette_value s ()
{

}

int c o l ornum ;
int c o l or ;

for (c o lornum = 0 ; c o lornum < 1 6 ; c o lornum++) {
c olor = Setcolor (c o l ornum , - 1) ;

}

printf (" The color :4d contains Xd red , Xd green , Xd blue\n" ,
colornum ,
(c olor >> KED) l Oxf ,
(c olor >> GREEN) l Oxf ,
(c olor >> BLUE) l Oxf) ;

514 SETEXC

NAME

Setexc - Set exception vector for 68000

SYNOPSIS

#inc lude <osbind . h>

long Setexe (veenum , vee)
int veenum ;
int (*vee) () ;

DESCRIPTION

NOTE

Setexc changes one of the 68000's exception vectors. The parameter veenum
defines the number of the vector that is to be changed. The parameter vee is
the address of the new vector routine. The function result will be the previous
value of the vector if it was changed. If the vector was not changed then the
function will return a value of -1 .

Setexc is implemented as a macro in <osbind . h> .

The 68000 reserves vectors OxOO through OxFF. Vectors OxlOO through OxlFF
are reserved for GEM DOS. The following are currently implemented :

OxlOO
Ox101
Ox102
Ox103 - Ox107

System timer interrupt
Critical error handler
Process termination vector
Unused but reserved

The vectors above Ox200 are reserved for OEM use .
EXAMPLE

extern death () ;

aet_error_handler ()
{

Setexc (Ox101 , death) ;
}

death()
{

}

puta (" Oopa ! ") ;
Pterm(l) ;

NAME

SETPALETTE 515

Setpalette - Set the contents of the hardware color palette

SYNOPSIS

#inc lude <osbind . h>

Setpalette (newpalette)
int newpalette [16] ;

DES C RIPTION

NOTE

Setpalette sets the color palette to user defined values. The 16 color video
lookup table is loaded with the values from newpalette . The assignment will
occur at the next vertical blanking interrupt.

Set palette is defined as a macro in <osbind . h>

The colors in the palette are described in the color word in terms of the inten­
sities of each of the rgb guns.

Bits
0 - 2

4 - 6
8 - 10

Description
The intensity of blue .
The intensity of green.
The intensity of red.

516 SETPRT

NAME

Setprt - Set/get printer configuration word

SYNOPSIS

#inc lude <osbind . h>

int Setprt (config)
int c onfig ;

DESCRIPTION

Setprt allows the setting and querying of the printer's current configuration. If
the value of the parameter c onfig is negative then the configuration word is
returned as the function's result . If c onfig is a positive value then the printer
will be set to the value of config and the previous configuration word is returned
as the function's result . The bits in c onfig represent information about the
printer as follows:

Bit Meaning if 0 Meaning if 1
0 Dot matrix Daisy wheel
1 Color device Monochrome device
2 Atari printer Epson style printer
3 Draft mode Final mode
4 Parallel port RS232 port
5 Continuous feed Single sheet

6 - 14 Unused
15 Must be zero

Setprt is defined as a macro in <osbind . h>

NAME

SUPER 517

Super - Change 68000 privilege status

SYNOPSIS

#inc lude <osbind . h>

long Super (stac k)
long stack ;

DESCRIPTION

Super allows the user to change or query the 68000's supervisor mode. If the
parameter stac k is - 1 , then a 0 is returned if the processor is in user mode,
and a 1 if it is in supervisor mode.

If the processor is in user mode and stac k is greater than zero, then Super
switches to the supervisor state and sets the SSP (supervisor stack pointer) to
stack.

If the processor is in user mode and stac k is zero, then Super switches to the
supervisor state and sets the SSP to the current USP (user stack pointer) .

If the processor is in the supervisor state, then Super switches to the user state
and uses stac k as the new SSP.

Super returns the old SSP value for the above three conditions.

Super is defined as a macro in <osbind . h>
EXAMPLE

linc lude <osbind . h>

• I

tickc o unt () - returns the number o f 2 0 0 hertz ticks that have
o c c urred sinc e system power-up . Sinc e this information lies in
protec ted •emory it is necessary to move into the 68000 supervisor
mode .

long tickc ount O
{

• I

Put in supervisor mo de . S ave user stack in User_stac k . Get
Hz200 tickc ount from the System global .

l ong Us er_stack = Super(OL) ;
l ong ticks = • (long •) Ox4ba ;

518 SUPER

Restore the processor to user mode .

Super(User_stack) ;

I *
Return the tickc ount

• I
return ticks ;

}

SEE ALS O

Supexec

NAME

Supexec - Execute a function in 68000 supervisor mode.

SYNOPSIS

#inc lude <osbind . h>

long Supexec (func)
void (*func) () ;

DESCRIPTION

SUPEXEC 519

Supexec calls the function pointed to by func with the 68000 supervisor mode
set . The function should not expect any parameters, and should not return a
result .

Supexec is defined as a macro in <osbind . h>
EXAMPLE

linc lude <osbind . h>

extern tickc ount () ;

long thetickc ount ;

1etch_tickcount () - c alls the tickc ount 1unc tion which ne eds to
run in supervisor mo de .

• I
1etch_tickc ount ()
{

}
Supexe c (tickcount) ;

tickc o unt () - store s the c urrent 200 hz tick c ount to the global
variable thetickcount .

• I
tickc o unt O
{

thetickc ount = • (long •) Ox4ba ;
}

SEE ALSO

Super

520 SVERSION

NAME

Sversion - Returns current version number of GEM

SYNOPSIS

#inc lude <osbind . h>

int Sversion()

DESCRIPTION

Sversion returns the current version number of GEM. The low byte contains the
major version number and the high byte contains the minor version number.

Sversion is defined as a macro in <osbind . h>

NAME

TICKCAL 521

Tickcal - Return system timer calibration value to nearest millisecond .

SYNOPSIS

#inc lude <osbind . h>

long Tickc al ()

DESCRIPTION

NOTE

Tickcal tells the user how long a system tick is in milliseconds. The function's
result is the system timer calibration value rounded to the nearest millisecond.

This is not very useful since the number of elapsed milliseconds is passed on
the stack when a system timer exception occurs.

Tickcal is implemented as a macro in <osbind . h> .

�
�

522 TIME FUNCTIONS

NAME

Tgetdate, Tsetdate, Tgettime, Tsettime - Get/set date and time

SYNOPSIS

#inc lude <osbind . h>

int Tgetdate ()

Tsetdate (date)
dateinfo date ;

int Tgettime ()

Tsettime (time)
timeinfo time ;

DESCRIPTION

The time functions are used to manipulate the system's date and time. The
functions are defined as follows:

Tgetdate returns the current date in an int using the following format:

bits 0 - 4
bits 5 - 8
bits 9 - 15

Day in month (1 - 31)
Month in year (1 - 12)
Year since 1980 (0 - 119)

Tsetdate sets the date to date using the above format .

Tgettime returns the current time in an integer using the following format:

bits 0 - 4
bits 5 - 10
bits 1 1 - 15

Current second divided by 2 (0 - 30)
Current minute (0 - 59)
Current hour (0 - 23)

Tsettime sets the time to time using the above format.

These functions are defined as macros in <osbind . h>

EXAMPLE

TIME F UNCTIONS 523

finc lude <osbind . h>

Example of how to ge t information from the Tgettime () func tions .

Note : To set the time j ust assign the ' ' part ' ' fields of the
struc ture and then pas s Settiae () the real datetime . Ex :

time . part . houra � 6 ;
time . part . minutes 34 ;
time . part . aeconda = 1 6 I 2 ;

Tsettime (time . realtime) ;
• I
sho w_date_and_time ()
{

}

timeinfo mytime ;
dateinfo mydate ;

mytime . realtime Tgettime () ;
mydate . realdate = Tgetdate () ;

printf (11\t\t date \n Day : 'Xd \t Month : 'Xd \t Tear : 'Xd\n" ,
mydate . part . day , mydate . part . month , mydate . part . year + 80

) ;

printf (" \t\t time \n Hour : 'Xd \t Minute : 'Xd \t Sec onds : 'Xd\n" ,
mytime . part . hours , mytime . part . minutea , mytime . part . aec onds • 2

) ;

print1 (" \nPres s RETURN to exit . . . \n") ;
Bc onin (2) ;

524 VSYNC

NAME

Vsync - Wait until the next vertical blanking interrupt

SYNO PSIS

#inc lude <osbind . h>

Vsync O

DESCRIPTION

Vsync helps in syncing with the video's vertical retrace. This function will not
return until the next vertical retrace occurs.

Vsync is defined as a macro in <osbind . h>
EXAMPLE

delay () - this func tion is used to delay a specified number of
sec onds . Note that this depends on the vertical retrac e
occurring every 1 /60th of a sec ond .

•I
delay (secs)

{

}

int see s ;

int tse c a ;

whil e (secs- -)
for (tsecs=O ; tsecs <60 ; tsecs++)

Vsync O ;

NAME

XBTIMER 525

Xbtimer - Set timer on 68901 MFP (Multi-Function Peripheral)
SYNOPSIS

#inc lude <osbind . h>

Xbtimer (timer , c ontrol , data , vee)
int timer , c ontrol , data ;
int (*vee) () ;

DESCRIPTION

timer The 68901 timer to set (O=A, 1=B, 2=C, 3=0) .

c ontrol The 8-bit value for the timer control register.

data

vee

The 8-bit value for the timer data register. This is used as the
inital value for the counter.

The address of a new interrupt vector.

The timers are used as follows:

Timer Usage

A Reserved for applications

B Reserved for graphics (HSYNC signal)
C 200hz system timer
D RS232 baud-rate control. The interrupt vector for this timer

may be used for any purpose.

Bit 4 of the control register for timers A and B is used to reset the TAO and
TBO outlines of the 68901 respectively. These lines are not used by the ST.

Timers A and B can be in one of three modes:

Delay
Pulse width
Event count

Timer continuously counts down to 0 and interrupts
Used to measure external signals
Used to count external events

526

NOTE

XBTIMER

Bits 0 - 3 have the following meaning :

Bit 3 Bit 2 Bit 1 Bit 0 Meaning
0 0 0 0 Stop timer
0 0 0 1 Delay mode, divide by 4 prescale
0 0 1 0 Delay mode, divide by 10 prescale
0 0 1 1 Delay mode, divide by 16 prescale
0 1 0 0 Delay mode, divide by 50 prescale
0 1 0 1 Delay mode, di"fide by 64 prescale
0 1 1 0 Delay mode, divide by 100 prescale
0 1 1 1 Delay mode, divide by 200 prescale
1 0 0 0 Event C ount mode
1 0 0 1 Pulse width mode, divide by 4 prescale
1 0 1 0 Pulse width mode, divide by 10 prescale
1 0 1 1 Pulse width mode, divide by 16 prescale
1 1 0 0 Pulse width mode, divide by 50 prescale
1 1 0 1 Pulse width mode, divide by 64 prescale
1 1 1 0 Pulse width mode, divide by 100 prescale
1 1 1 1 Pulse width mode, divide by 200 prescale

Timer registers C and D use the same control register. Bits 0 - 2 are used for
register D and bits 4 - 6 for register C . The meaning of these bits is as follows:

Bit 2 , 6 Bit 1 , 5 Bit 0 , 4 Meaning
0 0 0 Stop timer
0 0 1 Delay mode, divide by 4 prescale
0 1 0 Delay mode, divide by 10 prescale
0 1 1 Delay mode, divide by 16 prescale
1 0 0 Delay mode, divide by 50 prescale
1 0 1 Delay mode, divide by 64 prescale
1 1 0 Delay mode, divide by 100 prescale
1 1 1 Delay mode, divide by 200 prescale

Xbtimer is defined as a macro in <osbind . h>

The timers on the 68901 MFP are controlled by a 2 .4576 Mhz crystal. Using
timer 'A' in the delay mode with a pre-scale set at 200 (i .e . by setting the timer
'A' control register to 7) creates a 12288 Hz counter {2457600 Hz I 200 pre­
scale) . Using a count of 256 (i .e . by loading the timer 'A' data register with 0)
you get an interrupt frequency of 48 Hz (12288 Hz I 256 ticks) .

See the description of Mfpint for details of writing interrupt functions for the
68901 .

EXAMPLE

XBTIMER 527

#inc lude <o sbind . h>
#inc lude <stdio . h>

xbtime r . c

Sample c ode that demonstrates the use of TIME! A on the 68901 MFP
Als o demonstrates how to handle the process terminate interrupt .

The pro gram begins by installing the address of the func tion ' terminate '
into the exc eption vector Ox1 02 (Process terminate exc eption) , s aving its
old pointer . It then starts up Timer A on the 68901 MFP , c onfi gured to
interrupt the func tion ' dispatcher ' at 48Hz . The main loop continuousl y
displays the value o f a c ounter , that the function ' ' ticker ' ' increments .
If CTRL-C is struc k , the ' terminate ' func tion is c alled to handle the
termination of the program . It st ops timer , then restores the original
pro c e s s terminate vector and returns (to the defaul t system Interrupt
Servi c e Routine) .

The timers on the 68901 MFP are c ontrolled by a 2 . 4676 Mhz crystal .
Us ing timer ' A ' in the delay mode with a pre s c al e s e t at 200 (i e . by
s e tting the timer ' A ' c ontrol register to 7) gi ves you a 1 2 2 8 8 Hz c ounter
(246 76001200) . Using a count of 266 (ie . by loading the time r ' A ' data
register with 0) you ge t an interrupt frequenc y of 48 Hz (1 22 881266) . For
other values for the control t data registers s e e the 68901 manual avai l able
for fre e by c alling Motorola .

The timer interrupt is handled by the func tion ' dispatcher ' . This
func tion c alls a routine to increment the long counter , then c l e ars Bit 6
of the I S lA (In Servi c e Register A) , and then re turns from the exc eption
by do ing an RTE .

Note : In the ST the 68901 always operates in the Software End of Interrupt
Mode (i e . bit 3 of the Vector Regis ter Vi is always s e t) . In this mo de the
IS! bit of the ISlA , the IS! bit c orrepsonding to the Timer A interrupt is
bit 6 , i s automatically set when an interrupt o c curs and the processor
reque sts the interrupt vector . As long as the bit is set , that interrupt
and any other interrupts of lower priority c annot occur . Onc e the bit i s
c l e are d the s ame interrupt or an y lower priority interrupts c an onc e
again o c c ur . This is why it is important to c l e ar bit 6 of the I S lA before
performing the RTE . The addre ss of the ISlA register i s OxfffAOF

•I

#define MyApp 0 I• my appli c ation •I
#define Control 7 I• divide by 200 pres c al e •I
#define Data 0 I• Countdown from • I

I • 1 byte , 1 ' 2 , . . . 2 6 4 , 2 6 6 ' 0 2 6 6 •I
#define Off 0

528 XBTIMER

#define MAXITER 1 00 I *
#define MAXTICKS 1 0 I•

extern dispatcher () ;
extern set_timer O ;
extern unset_ timer () ;

Iterations •I
Maximum timer c ount- down events •I

I• labels in in- line as sembly must be declared.

long ticks = MAXTICKS ; I• local tick c ounter . • I
long oldvec tor ; I• s torage for old terminate vec tor . • I

This routine is c alled b y the interrupt handler to increment the
local tick c ounter .

• I
ticker ()
{

ticks + + ;
}

main()
{

int count = 0 ;

• I

puts (" Sample c o de demonstrating the use o f TIMER .A. o n the 68901 NFP") ;
printf (" Iterations U\n" , MAXITER) ;
printf (" Timer events per iteration : Xd\n\n" , N.A.ITICKS) ;

set_ timer () ;
I•

I• turn on timer • I

Bet the terminate ve c tor so that the user c an ' t leave without
turning of the timer first .

set_terminate () ;

Keep on ticking . . .
• I
while (c ount < N.A.IITER) {

if (ticks == N.A.XTICKS) {
printf (" c ount == Xd\r" , c ount++) ;
fflush(stdout) ;
ticks = OL ;
}

}

una et_terminate () ;
unse t_timer () ; I• turn off timer • I

}

puts (" \nPress return . . . ") ;
getchar O ;

My terminate appli c ation function .
• I
terminate ()
{

}

• I

Cle ar 68901 timer interrupt
• I
unset_ timer () ;

Restore the old proc ess terminate vector
•I
Setexc (Ox01 02 , oldvec tor) ;

Get the old terminate appli c ation vector and s etup
the l o c al terminate function .

set_ terminate 0
{

}

long us er_stack = Super(OL) ;

oldve c tor = Setexc (Ox01 02 , - 1 L) ;
Setexc (Ox01 02 , terminate) ;

Super (user_stack) ;

unset_ terminate ()
{

Restore the old proc ess terminate vector
• I
Supexe c (Setexc (Ox0102 , oldvec tor)) ;

}

This is the interrupt dispatcher routine .
• I
asm {

XBTIMER 529

530 XBTIMER

di spatcher :

}

j sr ticker I * our func tion

bclr . b 16 , 0xfffa0f I * Tell MFP the interrupt has been s ervi c e d * I
rte I* return from exception * I

This func tion is callled by the mai4() function to set up the
appli c ation terminate func tion and the 68901 function timer .

set_ timer ()
{

register char * globals ;

Tell the timer chip to c all the dispatcher routine for the interrupt .

Xbtime r (MyApp , Control , Data, dispatcher) ;
}

Turn off the timer and reset the terminate vector .
* I
unset_ timer ()
{

}

SEE ALS O

Turn off the application timer .
*I
Xbtimer(MyApp , Off , Off , NULL) ;

Mfpinit , Rsconf

C hapt er 1 9

Line- A Graphics Kernal

Introduction

The Atari ST's ROM contains some low-level graphic drawing routines, called
the line-A routines, which are named after their calling mechanism (the 68000
line-A emulation) . The line-A routines provide a hardware independent inter­
face for all graphic operations. The Atari ST's VDI (Virtual Device Interface)
calls line-A routines to perform its actual drawing . However, due to the over­
head associated with the VDI calling mechanism, drawing operations can be
performed more quickly by calling line-A routines directly, rather than calling
VDI routines which in turn call line-A routines.

1 9 . 1 Line-A Graphics Routines

In this section an explanation of the graphics sub-system of the Atari is dis­
cussed. It is suggested that the programmer have a solid understanding of GEM
and VDI before delving into this section .

As mentioned previously, the low-level graphics routines make use of a spe­
cial type of instruction on the 68000 called line-A emulation. The 68000 pro­
cessor has no instructions whose upper four bits are Oxa . These unimplemented
instructions have been defined by Atari to call graphic drawing routines.

The following line-A opcodes are defined on the ST:

1: ? 1

532

1 9 . 2

OxAOOO
OxAOOl
OxA002
OxA003
OxA004
OxA005
OxA006
OxA007
OxA008
OxA009
OxAOOA
OxAOOB
OxAOOC
OxAOOD
OxAOOE
OxAOOF

-

-

CHAPTER 19. LINE-A GRAPHICS KERNAL

Initialize the graphics system
Plot a point
Get a value for a point
Draw a line
Draw a horizontal line
Fill a rectangle
Fill a polygon
Bit Block Transfer
Text Block Transfer
Show Mouse Cursor
Hide Mouse Cursor
Change Mouse Form
Draw Sprite
Undraw Sprite
Copy Memory Form Definition Block (MFDB)
Flood Fill

Graphics Modes

When the Atari ST is initially turned on, a 32000 byte block of RAM is defined
near the top of memory as the screen RAM. Screen RAM is the memory which
is scanned by special video hardware to produce the screen display. Although
this block of memory is contiguous, it is logically arranged into rows of bytes,
each representing a scan line (row) on the display. The dots, or pixels (picture
elements) , on the screen reflect bit patterns in these rows of bytes.

1 9 .2.1 High-resolution Mode

The high-resolution mode displays 640 pixels on each of 400 scan lines. Each
pixel displayed on the screen represents a single bit , either on or off in a row,
with each row using 80 bytes. If a bit is zero (0) , that pixel is displayed as
white , if it is one (1) , it is displayed as black. The top-left pixel on the screen
is the upper bit of the first byte of screen RAM.

1 9 .2.2 Medium-resolution Mode

The medium-resolution mode displays 640 pixels on each of 200 scan lines. This
mode divides screen RAM into two equally sized planes, displaying only one-half
the number of scan lines of high resolution. The planes are actually alternate
words (16 bit) in memory, such that even words comprise the top plane and

1 9. 3 LINE-A PORT

odd words comprise the bottom plane. The video hardware overlays the two
planes and uses the binary number formed by corresponding bits of the top and
bottom planes as an index into a color table , which determines the actual pixel
color displayed. Note that two planes allow indices to range from 0 - 3, yielding
four possible colors.

1 9 . 2 . 3 Low-resolution Mode

The low-resolution mode displays 320 pixels on each of 200 scan lines. This
mode divides screen RAM into four equally sized planes, displaying one-half
the number of scan lines and one-half the number of pixels per scan line of
high-resolution. As with medium-resolution mode, the planes are alternate
words (16 bit) in memory, such that every fourth word from the base of screen
RAM lies in a plane. The video hardware overlays the four planes and uses the
binary number formed by corresponding bits of these planes as an index into a
color table, which determines the actual pixel color displayed. Note that four
planes allow indices to range from 0 - 15 , yeilding sixteen possible colors.

19 .3 Line-A Port

The line-A routines operate from a set of variables contained in the lineaport
Data Structure. The table is initialized through the call to a..init . The port
data structure is defined as follows:

typedef struc t {
I •

Drawing Environment

int vpl ane s ;
int vwrap ;
int • ontrl ;
int • in tin ;
int *pt&in ;
int • in tout ;
int *ptsout ;
int planeO ;
int plane t ;
int plane2 ;
int plane 3 ;
int minusone ;
int linemask ;
int wri temo de ;
int xl , yl , x2 , y2 ;
int *patptr ;

I • Number of video planes • I
I• Number of bytes per video scan •I
I• pointer to VDI contrl array • I
I• pointer to VDI intin array •I
I • pointer to VDI ptsin array •I
I• pointer to VDI intout array •I
I• pointer to VDI pts out array •I
I• c olor bit mask for plane 0 •I
I• c olor bit mask for plane 1 •I
I• c olor bit mask for plane 2 • I
I• color bit mask f o r plane 3 •I
I• - 1 used in XOi mode •I
I • VDI line style • I
I• VDI write mode • I
I• drawing rectangle • I
I • pointer to current VDI f i l l patter •I

533

534 CHAPTER 19. LINE-A GRAPHICS KERNAL

int
int
int
int

pat mask ;
planefill ;
clipflag ;
xm.inclip ,

I• size of fill pattern mask • I
I • number of plane s to f i l l (0 = 1
I• clipping flag (0 = no c lipping)

yminc lip ; I• c lipping rec tangl e • I
int xmaxclip , ymaxc lip ;

Font Information
•I
textbl ock thetext ; I • Text Drawing Block

Miscellaneous Drawing Variable s

plane) • I
• I

int copymode ; I• copy mode for ras ter operations •I
int (• seedabort) () ;

} lineaport ;
I• pointer to seed fill abort routine • I

1 9 . 4 Line-A Data Structures

The data structure below is used with the a_bitblit function for describing the
bit block to move .

typedef struc t {
int x ;
int y ;
int •base ;
int offset ;
int width ;
int plane_offset ;

} bitbl o c k ;

typedef
int
int
int
int
int
char

struc t {
width ;
hei ght ;
planec ount ;
ForeColor ;
BackColor ;
table [4] ;

I• width of bit block •I
I• height of bit block •I
I• number of planes •I

Bit blo cks to Blit
•I
bitblock sourc e ;
bitblock destin ;

Pattern Information

1 9. 4 LINE-A DATA STRUCTURES

• I
int *patbuf ;
int pat_offset ;
int pat_wi dth ;
int pat_plane_offs e t ;
int pat_mask ;

Temp Work spac e

int work [12] ;
} blitblo c k ;

The data structure below is used with the a_drawsprite function for describ­
ing the image of the sprite. Note that this data structure is also used to define
the mouse form in the function a_transformmouse .

type de f struc t {
int x ; I • x offset of hot spot • I
int y ; I • y offset of hot spot •I
int format ; I • 0 = Copy , 1 = lOB. •I
int forecolor ; I • background c o l or •I
int bac kc o lor ; I • foreground c o l or • I
int image [32] ; I • bi t- image of sprite • I

} sprite ;

Save area for area behind Sprite . Needs to be
4 * size of (Sprite) so that all four c olor
planes c an be save d .

typedef sprite spri teBack [4] ;

The data structure below is used with the a_textblit function for describing
the block of text that is moved.

typede f s truc t {
int xdda ; I • drawing work variabl e • I
int ddainc ; I • drawing work variable • I
int sc aledir ; I • drawing work variable •I
int mono ; I • monospac ed font flag • I
int fontx ; I • charac ter (x , y) in font def • I
int 'f onty ;
int scrnx ; I • charc ter (x, y) on screen •I
int scrny ;
int charheight ; I • width of charac ter • I
int charwidth ; I • he ight of charac ter •I
char •fontdata; I • pointer to font bi t-image data * I
int 'fontwi dth ; I • wi dth o'f font 'form * I

5 3 5

536

IDl

int
int
int
int
int
int
int
int
int
int

int
int

} text bloc k ;

fontstyle ;
li temask ;
ske wmask;
bol dmask ;
fsuper ;
fsub ;
scaleflag ;
textdir ;
forecolor ;

• texte1x ;

scalebuf ;
backc olor

CHAPTER 19. LINE-A GRAPHICS KERNAL

I• font style •I
I• mask for dehilited text •I
I• mask for italics text • I
I• mask f o r bold text • I
I• offset for supersc ript text • I
I• offset for subscript text • I
I• 0 = n o scaling • I
I• text orientation flag • I
I• foreground text c olor •I
I• pointer to start of text , spe c i al • I
I • effects buffer •I
I • off set for scale buffer in textefx •I
I• bac kground text c olor •I

The next data structure is a definition of the Atari Font header. This header
gives the Atari drawing routines information about a font .

type def struc t _FontForm {
int fonti d ; I• Font I dentifier
int fontsize ; I• Font Size in points
char fo ntname [32] ; I• Font name

int lowasc ii ; I• lowest displayable ASCII char
int highascii ; I• hi ghest displ ayable ASCII c har

I •
Charac ter drawing offsets (see vst_alignment ())

• I
int top ; I• offset from baseline to top
int asc ent ; I• offset froa baseline to asc ent
int hal f ; I• offset from baseline to half
int des c ent ; I• offset from basel ine to desc ent
int bottom; I• offset from baseline to bottom

int largechar ; I• widest charac ter in font
int largeboxchar ; I • widest charac ter cell in font

int kern ; I• kerning offset
int rightoffset ; I• right offset for italica

I•
Text Effects masks

• I
int bol dmaak ;
int underlinemask ;
int litemask ;
int ske wmask;

struc t {

• I
•I

• I
• I
• I
•I
• I

• I
• I

•I
•I

1 9.4 LINE-A DATA STR UCTURES

unsigned system
unaigned horiz
unsigned swapbytea
unsigned monospac e

} flags ;

int •horztable ;
int • chartable ;
int •fonttable ;

int formddth ;
int formheight ;

I•
I•
I •

1 ; I •
1 ; I •
1 ; I•
1 ; I•

pointer
pointer
pointer

is it a system font? •I
horiz offset table? •I
integers are revers ed? • I
is font monospac e? •I

to horizontal offset table
to charac ter offse t table
to font bit-image data •I

•I
•I

struc t _FontForm •nextfont ; I • pointer to next font def •I
} fontf orm ;

Example

linc lude <linea . h>
linc lude <o sbind . h>

tdefine CONSOLE 2

Ide fine WHITE 0
Ide fine B.ED 1
Ide fine GREEN 2
fdefine BLACK 3

int top 1 6 ;
int left "' 1 0 ;
int bottom = 1 96 ;
int right 630 ;

int x , y ;
int c o l or ;

main()
{

lineaport •myport ;

myport = a_ini t () ;

myport -> planeO BLACK ;
myport - > plane 1 • BLACK ;

a_hidemous e () ;

drawbox() :

537

538 CHAPTER 1 9. LINE-A GRAPHICS KERNAL

bounc e () ;

a_showmouse () ;
}

bounc e ()
{

}

int mx , my , ax , sy ;
sprite thesprite ;
spriteback thebac k ;

mx = l e f t + 1 0 ;
my = top + 1 0 ;
B X = 1 ;
sy = 1 ;

makesprite (.thesprite) ;

while (! (Bc onstat (CONSOLE))) {
mx += ax ;

}

my += sy ;

if ((mx < left) I (mx > right - 1 6))
BX • = - 1 ;

if ((my < top+2) I (my > bottom- 1 6))
sy • = - 1 ;

a_putpixe l (mx , my , lED) ;
a_drawsprite (mx, my , •thesprite , theback) ;
Vsync () ;
a_undrawsprite (theback) ;

Bc onin (CONSOLE) ;

drawbox()
{

}

a_line (left ,
a_line (right ,
a_line (right ,
a_line (left ,

top , right ,
top , right ,
bottom, left ,
bottom, left ,

makesprite (thesprite)
sprite • thesprite ;

{
int x ;

thesprite -> x = 0 ;

top) ;
bottom) ;
bottom) ;
top) ;

1 9. 4 LINE-A DATA STR UCTURES

}

the sprite - > y = 0 ;
thesprite - > format � 0 ;
thesprite - > fore c o lor = WHITE ;
thesprite -> backc olor = BLACK ;

for (x=O ; x<32 ; x+=2) {

}

stuffbi ts (tthesprite -> image [x] , " 1 010101010101010") :
stuffbits (tthesprite -> image [x+ 1] , " 010101 0101010101 ") :

539

540 AJ3ITBLIT

NAME

a_bitblit - move a rectangular block of bits.

SYNO PSIS

a_bitblit (thebloc k)
blitbloc k *thebloc k ;

DES CRIPTION

a_bitblit copies blocks of screen bits from a source rectangle to a destination
rectangle . The description of the block to move is communicated by the param­
eter the bloc k. The block is a pointer to the data structure bli tbloc k which
is defined in section 19.4.

SEE ALS O

vro_cpyfm

NAME

A_COPYRASTER 541

a_copyraster - Copy Raster Form

SYNO PSIS

#inc lude <gemdefs . h>

a_c opyraster (source , destin)
MFDB *sourc e , *destin ;

DES C RIPTION

NOTE

a_copyraster performs a raster block move. The MFDB data structure is defined
in the VDI Introduction (pg . 307) .

The blocks copied must be defined on word boundaries and it's width must be
defined in words.

SEE ALS O

vro_cpyfm

IDI

542 A.DRAWSPRITE

NAME

a_drawsprite - Draw a grahics entity on the screen

SYNO PSIS

a_drawsprite (x ,
int
sprite
sprite back

y , thesprite , thebackgnd)
X , y ;

*thesprite ;
*thebackgnd ;

DES C RIPTION

NOTE

a_drawsprite copies the background of the screen into the area of memory de­
fined by the parameter thebackgnd. The graphics entity thespri te is then
drawn on the screen at the location (x, y) .

The sprite data structure is described in section 19.4.

SEE ALS O

a_undrawsprite

NAME

A_FILLPOLY 543

a_fillpoly - Draw a filled polygon

SYNO PSIS

a_fillpoly (vert , points , numpts)
int vert ;
int *points ;
int numpts ;

DESC RIPTION

NOTE

a_fillpoly fills a scan line specified by the parameter vert . The scan line is
bounded by the polygon defined by the parameters points and numpts . The
horizontal line is drawn with the current fill attributes . The following fields of
the lineaport data structure are used:

x1 , x2 , y1

planeO, plane 1 , plane2, plane3

writemode

patptr

patmask

plane :fill

c lip:flag

xminc lip, yminc lip, xmaxclip, ymaxc lip

The starting point of the polygon must also be defined as the ending point.

EXAMPLE

tinclude <oebind . h>
tinclude <linea. h>

int pts [4] [2] = {
320 , 06 0 ,
120 , 1 6 0 ,
&20 , 1 & 0 ,
320 , 0& 0

} ;

main()
{

lineaport • theport ;

544 A_FILLPOLY

}

SEE ALS O

int 1il lpat [4] , y ;

a tuUbita (Hillpat [O] , 11 1 1 001 1 001 1 001 1 00 ") ;
a tu11bita (Hillpat [1] , 1101 1 001 1 001 1 001 1 0 ") ;
a tu11bita (Hillpat [2] , 11 001 1001 1 001 1 001 1 ") ;
a tu11bita (H illpat [3] , 11 1 001 1 001 1 001 1 001 11) ;

theport = a_init () ;

the port -> planeO = 1 ;
the port -> planel = 0 ;
theport -> plane2 = 0 ;
theport -> plane3 = 0 ;

theport -> writemode = 2 ;
theport -> patptr = 1illpat ;
theport -> planet ill = 0 ;
the port -> clipUag = 0 ;

1or (y=60 ; y< 1 6 0 ; y+ +)
a_tillpoly (y , pta , 3) ;

Cc onin O ;

v _fillarea

NAME

aJillrect - Fill a rectangle

SYNOPSIS

a_fillrect (x1 , y1 , x2 , y2)
int x1 , y1 ;
int x2 , y2 ;

DES CRIPTIO N

A_FILLRECT 545

aJillrect fills the rectangle defined by (xl , yl) and (x2 , y2) with the current fill
area attributes. The following fields of the linea port data structure are used:

NOTE

x1 , y1 , x2, y2

plane0, plane 1 , plane2 , plane3

writemode

patptr

patmask

plane fill

c lipflag

xminc lip, yminc lip, xmaxc lip, ymaxc lip

The rectangle is filled from the top left corner to the bottom right hand corner.

SEE ALS O

vrJecB.

546 A_GETPIXEL

NAME

a...getpixel - get pixel value

SYNO PSIS

int a_getpixel (x , y)
int x, y ;

DES C RIPTION

a....getpixel returns the color value of the pixel at the position (x, y) .
NOTE

The coordinates of the point are placed in the ptsin [] array.

SEE ALS O

v....get_pixel

NAME

a..hidemouse - hide the mouse cursor.

SYNOPSIS

a_hidemouse ()

DESCRIPTION

AJIIDEMO USE 547

The a_hidemouse function hides the mouse cursor. Note that the mouse cursor
hide level is nested.

SEE ALSO

v_hide_c, v...show_c, graf_mouse

548 AJILINE

NAME

a_hline - draw a horizontal line.

SYNO PSIS

a_hline (xl , x2 , y)
int xl , x2 , y ;

DESCRIPTIO N

NOTE

a..hline draws a horizontal line from the pixel position xl to x2 . The line is
drawn on the scan line defined by the parameter y. The line drawing function
uses the following fields of the lineaport data structure:

xl , yl , x2, y2

planeO, plane l , plane2 , plane3

line mask

writemode

minusone (used for XOR mode only)

The line is always drawn from left to right and the line style mask is also applied
from left to right. The line style mask is word aligned pattern for the horizontal
lines, (i .e. any bit of the mask may be used at the left-most endpoint.)

SEE ALS O

v_pline

NAME

aJnit - Initialize the Line-A drawing routines

SYNO PSIS

#inc lude <linea . h>

lineaport •a_init ()

DES C RIPTION

AJNIT 549

The ajnit function initializes the drawing variables that are used by the Line-A
drawing routines. The result of the function is a pointer to the linea port data
structure.

SEE ALS O

v_opnvwk

550 A_LINE

NAME

aJine - Draw a line

SYNO PSIS

a_line (xl , yl , x2 , y2)
int xl , yl ;
int x2 , y2 ;

DESCRIPTION

NOTE

aJine draws a line that connects the two points (xl , yl) and (x2, y2) . The line
drawing function uses the following fields of the lineaport data structure:

x1 , y1 , x2, y2

planeO, plane 1 , plane2 , plane3

linemask

writemode

minusone (used for XOR mode only)

The line is always drawn from left to right . The line style mask is also applied
from left to right. The line style mask is a word aligned pattern.

SEE ALS O

a..hline , v _pline

NAME

A_pUTPIXEL 551

a_putpixel - Plot a pixel point

SYNO PSIS

int a_putpixel (x , y , color)
int x, y ;
int color ;

DES C RIPTIO N

NOTE

a_putpixel plots a pixel at the screen location (x, y) . The point is set to the
color index defined by the parameter color The return value of the function
will be the value of the pixel at the point.

The coordinates for the point are placed in the ptsin [] array. The result of
the function is stored in intin [O] .

SEE ALS O

v_pline

552 A...SHO WMO USE

NAME

a...showmouse - show the mouse cursor.

SYNO PSIS

a_showmouse ()

DES C RIPTION

NOTE

a...showmouse displays the mouse cursor.

The level of display for the mouse is nested . This means that the number of
calls to a...showmouse() should be balanced with the number of a_hidemouse()
calls.

SEE ALS O

grafJIIouse , v_hide_c, v...show_c

NAME

a_textblit - Copies a charcter using special effects.

A_TEXTBLIT 553

SYNO PSIS

a_textblit (charblock)
textbloc k *charblock ;

DES C RIPTION

a_textblit performs a copy block operation of a character to the screen . The
graphics text character copied is defined by the parameter charblock. The
following fields of the linea port data structure are used:

SEE ALS O

v...gtext

writemode

text:fg, textbg

:fontdata, fontwidth, fontstyle

srcx, srcy

destx, desty

charheight , charwidth

skewmask, boldmask

upoffset, downoffset

scaleflag, sc ale

xdda

txtdirect

mono

textefx, scalebuf

554 A_TRANSFORMMOUSE

NAME

a_transformmouse - change the mouse form

SYNOPSIS

a_transformmouse (theform)
sprite *theform ;

DES C RIPTION

The a_transformmouse function changes the current form of the mouse cursor.
The parameter theform is a pointer to a mouse form data structure described
in section 19 .4.

EXAMPLE

tline lude 11 line a . h11
tline lude <oabind . h>

tldefine CONSOLE 2

int top = 16 ;
int left = 1 0 ;
int bottom = 196 ;
int right = 630 ;

int x , y ;
int c o l or ;

main()
{

}

lineaport •myport ;
IIOUBe themoue ;

myport = a_init () ;

a_hidemouae () ;

drawboxO ;

makemouae (tthemouae) ;

a_tranaformmouae (kthemoua e) ;

a_ahowmouae () ;

whil e (! (Bcona tat (CONSDLE)))

A_TRANSFORMMOUSE 5 5 5

drawboxO
{

a_line (left , top , right , top) ;
a_line (right , top , right , botto m) ;
a_line (right , bottom, left , bottom) ;
a_line (left , bottom, left , top) ;

}

makemouae (theapri te)

{

}

SEE ALS O

sprite • thesprite ;

int x ;

theaprite - > X = 1 ;
theaprite - > y = 1 ;
theaprite -> format - 1 ;
theaprite -> forecolor = 2 ;
theaprite -> backc o lor = 3 ;

a tuffbita (lrtheaprite - > image [O] , 11 000000000000000011) ;
for (x=1 ; x< 1 6 ; x++)

a tuffbita (lrtheaprite - > image [x] , " 01 1 1 1 1 1 1 1 1 1 1 1 1 1 011) ;
a tuffbita (lrthe aprite -> image [1 6] , " 000000000000000011) ;

a tuffbita (lrtheaprite - > image [1 6] , 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11) ;
for (x= 1 7 ; x<32 ; x++)

a tuffbit a (lrtheaprite -> i-ge [x] , 11 1 000000000000001 11) ;
a tuffbita (lrtheaprite - > image [32] , " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11) ;

grafJDouse

556 A_UNDRAWSPRITE

NAME

a_undrawsprite - restores screen behind sprite

SYNOPSIS

a_undrawsprite (thebackgnd)
spriteback •thebackgnd ;

DES C RIPTIO N

a_undrawsprite restores the screen to the contents pointed to by the parameter
thebackgnd. The buffer thebackgnd is filled by the a_drawsprite function.

SEE ALS O

a_drawsprite

Chapter 20

Utility Routines

Introduction

Though not a part of the Atari ST ROM, the routines described in this chapter
can be useful when writting a GEM application. Note that structure passing
may be used for some routines which require point or rectangle coordinates.
For example:

GRECT rect i , rect2 ;

rec t_equal (rect l . g_x , rectl . g_y , rect l . g_w , rect l . g_h ,
rec t2 . q_x , rect2 . g_y , rec t2 . q_w , rect2 . g_h) ;

. . . is equivalent (due to structure passing) to:

GRECT rect l , rect2 ;

rec t_equal (rect l , rec t2) ;

Coordinate Functions
pt..set set a point rect_equal are rects equal

ptJnrect is point in rect recLoffset offset a rect

pt..sub subtract two points rect..set set a rect

pt..2 rect two points to rect rect_empty is a rect empty

pt_equal are p oints equal rectJnset inset a rect

pt..add add two points rect_union union two rects

rec tJn tersect intersect two rectangles rect..set set a rect

557

558

changeJtem

change..aux

min

max

CHAPTER 20.

Object Tree Functions
change and redraw obj ects clear _tree

change and redraw objects
with given clipping

Miscelaneous Functions
return min of two integers

I
stuffbits

return max of two integers stuffhex

UTILITY RO UTINES

clear and redraw obj ects

value from binary string

value from hex string

NAME

CHANG E..A UX 559

change...a.ux, changejtem, clear _tree - set or clear object trees

SYNO PSIS

ehange_aux(tree , item , mask , value , ex , e y , e w , eh)
OBJECT *tree ;
int item , mask , value , ex , e y , ew , eh ;

ehange�item(tree , item , mask , value)
OBJECT *tree ;
int item , mask , value ;

e lear_tree (tree , ex , e y , e w , eh)
OBJECT *tree ;
int ex , e y , e w , e h ;

DESCRIPTION

These routines recursively traverse object trees, beginning with item, and
change the ob_state field of each OBJECT visited. The new value assigned to
each ob_state field is given in value . The mask parameter specifies which bits
of the source are to be preserved (set bits in the mask correspond to preserved
bits) . The objects are redrawn to reflect the new ob_state . The ob..state of
an object determines how an object is displayed (i.e. NORMAL, SELECTED,
CROSSED, etc.) . See the Object Manager, section 16.8 , for more information
on object states.

change...a.ux change objects state with specified clipping . The ex, e y, e w, eh
parameters determine the clipping rectangle used when the objects are
redrawn.

change.item change objects state with clipping restricted to the size of the item
being redrawn.

clear_tree set all object states to NORMAL. The ex, e y, e w, eh parameters deter­
mine the clipping rectangle used when the objects are redrawn.

560 MAX AND MIN

NAME

max, min - return the maximum or minimum of two integers

SYNO PSIS

int max(a , b)
int a , b ;

int min(a , b)
int a , b ;

DES C RIPTION

Returns the maximum or minimum of two integers

NAME

pt...2rect - convert two points into a rectangle.

PT....2RECT 561

SYNOPSIS

pt_2rect (x1 , yl , x2 , y2 , rect)
int xl , yl , x2 , y2 ;
GRECT *rec t ;

DESC RIPTION

The two points are converted into rectangle coordinates. Point (xl , yl) is the
top left of the rectangle and (x2 , y2) is the bottom right . The result is placed
in rect .

Alternate method:

pt_2rect (point1 , point2 , rect)
GPOINT point! , point2 ;
GRECT *rec t ;

562 PT_ADD

NAME

pt_add - add two points

SYNOPSIS

pt_add(x , y , point)
int x , y ;
GPOINT *point ;

DES C RIPTION

Corresponding coordinates of (x , y) :1.re added to and assigned point .

Alternate method:

pt_add(point1 , point2)
GPOINT point1 ;
GPOINT *point2 ;

NAME

pt_equal - are two points equal

SYNO PSIS

int pt_equal (xl , yl , x2 , y2)
int xl , yl , x2 , y2 ;

DES C RIPTION

PT_EQUAL 563

Returns non-zero if corresponding point coordinates are both equal, else returns
zero. Points are given by (xl , yl) and (x2 , y2) .

Alternate method:

int pt_equal (pointl , point2)
GPOINT pointl , point2 ;

564 PT JNRECT

NAME

ptjnrect - is a point in a rectangle

SYNO PSIS

int pt_inrect (px , py , rx , ry , rw , rh)
int px , py , rx , ry , rw , rh ;

DES C RIPTION

Returns non-zero if the point given by px and py lies inside the rectangle given
by rx, ry, rw, rh. returns zero.

Alternate method:

int pt_inrect (point , rect)
GPOINT point ;
GRECT rec t ;

NAME

pt..set - set a point

SYNO PSIS

int pt_set (point , x , y)
GPOINT *point ;
int x , y ;

DES C RIPTION

The coordinates (x , y) are copied into the point .

Alternate method:

int pt_set (dest_pt , src _pt)
GPOINT *dest_pt ;
GPOINT src _pt ;

PT...SET 565

566 PT...SUB

NAME

pt....sub - subtract two points

SYNOPSIS

pt_sub (x , y , point)
int x , y ;
GPOINT *rec t ;

DES C RIPTION

Corresponding coordinates of (x , y) are subtracted from and assigned point .

Alternate method:

pt_sub(point l , point2)
GPOINT pointl ;
GPOINT *point2 ;

NAME

rect_empty - is a rectangle empty

SYNO PSIS

int rect_empty (x , y , w , h)
int X, y , W , h

DES CRIPTION

RECT _EMPTY 567

Returns non-zero if either the width or the height is less than or equal to zero.

Alternate method:

int rect_empty (rect)
GRECT rect ;

568 RECT_EQ UAL

NAME

rect_equal - are two rectangles equal

SYNOPSIS

int rec t_equal (x1 , y1 , w1 , h1 , x2 , y2 , w2 , h2)
int x1 , y1 , w1 , h1 , x2 , y2 , w2 , h2 ;

DES C RIPTION

Returns non-zero if corresponding coordinates are all equal, else returns zero.

Alternate method:

int rec t_equal (rect 1 , rec t2)
GRECT rec t 1 , rec t2 ;

NAME

RECT JNSET 569

rectjnset - change the size of a rectangle

SYNOPSIS

int rec t_inset (rec t , delta_x , delta_y)
GRECT *rec t ;
int delta_x , delta_y ;

DESCRIPTION

The rectangle given in rec t is made smaller or larger by delta...x and delta_y.
Positive delta values make the rectangle smaller and negative values make the
rectangle larger.

570 RECTJNTERSECT

NAME

rectjntersect - produce the intersection of two rectangles

SYNOPSIS

rec t_interse ct (xl , yl , wl , hl , x2 , y2 , w2 , h2 , rec t)
int xl , yl , wl , hl , x2 , y2 , w2 , h2 ;
GRECT *rec t ;

DESCRIPTION

The intersection of the two rectangles given by xl , yl , wl , hl , and x2 , y2 , w2 ,
h2 is placed in the rectangle given by rect . The function returns non-zero if
the two rectangles actually intersect, else it returns zero.

Alternate method:

rec t_intersec t (rec tl , rec t2 , rec t3)
GRECT rec t l , rec t2 ;
GRECT *rec t3 ;

NAME

rect_offset - offset the x and y of a rectangle

SYNOPSIS

rec t_offset (rec t , delta_x , delta_y)
GRECT *rec t ;
int delta_x , delta_y ;

DESCRIPTION

RECT_OFFSET 571

The x and y coordinates of the rectangle given in rec t are incremented by
delta__x and delta_y, respectively.

572 RECT...SET

NAME

rect..set - set a rectangle

SYNOPSIS

rec t_set (rec t , x , y , w , h)
GRECT *rec t ;
int x , y , w , h ;

DESCRIPTION

The fields of the rectangle given in rec t are set to x, y, w, h.

Alternate method:

rec t_set (dest_rec t , src _rect)
GRECT *dest_rect ;
GRECT src _rec t ;

NAME

RECT_UNION 573

rect_union - produce the union of two rectangles

SYNO PSIS

rect_union(xl , yl , wl , hl , x2 , y2 , w2 , h2 , rec t)
int xl , yl , wl , hl , x2 , y2 , w2 , h2 ;
GRECT *rec t ;

DESC RIPTIO N

The union of the two rectangles given by xl , yl , wl , hl , and x2 , y2 , w2 , h2 is
placed in the rectangle given by rect .

Alternate method:

rec t_union(rect l , rec t2 , rect3)
GRECT rect l , rec t2 ;
GRECT *rec t3 ;

57 4 STUFFBITS

NAME

stuffbits - fill a data structure from a string of binary digits

SYNO PSIS

stuffbits (ptr , bits)
char *ptr , *bits ;

DES C RIPTIO N

The character string in bits is a string of ones and zeros. The string is trans­
lated into bits which are copied into the destination ptr. Each bit in the string
is stuffed into the destination starting from the highest bit of the destination.
Any character of the string which is not a zero or one is ignored , leaving the
corresponding bit of the destination unaffected .

EXAMPLE

char de s = Ox01 ;

des wil l be Ox66 after this . . .
* I
stuffbits (lrdes , 11 0101010 ") ;

NAME

STUFFHEX 575

stuffhex - fill a data structure from a string of hex digits

SYNOPSIS

stuffhex(ptr , hex)
char *ptr , *hex ;

DES C RIPTION

The character string in hex is a string of hex digits (0 - 9, A - F) . The string is
translated into bits which are copied into the destination ptr. Each hex digit
in the string is stuffed into the destination starting from the highest four bits of
the destination. Any character of the string which is not a hex digit is ignored ,
leaving the corresponding four bits of the destination unaffected .

EXAMPLE

long de s = OxOOOfOOOO ;

des wil l be Oxffffffff after this . . .

stuffhex (lde s , "fff ffff") ;

App endix A

File Forn1ats

A . l L aser Object File Format

A.ou t is the name of the format of object files produced by the C compiler .
This object file format is same as that used by UNIX systems. The file has
five sections: a header , the program TEXT, the program DATA, relocation
information, a symbol table , and a string table (in that order) . The TEXT
segment contains the actual machine code for the program, while the DATA
segment contains initialized variables. A segment for uninitialized variables,
called the BSS segment, is set up at by the loader when the program is run.

Formats using the C structure definitions are:

I* Header prepended to each obj ect file .
*I
typedef struc t {

long a_magic ; I* magic number Ox0107 *I
long a_ text ; I* size of text segment *I
long a_data ; I* size of initialized data *I
long a_bss ; I* size of uninitialized data *I
long a_syms ; I* size of symbol table *I
long a_entry ; I* entry point *I
long a_trsize ; I* size of text re loc ation *I
long a_drsize ; I* size of data reloc ation *I
} exec ;

I* Format of a reloc ation datum .

577

..

578 APPENDIX A. FILE FORMATS

*I
typedef struc t {

long r_address ; I* address which i s reloc ated *I
long r_info ; I* r_symbolnum , r_pc re l , *I

I* r_length , r_extern . * I
} reloc ation_info ;

I* Mac ros to ac cess the r_info field
*I
#define
#define
#define
#define

r_symbolnum (x)
r_pcre l (x)
r_length(x)
r_extern(x)

((x>>8) & OxffffffL)
((x»7) & Ox1L)
((x»5) & Ox3L)
((x»4) & Ox1L)

If r_extern is zero, then r...symbolnum is actually the N_TYPE (see below)
for the relocation rather than an index into the symbol table.

I* Format of a symbol table entry .
*I
typedef struct {

char *n_name ; I* string table index
char n_type ; I* type f lag , i . e . N_TEXT
c har n_other ; I* unused
char n_desc ; I* currently not used
long n_value ; I* value of this symbol
} nlist ;

I* Simple values for n_type .
*I
#define N_UNDF OxO I* undefined
#define N_ABS Ox2 I* absolute
#define N_TEXT Ox4 I* text
#define N_DATA Ox6 I* data
#define N_BSS Ox8 I* bss
#define N_FN Ox1f I* file · name symbol

etc

#define N_EXT 01 I* external bit , or ' ed in
#define N_TYPE Ox1e I* mask for all the type bits

*I
*I
*I
*I
*I

*I
*I
*I
*I
*I
*I

*I
*I

A . 2 DRI OBJECT FILE FORMAT

A . 2 D RI O bject File Format

In addition to Laser C 's a.out format, Laser utility programs (the linker, archiver ,
disassembler , and symbol namer) support DRI's CP /M-68K object file format.
These files are composed of up to four sections: A header, the TEXT and DATA
segments, an optional symbol table, and optional relocation information.

The header, the first component in the file, specifies the size and starting
address of the other components in the application which are listed below.

I* CPIM-68K header
*I
typedef struc t {

int
long
long
long
long
long
long
int
} header ;

c _magic ;
c _text ;
c _data ;
c _bss ;
c _syms ;
c _entry ;
c _re s ;
c _reloc ;

I* Symbol table entry
*I
typedef struct {

I*
I*
I*
I*
I*
I*
I*
I*

magic number (Ox601A) *I
size of text segment *I
size of initialized data *I
size of uninitialized data *I
size of symbol table *I
entry point *I
reserved , always zero *I
size of data reloc ation *I

char name [8] ;
int type ;
long value ;

I* Symbol name *I
I* Type (i . e . DEFINED I TEXT_REL) *I
I* Symbol value *I

} symbol ;

I* CPIM-68K values for symbol types
*I
#define DEFINED exaooo I* The symbol is defined *I
#define EQUATED Ox4ooo I* The symbol is an equate *I
#define GLOBAL Ox2000 I* The symbol is global *I
#define EQU_REG Ox1000 I* The symbol is a register *I
#define EXTERNAL Ox0800 I* The referenc e i s external *I
#define DAT_REL Ox0400 I* Data segment reference * I
#define TEX_REL Ox0200 I* Text segment reference *I
#define BSS_REL Ox0100 I* Bss segment referenc e *I

579

580 APPENDIX A. FILE FORMATS

The above values may be OR'd together to indicate symbol type .
One word (16-bit) of relocation information exists for each word of TEXT

and DATA. The type of relocation is indicated in bits 0-2 of the word. If the
relocation is an external reference, the remaining bits (15-3} form an index into
the symbol table, thus indicating the name of the external reference.

I* CPIM-68K reloc ation word values (bits 0 -2)
*I
#define NO_RELOC 0 I* No reloc ation necessary *I
#define DATA_BASED 1 I* Reloc ate from Data segment *I
#define TEXT_BASED 2 I* Reloc ate from Text segment *I
#define BSS_BASED 3 I* Reloc ate from Bss segment *I
#define UNDEF_SYMBOL 4 I* Symbolic referenc e *I
#define LONG_REF 5 I* Next relocation is long *I
#define PC_RELATIVE 6 I* I s a PC relative referenc e * I
#define INSTRUCTION 7 I* I s an instruc tion *I

A.3 GEMD O S Application File Format

The file format output by the linker (GEMDOS} is identical to the DRI object
file format excepting the relocation information. The GEMDOS loader will only
relocate 32-bit references. GEMDOS relocation information consists of a long
(32-bit) word, indicating the offset into the program of the first long word to be
relocated , followed by a series of relocation bytes (8-bit) . These bytes indicate
the distance from the last offset relocated to the current offset to be relocated . If
a relocation byte is equal to 254, the last offset is incremented , but no relocation
is done. A relocation byte of zero means end-of-relocation-information.

App endix B

Syst em G lobals

The addresses of the globals i n this list of BIOS variables i s guaranteed not
to change with future releases of the Atari ST, so programs can rely on their
locations.

etv_timer (long) Ox400 The System Timer interrupt vector (logical vector
Ox100) .

etv _critic (long) Ox404 Critical error handler vector (logical vector Ox101) .

etv_term (long) Ox408 Process-terminate vector (logical vector Ox102) .

etv_xtra (longs) Ox40c Space for logical vectors Ox103 through Ox107 .

memvalid (long) Ox420 The magic number Ox752019F3 , which (combined
with memval2) validates memcntlr and indicates a successful coldstart.

memcntlr (char) Ox424 Memory controller configuration nibble (the low nib­
ble) . Some common values are:

Memory size
128K
512K
256K (2 banks)
1MB (2 banks)

Value
0
4
0
5

resvalid (long) Ox426 If resvalid contains the magic number Ox31415926
on system RESET, the system will jump through resvec tor.

581

I

--

582 APPENDIX B. SYSTEM GLOBALS

resvec tor (long) Ox42a System RESET trap vector. Called only if resvalid
has the correct magic number in it . The vector is called early during
system initialization before any hardware registers are configured .

phystop (long) Ox42e Physical end of RAM. Contains a pointer to the first
unusable byte (i .e . OxBOOOO on a 512K machine) .

....membot (long) Ox432 Bottom of available memory. The Getmpb BIOS func­
tion uses this value as the start of the TP A. ,

....memtop (long) Ox436 Top of available memory. The Getmpb BIOS function
uses this value as the end of the TP A.

memval2 (long) Ox43a Contains the magic number Ox237698AA which (com­
bined with memvalid) validates memcntlr and indicates a successful cold­
start .

flock (int) Ox43e Locks usage of the DMA chip . A nonzero value ensures
that the operating system does not alter the DMA chip registers during
vertical retrace. This variable must be nonzero for the DMA bus to be
used .

seekrate (int) Ox440 Default floppy disk seek rate. Bits zero and one have
the following meaning:

Bits 0,1 Seek rate
00 6ms
01 12ms
10 2ms
1 1 3ms (default)

_timr....ms (int) Ox442 System timer calibration (in ms) . Should be set to 20
since the system timer interrupt vector is called at 50hz. This variable is
returned by the BIOS function Tickcal, and is passed on the stack to the
timer interrupt vector.

_:fverify (int) Ox444 Floppy disk verify flag. A nonzero value means all
write operations to floppies are read-verified (default value) . A zero value
indicates no verification.

_bootdev (int) Ox446 Boot device number. An environment string is con­
structed from this variable by the BIOS before GEM desktop is loaded .

palmode (int) Ox448 A nonzero value indicates the PAL (50hz video) mode
is in use. A zero value means the NTSC (60hz video) mode is being used.

def shiftmd (char) Ox44a Contains the resolution for the color monitor the
system will use if it must change from monochrome mode to color mode.

sshiftmd (int) Ox44c Contains the current value for the shiftmd hardware
register:

0 320 X 200 X 4 (low resolution color)
1 640 x 200 x 2 (medium resolution color)
2 640 x 400 x 1 (high resolution B/W)

_v_bas_ad (long) Ox44e Address of screen memory (32K , any resolution) .
Must be on a 512 byte boundary.

vblsem (int) Ox452 A semaphore used to ensure mutual exclusion in the
vertical-blank interrupt handler. Should be 1 to allow vertical-blank pro­
cessmg.

nvbls (int) Ox454 Number of pointers that _vblqueue points to . Set to 8 on
system RESET.

_vblqueue (long) Ox456 Pointer to a vector of pointers to vertical-retrace
handlers to be executed at each vertical retrace interrupt.

c olorptr (long) Ox45a Address of an array of 16 integers to be loaded into
the hardware color palette during the next vertical retrace. The palette is
not loaded if the value is OL . A OL is stored in colorptr after the palette
is loaded.

screenpt (long) Ox45e New screen memory address which will be stored into
v _bas_ad during the next vertical retrace. If screenpt contains OL then
the screen base will not be changed.

_vbc lock (long) Ox462 Count of vertical-blank interrupts that have occurred
since last RESET .

..frc lock (long) Ox466 Number of vertical retrace interrupts that were pro­
cessed (i .e . not blocked by vblsem)

hdv_init (long) Ox46a Address of hard disk initialization routine. OL if un­
used .

swv_vec (long) Ox46e Address of routine to be executed when the monitor
is physically changed from monochrome to color or vise-vera. Initially set
to system RESET vector.

583

584

lml

APPENDIX B. S YSTEM GLOBALS

hdv_bpb (long) Ox472 Address of the routine that returns a hard disk 's BIOS
parameter block (BPB) . Parameters and return value are the same as
Getbpb. Contains OL if unused .

hdv_rw (long) Ox476 Address of routine to read or write on hard disk . Works
like the Rwabs BIOS function. Contains OL if unused.

hdv_boot (long) Ox47a Address of routine to boot from hard disk . Contains
OL if unused.

hdvJilediach (long) Ox47e Address of routine that returns the hard disk 's
media change mode. Works like the Mediach BIOS function. Contains
OL if unused.

_c mdload (int) Ox482 A non-zero value means to attempt to execute the pro­
gram COMMAND . PRG on the boot device. This value can be set by a boot
sector so that an application can be loaded instead of GEM desktop.

c onterm (char)

Bit
0

Ox484 Contains the attribute bits for the console system:

Function
1 = enable bell when - G is written to CON :

1 1 = enable auto key-repeat
2 1 = enable audible key-click
3 1 = Return the current value of kbshift in bits 24 - 31 when

a Bconin is called.

themd (long) Ox48e Points at the GEM DOS TPA limits. Filled in by the
BIOS with a Getmbp call. The structure has the following format:

struc t MD
{

struct MD *m_link ; I* ->next MD must be OL *I
long m_start ; I* start of TPA *I
long m_length ; I* size of TPA in bytes *I
struct PD *m_own ; I* ->MD ' s owner (OL) *I

} ;

The structure may not be changed after G EM DOS has been initialized.

savptr (long) Ox4a2 Pointer to register save area for BIOS functions.

Jlflops (int) Ox4a6 Number of floppy disks actually attached to the system
(0, 1 , or 2) .

sav_c ontext (long) Ox4ae Pointer to saved processor context when a catas­
trophic error occurs (like odd address trap or divide by zero) .

_bufl (2 longs) Ox4b4 Two BCB (buffer control block) pointers. The first
is to the sector BCB and the second to the FAT (file allocation table) and
directory sectors BCB. A BCB has the following format:

struc t BCB
{

struc t BCB *b_link ; l* next BCB *I
int b_bufdrv ; I* drive# , or - 1 *I
int b_buftyp ; I* buffer type *I
int b_bufrec ; I* rec ord# c ached here *I
int b_dirty ; I* dirty flag *I
DMD *b_dm ; I* - >Drive Media Desc riptor *I
char *b_bufr ; I* - >buffer itself *I

} ;

..hz_200 (long) Ox4ba Count of 200hz timer ticks. Divided by four to generate
the 50hz system timer.

the_env (char [4]) Ox4be The default environment string (four NULL char­
acters) .

_drvbi ts (long) Ox4c 4 Value returned by Drvmap BIOS function.

_dskbufp (long) Ox4c 6 Address of a 1024 byte disk buffer in the systems
global area. This buffer should not be used by interrupt handlers.

_prt_cnt (int) Ox4ee Count of number of times the ALT-HELP key combina­
tion has been pressed. Initially - 1 , a value of 0 causes the screen dump
routine being printing the screen. A non-zero value causes the dump
routine to abort the print and reset this value to - 1 .

..sysbase (long) Ox4f2 Points to the base of TOS (in ROM or RAM) .

..shelLp (long) Ox4f6 Address of some shell-specific data.

end_os (long) Ox4fa Address of byte immediately after the last byte used by
TOS . This is also the start of the TP A.

exec _os (long) Ox4fe Address of the shell program. The shell is executed by
the BIOS after system initialization if complete . This normally points at
the first byte of the AES code.

585

Appendix C

D O S Error C o des

These error numbers are returned by some of the BIOS and G EMDOS routines .
The error code is always in the low 16 bits of the return value so mask long
values with Oxffff before checking the error.

Code Error

0 OK
- 1 ERROR
- 2 DRIVE..NOT _READY

- 3 UNKNOWN _CMD
- 4 CRC...ERROR
- 5 BAD _REQUEST

- 6 SEEK...ERROR

- 7 UNKNOWN ..MEDIA

-8 SECTOR..NOT_FOUND
-9 NO_FAPER

- 10 WRITE_F AULT
- 1 1 READ_FAULT
- 12 GENERAL..MISHAP
- 13 WRITE_FROTECT

Description

No error.
General error.
Device was not ready, was not attached, or has
been busy for too long.
Device didn't understand the command.
Soft read error.
Device couldn't handle the command, although
it understood it. Check command parameters.
Drive couldn 't perform the seek .

Attempt to read un-formatted or foreign media.
Usually caused by a trashed or zeroed boot block.

The requested sector could not be found.
The printer is out of paper.
A write operation failed.

A read operation failed.

Reserved for future errors.
Attempt to write onto write-protected or read­
only media.

587

588

- 14 MEDIA_CHANGE

- 15 UNKNOWN..DEVI CE

- 1 6 BAD..SECTORS

- 1 7 INSERT..DISK

GEMDOS error codes
-32 EINVFN
-33 EF ILNF
-34 EPTHNF

-35 ENHNDL

-36 EACCDN
-37 EIHNDL

- 39 ENSMEM

-40 EIMBA

-46 ED RIVE
- 49 ENMF IL
-64 ERANGE

-65 EI NTRN
-66 EPLFMT

-67 EGSBF

APPENDIX C. DOS ERROR CODES

The media has changed since the last write. The
operation did not take place .

The operation specified a device that the BIOS
couldn't recognize.

A format operation detected bad sectors.

Request to ask user to insert a disk .

Invalid function number.
F ile not found.
Path not found .
No file descriptors left (too many files are open) .

Access denied.
Invalid file descriptor.

Insufficient memory.

Invalid memory block address.

Invalid drive specified.

No more files.
Range error.

Internal error.
Invalid program load format.

Setblock failure due to growth restrictions.

Appendix D

Key Co des

The first two numbers are the high and low bytes returned by evnt_keybd() or
evnt_multi() for each key on the keyboard.

03 00 Cont rol 2 (NULL) 1A 1B Cont rol [
1E 01 Cont rol A 2B 1C Control \
30 02 Cont rol B 1B 1D Control]
2E 03 Cont rol c 07 1E Control 6
20 04 Cont rol D oc 1F Cont rol -

12 06 Cont rol E 30 20 Spac e
2 1 06 Control F 02 2 1
2 2 07 Control G 28 22 "

23 08 Control H 04 2 3 •
17 00 Control I 06 2 4 $
24 OA Control J 06 26 %
26 OB Cont rol K 08 26 t
26 oc Cont rol L 28 27
3 2 OD Control M OA 28 (
3 1 OE Cont rol N OB 20)

18 OF Control 0 00 2A *

10 10 Cont rol p OD 2 B +

10 11 Control Q 33 2C

I 13 12 Cont rol R oc 2D -

1F 13 Control s 34 2E

14 1 4 Cont rol T 36 2F I � 16 16 Control u OB 30 0

2F 16 Cont rol v 02 3 1 1

I 1 1 17 Cont rol w 03 3 2 2

2D 18 Cont rol X 04 33 3

16 10 Control y 06 34 4

2C 1A Control z 06 3 6 6

589

590 Appendix C: Key Codes

07 36 6 1E 61 a
08 37 7 30 62 b

00 38 8 2E 63 c

OA 30 0 20 64 d
27 3A 12 66 e
27 3B 21 66 f
33 3C < 22 67 g
OD 3 D = 23 68 h
34 3E > 17 60 i
36 3F ? 24 6A j
03 40 Cl 26 6B k

1E 41 A 26 6C 1
3 0 42 B 32 6D m

2E 43 c 3 1 6E n
2 0 44 D 18 6F 0

1 2 46 E 10 70 p
2 1 46 F 10 71 q
22 47 G 13 72 r
23 48 H 1F 73 8

17 40 I 14 74 t
24 4A J 16 76 u
2 6 4B K 2F 76 v

26 4C L 1 1 7 7 w

32 4D M 2D 78 X

3 1 4E N 16 70 y
18 4F 0 2C 7A z

10 60 p 1A 7B {
10 61 Q 2 B 7C I
13 62 R 1 B 7D }
1F 63 s 2 0 7 E

-

1 4 64 T 63 7F Rubout (DEL)

16 66 u 8 1 00 Al t 0
2F 66 v 78 00 Al t 1
1 1 6 7 w 70 00 Al t 2
2 D 68 X 7A 00 Al t 3
16 60 y 7B 00 Al t 4

liD
2C 6A z 7C 00 Alt 6
1A 6B [7D 00 Al t 6
2B 6C \ 7E 00 Al t 7
1B 6D] 7F 00 Al t 8
07 6E -

80 00 Al t 0
oc 6F Undersc ore 1E 00 Al t A
2 0 60 3 0 00 Al t B

Appendix C: Key Codes 591

2E 00 Al t c 6D 00 F2 0

20 00 Al t D 6E 00 F2 1

12 00 Al t E 6F 00 F22

2 1 00 Al t F 60 00 F2 3

22 00 Al t G 61 00 F2 4 (He lp)

23 00 Al t H 62 00 F2 6 (Undo)

17 00 Al t I 63 00 F2 6

24 00 Al t J 64 00 F2 7

26 00 Al t K 66 00 F2 8

26 00 Al t L 66 00 F2 0

32 00 Al t M 67 00 F3 0

3 1 00 Al t N 68 00 F3 1

18 00 Al t 0 60 00 F3 2

19 00 Al t p 6A 00 F3 3

10 00 Alt Q 6B 00 F3 4

1 3 00 Al t R 6C 00 F3 6

lF 00 Al t s 6D 00 F3 6

14 00 Al t T 6E 00 F3 7

16 00 Al t u 6F 00 F3 8

2F 00 Al t v 70 00 F3 0
1 1 00 Al t w 7 1 00 F40

2 D 00 Al t X 73 00 Control Left Arrow

16 00 Al t y 4D 00 Ri ght Arrow

2C 00 Al t z 4D 36 Shif t Ri ght Arrow

3B 00 Fl 74 00 Control Ri ght Arrow
3C 00 F2 60 00 Down Arrow
3D 00 F3 60 32 Shi f t Down Arrow
3E 00 F4 48 00 Up Arrow
3F 00 F6 48 38 Shi f t Up Arrow
40 00 F6 6 1 00 Page Down

41 00 F7 6 1 3 3 Shi f t Page Down

42 00 FS 76 00 Control Page Down
43 00 F9 40 00 Page Up
44 00 F10 40 39 Shif t Page Up

64 00 Fl l 84 00 Control Page Up

66 00 F12 77 00 Control Home

66 00 F13 47 00 Home

IDII 6 7 00 F 1 4 47 37 Shi f t Home
68 00 F 1 6 62 00 Insert

69 00 F 1 6 62 30 Shi f t I ns ert

6A 00 F17 63 00 Delete
6B 00 F18 63 2E Shi f t Del ete
6C 00 FlO 72 00 Cont rol Print Sc reen

592 Appendix C: Key Codes

37 2A Print Screen
01 1B Esc ape
OE 08 Bac kspac e
82 00 Al t
8 3 00 Al t =

1C OD Carri age Re turn
1C OA Control Carri age Return
4C 36 Shi f t Numeric Pad 6
4A 2B Nume ri c Pad -

4E 2B Nume ri c Pad +

OF OQ Tab
OF 00 Backtab
4B 00 Le ft Arrow
4B 34 Shi f t Left Arrow
4F 00 End
4F 3 1 Shi f t End
76 00 Cont rol End
7 2 OD Ente r

m

Appendix E

Header Files

----------------------- ctype.h -----------------------

Charac ter type tabl es

NOTE
If change s/additions are made , please ensure that the argument
to the macro is referenc e d ONLY ONCE in the macro .

* I
#ifnde f DL_CTYPE
ldefine DL_CTYPE

#define c tUCASE Ox0 1
#define c tLC.A.S E Ox02
#define c tDIGIT Ox04
#define ctSPACE Ox08
I define ctPUHCT Ox1 0
ldefine ctCNTB.L Ox2 0
#define c tHEXDG Ox40

extern char _c t_ [] ;

ldefine isalpha (c) (_ct_ [(c)
#define isupper (c) Lct_ [(c)
#define islover (c) (_ct_ [(c)
#define isdigit (c) Lc t_ [(c)
#define isxdigi t (c) (_c t_ [(c)
ldefine isspac e (c) Lct_ [(c)
ldefine ispunc t (c) (_ct_ [(c)
ldefine i s alnum (c) Lct_ [(c)
ldefine isprint (c) (_ct_ [(c)
ldefine iscntrl (c) Lct_ [(c)

+ 1] t (c tUC.A.SE
+ 1] t ctUCASE)
+ 1] t c tLCASE)
+ 1] t ctDIGIT)
+ 1] It (c tDIGIT
+ 1] t c tSPACE)
+ 1] It c tPUNCT)
+ 1] It (c tUCASE
+ 1] It (c tPUNCT
+ 1] It c tCNTB.L)

I ctLCASE))

I c tHEXDG))

ctLCASE
c tUCASE

ldefine isascii (c) ((unsigne d) c <= Ox7F)

593

c tDIGIT))
c tLCASE I c tDIGI T))

594

#define _toupper (c) ((c) - ' a ' + ' A ')
#def ine _tolower (c) ((c) - ' A ' + ' a ')
#define toasc i i (c) ((c) t Ox7F)

#endif I • DL_CTYPE • I

---------------------- define. h

Appendix E: Header Files

1 * 1
I • DEFI NE . H Typi cal miscellaneous C definiti ons . * I
I • Copyright 1 986 At ari Corp . • I
1 * 1
#ifndef DL_DEFINE
#define DL_DEFINE

#define NIL 0

#define NO 0
#define YES 1

#define TRUE 1
#define FALSE 0

#define EOS ' \0 '
#define EOF (- 1)
#def ine NEWLINE ' \n '

#define FAILURE (- 1)
#define SUCCESS (0)
#define FOREVER for (; ;)

#endif

#ifndef O _RDONLY

#define O_RDONLY 0
#define 0_\fRONLY 1
#define O_RD\fR 2
#define O_CREAT 4
#def ine O_APPEND 8
#define O_TRUNC 1 6
#define O_BINARY 81 92

#endif

I• Nil Pointer • I

I • " FALS E" • I
I • " TRUE" • I

I • End o f String marker • I
I • End o f File marker • I

I • Carriage Re turn • I

I • Func tion failure re turn val • I
I • Func tion suc c e s s return val • I

I • Infinite loop dec l aration •I

fcntl .h

I • low 1 2 bits not us ed t o comform with UNIX • I

filefmt .h

I • Laser C obj e c t file format definitions

Appendix E: Header Files

#define LMAGIC Ox0 1 07 I• Las er C magic number

I• He ader prepended to each Las er obj e c t file .
•I
type def struc t {

long a_magic ; I • magic number
long a_ text ; I • size o1 text s e gment
long a_data; I• size o1 initialized data
long a_bs s ;
long a_syms ;
long a_entry ;
long a_trsize ;
long a_drsize ;
}
exec ;

I* Format o1 a rel o c ation datum .
•I

I•
I•
I•
I •
I •

size o1 uninitialized data
size o1 symbol table
entry point
size o1 text rel o c ation
size o1 data rel o c ation

•I
•I
•I
• I
•I
•I
• I
• I

type de1 struc t {
long
uns i gned long

r_addre ss ;
r_in1 o ;

I• addres s which is relocated •I
I• r_symbo lnum , r_pcre l , r_length , • I
I • r_extern . • I

}
reloc_in1 o ;

I• NOTE : 11 r_extern is zero , then r_addres s is ac tually and N_TYPE ,
and no s ymbol entry i s present 1or the relocati o n .

I• Fie l ds 1or r_in1o (above)
•I
#define
#define
#define
#define

r_symbolnum(x)
r_pcrel (x)
r_l ength(x)
r_extern(x)

I • Symbol table entry
•I
typede1 struc t {

char
char
char

((x>>8) t Ox111111L)
((x»7) t Oxl L)
((x» 6) II Ox3L)
((x»4) t OxlL)

•n_name ; I• index into
n_type ; I• type 11ag ,
n_other ; I • unused

s tring tabl e
i . e . N_TEXT

char n_desc ; I• currently not us e d
long n_value ; I• val ue o1 this sym
}
nl i st ;

I • Values 1or n_type (above)

etc

595

596 Appendix E: Header Files

• I
�Me fine H_UHDF OxO I • undefined
ldefine H_ABS Ox2 I• absolute
ldefine H_TEXT Ox4 I • text
ldefine H_DATA Ox6 I • data
I define H_BSS Ox8 I • baa

ldefine H_EXT Ox01 I • external bi t , or ' ed in
ldefine N_TYPE Oxl e I• mask for al l the type bits

I• Following the rel ocation information ia a l ong word (32 - bit)
which tells the length of the string table which foll ows .
The length inc ludes the four bytes of the long word (it
includes own size) . Strings are zero (0) terminated .

•I

I• GEMDOS executabl e file format
• I

I• CPIM- 68K header
• I
typedef a truc t {

int c _magic ;
long c _text ;
long c_data ;
long c _baa ;
long c_ayma ;
long c _entry ;
long c _rea ;
int c _reloc ;
} he ade r ;

I• Symbol table entry
•I
typede f atruc t {

I•
I•
I•
I•
I •
I•
I•
I •

magic number (Ox601A)
size of text segment
size of initialized data
size of uninitialized data
size of symbol table
entry point
reserve d , always zero
size of data reloc ation

•I
• I
• I
• I
• I
•I
•I
•I

char name [S] ;
int type ;
long value ;

I• Symbol name • I
I• Type (i . e . DEFINED I TEXT_REL) * I
I• Symbo l value • I

} s ymbol ;

I• CPIM- 68K values for symbol types
•I
ldefine DEFINED oxaooo I* The symbol ia define d • I
Ide fine EQUATED Ox4000 I * The symbol ia an equate •I
ldefine GLOBAL Ox2000 I• The symbol ia global • I
ldefine EQU_REG Ox1 000 I• The symbol ia a . regia ter •I
ldefine EXTERNAL OxOSOO I• The referenc e ia external •I
ldefine DAT_REL Ox0400 I• Data s e gment referenc e •I
�define TEX_REL Ox0200 I• Text s e gment referenc e • I
ldefine BSS_REL Ox01 00 I• Baa s egment referenc e • I

• I
• I
• I
• I
• I

• I
•I

Appendix E: Header Files

I• The above values may be OR ' d together to indi c ate
symbol type .

One vord (1 6-bit) ot re location information exists tor eac h
vord o f TEXT an d DATA . The type o f relocation is indicated
in bits 0-2 of the vord . If the rel o c ation is an external
referenc e , the remaining bits (1 6 - 3) torm an index into the
s ymbol tabl e , thus indic ating the name of the external
referenc e .

I• CPIN- 68K relocation vord values (bits 0- 2)
•I
tdefine NO_RELOC 0 I • N o relocati on necessary
ldefine DATA_BASED 1 I• Relocate from Data segment
Ide fine TEXT_BASED 2 I • Relocate from Text segment
tdefine BSS_BASED 3 I• Relocate from Baa s e gme nt
ldefine UNDEF_SYMBOL 4 I • Symbolic reterence
I define LONG_REF 6 I • Next relo c ation is long
tdefine PC_RELATIVE 6 I • Is a P C re lative reterenc e
tdefine I NSTRUCTIO N 7 I• Is an ins truc tion

•I
•I
•I
•I
• I
• I
•I
• I

I• The file format output b y the linker (GENDOS) i s identical to the
DRI obj e c t file format exc epting the relocation information . The
GENDOS loader vill only relocate 32-bit referenc e s . GENDO S
reloc ation information c onsists ot a long (32 - bit) vord , i ndic ating
the oftset into the program of the tirst long word to be rel o c ated ,
followed by a aeries ot relocation bytes (8-bi t) . Thes e byte s
indi c ate the distance trom the last oftaet rel o c ated to the c urrent
offset to be relo c at e d . If a reloc ation byte is equal to 264 , the
last offset is incremented , but no relocation is done . A
relocation byte ot zero means end- of-relocation-intormatio n .

---------- gembind . h

1 • • · 1
I • GENBIND . H Do -It-Youraelt GEM binding kit . • I
I • Copyri ght 1 986 Atari Corp . •I
I• •I
I • WARNING : This tile is not supporte d ! • I
I • W e re c c omend you u s e the suppli e d binding librarie s • I
1 • • · 1
tifndef DL_GENBIND
tdefine DL_GENBIND

Global arrays reterenc e s . rpt 8- 2 1 - 87

597

598 Appendix E: Header Files

extern crystal () ; I * Used by crys _it to do the ac tual AES trap c all . * I
extern c trl_cnts () ; I * ac tually a table ot numbers * I

extern int c ontrol [] , global [] ;
extern int_in [] , int_out [] ;
extern long addr_in [] , addr_out [] ;

extern int gl_apid ; /* application ID •I

extern struc t __ c {
int * cb_pc ontrol ;
int * cb_pglobal ;
int * cb_pintin ;
int * cb_pintout ;
long * c b_padrin;
long * c b_padrout ;

} _c , * _ad_c ;

I* Appl ication Manager
#detine APPL_INIT 1 0
#detine APPL_READ 1 1
#detine APPL_WRI TE 1 2
#detine APPL_FIND 1 3
#detine APPL_TPLAY 1 4
#detine APPL_TRECO RD 1 6
#detine APPL_EXIT 1 9

I • Event Manager
#ddine EVNT_KEYBD 20
#ddine EVNT_BUTTO N 2 1
#ddine EVNT_MOUSE 22
#ddine EVNT_MESAG 23
#ddine EVNT_TIMER 24
#de tine EVNT_MULTI 26
#ddine EVNT_DCLICK 26

I • Menu Manager
#ddine MENU_BAR 30
#ddine MENU_ICHECK 31
#ddine MENU_IENABLE 32
#ddine MENU_TNO RNAL 33
#ddine MENU_TEXT 34
#ddine MENU_REGISTER 36

I • Obj e c t Manager
#ddine OBJC_ADD 40
#ddine O BJC_DELETE 41
#ddine OBJC_DRAW 42
#ddine OBJC_FIND 43
#ddine O BJC_OFFSET 44
#ddine OBJC_ORDER 46

Appendix E: Header Files 599

�Me fine OBJC_EDIT 46
#define OBJC_CHANGE 47

I• Form Manager •I
#define FOIUCDO 60
#define FORN_DIAL 6 1
#define FORN_ALERT 62
#define FOBlCERROR 63
#define FORN_CENTER 64
#define FORN_KEYBD 66
#define FORN_BUTTO N 66

I • Graphic s Manager •I
#define GRAF_RUBBO X 70
#define GRAF_DRAGBOX 71
#define GRAF_NBOX 72
#define GRAF_GROWBOX 73
#define GRAF_SHRINKBOX 74
fdefine GRAF_WATCHBOX 76
ldefine GRAF_SLIDEBOX 76
ldefine GRAF_HAHDLE 77
#define GRAF_MOUSE 78
#define GRAF_MKSTATE 79

I • Scrap Manager •I
ldefine SCRP_READ 80
tdefine SCRP_tfRITE 81

I • Fil e Selec tor Manager •I
ldefine FSEL_INPUT 90

I• Window Manager •I
#define WIHD_CREATE 1 00
#define WIND_OPEH 1 01
ldefine WIND_CLOSE 1 02
#define WIND_DELETE 1 03
ldefine WIND_GET 1 04
#define WIND_SET 1 0 6
tdefine WIND_FIHD 1 06
#define WIND_UPDATE 1 07
tdefine WIHD_CALC 1 08

I • Resource Manager •I
tdefine RSRC_LOAD 1 1 0
Ide fine RSRC_FREE 1 1 1
Ide fine RSRC_GADDR 1 1 2
fdefine RSRC_SADDR 1 1 3
Ide fine RSRC_OBFIX 1 1 4

I• She l l Manager •I
Ide fine SHEL_READ 1 2 0
tdefine SHEL_WRITE 1 2 1
Ide fine SHEL_GET 1 2 2
fdefine SHEL_PUT 1 2 3
ldefine SHEL_FIND 1 2 4
fdefine SHEL_EHVRN 1 2 6

I • m ax s izes for arrays • I

600 Appendix E: Header Files

#define C_SIZE 4
#define G_SIZE 1 6
#define !_SIZE 16
#define O_SIZE 7
#define AI_S IZE 2
#define AO_SIZE 1

I • Crys tal :funtion op c o de • I
#define O P_CODE c ontrol [O]
#define I N_LEN c ontrol [!]
#define OUT_LEN c ontrol [2]
#de :fine AI N_LEN c ontrol [3]

#define RET_CO DE int_out [O]
I • appl i c ation lib parame ters * I

#de:fine AP_VERSI O N gl obal [O]
#de :fine AP_COUNT gl obal [1]
#define AP _ID gl obal [2]
#define AP_LO PRIVATE global [3]
#define AP_HIPRIVATE global [4]
#define AP_LOPNAME gl obal [6] I • long ptr . to tree bas e in ra e * /

#define AP_HIPNAME gl obal [6]
#define AP_L0 1 RESV global [7] I * l ong address o:f memory al l o c . * /
#de:fine AP_HI1 RESV gl obal [8]
#de :fine AP_L0 2RESV global [9] I • length of memory all o c ated * I
#define AP_HI2RESV global [10] I • c o l ora avai l able on screen * I
#define AP_L03RESV global [1 1]
#define AP_HI3RESV global [12]
#define AP_L04RESV gl obal [1 3]
#define AP_HI4RESV global [1 4]

#define AP_GLSIZE int_out [1]

#de:fine AP_RWID int _in [O]
#define AP_LENGTH int_in [1]
#de:fine AP_PBUFF addr_in [O]

#define AP_PNAME addr_in [O]

IJdef ine AP_TBUFFER addr_in [O]
#def ine AP_TLENGTH int_in [O]
Ide f ine AP_TSCALE i nt_i n [1]

#define S CR_MGR Ox0001 I* pid of the screen manager*/

IJdef ine AP_MSG 0
IJdef ine MN_SELECTED 1 0

IJdefine WM_IlEDRAW 2 0
IJde:f ine WM_TOPPED 2 1
Ide fine WM_CLO SED 2 2

Appendix E: Header Files

#de1ine WN_FULLED 2 3
#de1ine WN_AIIOWED 2 4
#de1ine WN_HSLID 2 6
#de1ine WN_VSLID 2 6
#de1ine WN_SIZED 27
#de1ine WN_NOVED 28
#de1ine WN_NEWTOP 2 9

#de1ine AC_OPEN 40
#de1ine AC_CLOSE 41

#de1ine CT_UPDATE 6 0
#de1ine CT_MOVE 6 1
#de1ine CT_NEWTOP 6 2

I • event lib parameters •/
#de1ine IN_FLAGS int_in [O]

#de1ine B_CLICKS int_in [O]
#de1ine B_NASK int_in [1]
#de1ine B_STATE int_in [2]

#de1ine NO_FLAGS int_in [O]
#de1ine NO_X int_in [1]
#de1ine NO_Y int_in [2]
#de1ine NO_WIDTH int_in [3]
#de1ine NO_HEIGHT int_in [4]

#de1ine NE_PBUFF addr_in [O]

#de1ine T_LOCOUNT int_in [O]
#de1ine T_HICOUNT int_in [1]

#de1ine NU_FLAGS int_in [O]
#de1ine EV_NX int_out [1]
#de1ine EV_NY int_out [2]
#de1ine EV_NB int_out [3]
#de1ine EV_KS int_out [4]
#de1ine EV_KIET int_out [6]
#de1ine EV_BIET int_out [6]

#de1ine MB_CLICKS int_in [1]
#de1ine MB_NASK int_in [2]
#de1ine NB_STATE int_in [3]

#de1ine MM01_FLAGS int_in [4]
#de1ine NN01 _X int_in [6]
#de1ine NN01 _Y int_in [6]
#de1ine NN01_WIDTH int_in [7]
#de1ine NN01_HEIGHT int_in [S]

601

602 Appendix E: Header Files

ldefine MM02_FLAGS int_in [9]
ldefine MM02_X int_in[lO]
ldefine MM02_Y int_in [l l]
ldefine MM02_WIDTH int_in [12]
ldefine MM02_HEIGHT int_in [13]

ldefine MME_PBUFF addr_in [O]

ldefine NT_LOCOUNT int_in [14]
ldefine MT_HICOUNT int_in [l&]

ldefine NU_KEYBD Ox0001
ldefine NU_BUTTDN Ox0002
ldefine NU_Nl Ox0004
ldefine NU_N2 Ox0008
ldefine NU_MESAG Ox0010
#define MU_TIMEi Ox0020

I• mu_f lags •I

ldefine EV_DCRATE int_in [O]
ldefine EV_DCSETIT int_in[l]

I• menu library parameters •I

ldefine MM_ITREE addr_in [O] I• i enabl e , iche c k , tnorm •I

ldefine MM_PSTi addr_in [O]

ldefine MM_PTEIT addr_in[l]

I define SHDW_IT int_in [O] I • bar •I

ldefine ITEN_NUN int_in [O] I • icheck , ienabl e
Ide fine MM_PID int_in [O] I • register
ldefine CHECK_IT int_in[l] I• icheck
Ide fine ENABLE_IT int_in [l] I • i enable

ldefine TITLE_NUN int_in [O] I• tnorm
ldefine NDIUUL_IT int_in [l] I• tnormal

I• form library parameters •I
ldefine FN_FORN addr_in [O]
ldefine FN_START int_in [O]

ldefine FN_TYPE int_in [O]

ldefine FN_EiiNUN int_in [O]

ldefine FN_DEFBUT int_in [O]
ldefine FN_ASTRING addr_in [O]

• I
•I
• I

•I
•I

•I

Appendix E: Header Files 603

#define FN_Il int_i n [l]
#define FN_IY int_in [2]
#define FN_IW int_in [3]
#define FN_IH int_in [4]
tdefine FN_X int_in [6]
#define FN_Y int_in [6]
#define FN_W int_in [7]
#define FN_H int_in [8]

#define FN_XC int_out [1]
tdefine FN_YC int_out [2]
tdefine FN_WC int_out [3]
tdefine FN_HC int_out [4]

tdefine FND_STAIT 0
#define FND_Git011 1
#define FND_SRIINK 2
tdefine FND_FIHISR 3

I• obj e c t library parameters •I

tdefine OB_TIEE addr_in [O] I• al l ob proc e dures •I

ldefine DB_DELDB int_in [O] I• ob_delete •I

#define DB_DIA11DB int_in [O] I• ob_draw , ob_c hange •I
#define OB_DEPTH int_in [1)
#define OB_ICLIP int_in [2]
#define OB_YCLIP int_in [3]
#define DB_11CLIP int_in [4]
tdefine OB_HCLIP int_in[6]

#define OB_STAITDB int_in [O] I• ob_find •I
tdefine DB_NX int_in [2)
tdefine DB_NY int_in [3]

tdefine DB_PAIEHT int_in [O] I• ob_add • I
#define DB_CHILD int_in [1]
#define OB_OBJ int_in [O] I• ob_offBet , ob_order •I
#define OB_IOFF int_out [1]
#define OB_TOFF int_out [2]
#define OB_NEWPDS int_in [l] I • ob_order •I

I• ob_e dit •I
#define OB_CRAI int_in [l]
#define OB_IDI int_in [2]
tdefine OB_KIHD int_in [3]
tdefine OB_ODI int_out [l]

tdefine OB_NEWSTATE int_in [6] I• ob_change • I
tde:fine DB_IEDIAW int_in [7]

604 Appendix E: Header Files

I • graphic s library parameters • I
tde1ine Gl_I l int_in [O]
tde1ine Gl_I2 int_i n [l]
tde1ine Gl_I3 int_in [2]
tde1ine GR_I4 int_in [3]
tde1ine GR_I6 int_in [4]
tde1ine GR_I6 int_in [6]
tde1ine GR_I7 int_in [6]
tde1ine GR_I8 int_in [7]

tde1ine GR_O l int_out [l]
tde1ine GR_02 int_out [2]

tde1ine GR_TREE addr_in [O]
tde1ine GR_PARENT int_in [O]
tde1ine GR_OBJ int_in [l]
tde1ine Gl_INSTATE int_in[2]
tde1ine Gl_OUTSTATE int_in [3]

tde1ine GR_ISVE&T int_in [2]

tde1ine N_OFF 266
tde1ine N_ON 267

tde1ine Gl_NNUNBEl int_in [O]
tde1ine Gl_NADDR addr_in [O]

tde1ine GR_WCHAR int_out [l]
tde1ine Gl_HCHAl int_out [2]
tde1ine Gl_WBOX int_out [3]
tde1ine Gl_HBOX int_out [4]

tde1ine Gl_NI int_out [l]
tde1ine Gl_NY int_out [2]
tde1ine Gl_NSTATE int_out [3]
tde1ine Gl_KSTATE int_out [4]

I• aerap library parameters • I
tde1ine SC_PATH addr_in [O]

I• 1ile selector library parma • I

tde1ine FS_IPATH addr_in [O]
tdefine FS_ISEL addr_in [1]

tde1ine FS_BUTTON int_out [l]

tde1ine XFULL 0
I• window library parameters • I

tde1ine YFULL gl_hbox
tde1ine WFULL gl_wi dth
tde1ine HFULL (gl_height - gl_hbox)

Appendix E: Header Files

ldefine NAME Ox0001
ldefine CLOSER Ox0002
ldefine FULLER Ox0004
ldefine NOVEl Ox0008
ldefine INFO Ox001 0
ldefine SIZER Ox002 0
ldefine UPAIIOW Ox0040
tdefine DNAIIOW Ox0080
ldefine VSLIDE Ox01 00
ldefine LFAllOW Ox0200
tdefine ITAllOW Ox0400
ldefine HSLIDE Ox0800

tdefine WF_KIND 1
tdefine WF_NANE 2
ldefine WF_INFO 3
ldefine WF_WXTWH 4
ldefine WF_CXYWH 6
ldefine WF_PXYWH 6
ldefine WF_FXTWH 7
tdefine WF_HSLIDE 8
ldefine WF_VSLIDE 9
ldefine WF_TOP 1 0
ldefine WF_FIISTXYWH 1 1
ldefine WF_NEXTXYWH 1 2
ldefine WF_IGNOIE 1 3
ldefine WF _NEWDESK 1 4
ldefine WF_HSLSIZ 1 6
ldefine WF_VSLSIZ 1 6

ldefine WA_UPPAGE 0
ldefine Wl_DNPAGE 1
ldefine WA_UPLINE 2
ldefine WA_DNLINE 3
ldefine WA_LFPAGE 4
ldefine WA_ITP!GE 6
ldefine WA_LFLINE 6
ldefine WA_ITLINE 7

I • arro w meaaage •I

I• wm_c reate • I
ldefine WN_KIND int_in [O]

I• w-_open , close , del •I
ldefine WN_HANDLE int_in [O]

ldefine WN_WX int_in[1]
ldefine WN_WY int_in [2]
ldefine WN_WW int_in [3]
ldefine WN_WH int_in [4]

ldefine WN_KI int_in [O]
ldefine WN_NT int_in[1]

I • wm_open , wm_create •I

I• .._find •I

605

606

I• WDLc alc
If define liC_BOilDEil 0
If define liC_liOilK 1
tdefine liM_liCTYPE int_in [O]
tdefine liM_liCKIND int_in [1]
If define liN_liCIX int_in [2]
tdefine liM_liCIY int_in [3]
tdefine 11N_11CI11 int_in [4]
tdefine liN_liCIH int_in [6]
tdefine liM_ICOX int_out [1]
tdefine WN_liCOY int_out [2]
tdefine 11N_11C011 int_out [3]
tdefine liM_WCOH int_out [4]

I • wm_update
If define liN_BEGUP int_in [O]

tdefine WM_liFIELD int_in [1]

If define liM_IPiliVATE int_in [2]

If define liM_IKIND int_in [2]
I • :for name

tdefine liN_IOTITLE addr_in [O]

tdefine liN_IX int_in [2]
tdefine liM_IY int_in [3]
If define liN_Ill int_in [4]
#define liM_IH int_in [6]

tde:fine liN_OX int_out [1]
#define liN_OY int_out [2]
tde:fine liN_Oll int_out [3]
#de:fine WN_OH int_out [4]

tde:fine WM_ISLIDE int_in [2]

#define WN_IIlECTNUM int_in [6]

• I

• I

and in:fo •I

I • resource library parameters

tdefine llS_PFNAME addr_in [O] I• rs_init ,
tde:fine llS_TYPE int_in [O]
tde:fine llS_INDEX int_in [1]
tde:fine llS_INADDil addr_in [O]
#define llS_OUTADDil addr_out [O]

#define llS_TilEE addr_in [O]
fda :fine llS_OBJ int_in [O]

tdefine ll_TilEE 0

Appendix E: Header Files

• I

• I

Appendix E: Header Files

tde:fine B._OBJECT 1
tde:fine B._TEDINFO 2
Ide fine B._ICONBLK 3
lde:fine B._BITBLK 4
Ide fine B._STB.IHG 5
Ide fine B._IMAGEDAT.l 6
Ide fine B._OBSPEC 1
lde:fine B._TEPTEIT 8 I• aub ptra in TEDINFO •I
I define B._TEPTHPLT 9
tde:fine B._TEPVALID 10
tde:fine B._IBPMASK 1 1 I • aub ptrs i n ICONBLK •I
tde:fine B._IBPDATA 1 2
tde:fine B._IBPTEXT 1 3
tde:fine B._BIPDATA 1 4 I• sub ptrs in BITBLK • I
tde:fine B._FB.STB. 15 I • seta addr o:f ptr to :free strings • I
lfde:fine B._FB.IHG 16 I • gets addr o1 ptr to 1ree images • I

I • shell library parameters • I
tde:fine SH_DOEX int_in [O]
Ide :fine SH_ISGB. int_in[1]
Ide fine SH_ISCB. int_in[2]
Ide :fine SH_PCMD addr_in [O]
lde:fine SH_PTAIL addr_in [1]

Ide :fine SH_PDATA addr_in [O]
tde:fine SH_PBUFFEB. addr_in [O]

Ide fine SH_LEH int_in [O]

lde:fine SH_PATH addr_in [O]
tde:fine SH_SB.CH addr_in[1]

tendi:f DL_GEMBIHD

----------- gemdefs . h

1• • · • •1
I • GEHDEFS . H Common GEM de:finitions and miscellaneous struc tures . • I
I • Copyrisht 1 985 Atari Corp . • I
1 • • · • •1
ti1nde1 DL_GENDEFS
tde1ine DL_GEHDEFS

I• EVENT Manager De1 initioJI.B

tde:fine MU_KETBD Ox0001
tde:fine HU_BUTTON Ox0002
tde:fine HU_M1 Ox0004
tde:fine HU_H2 Ox0008
tde1ine HU_NESAG Ox001 0

I • multi :flags

607

608 Appendix E: Header Files

tdefine MU_TIMER Ox0020
I • keyboard states • I

tdefine K_RSRIFT Ox0001
tdefine K_LSRIFT Ox0002
tde1ine K_CTRL Ox0004
#define K_ALT Ox0008

tdefine MN_SELECTED 1 0
tdefine WK_REDRAW 2 0
tdefine WK_TOPPED 2 1
tdefine WK_CLOBED 2 2
tdefine WK_FULLED 2 3
tdefine WK_ARROWED 24
tdefine WK_HSLID 26
tdefine WK_VSLID 26
tdefine WK_SIZED 27
tde1ine WK_MOVED 28
I define WK_NEWTOP 2 9
I define AC_OPEN 40
Ide fine AC_CLOSE 41

I • mess age values

I• FORK Manager Definitions

tdefine FMD_START 0
tdefine FMD_GROW 1
tdefine FMD_SHRINK 2
#define FMD_FINISR 3

I• Form flags

I• RESOURCE Manager Definitions

•I

I• data struc ture types •I
tdefine i_TREE 0
tdefine I_ OBJECT 1
Ide fine I_ TED INFO 2
tdefine I_ICONBLK 3
#define I_BITBLK 4
ldefine !_STRING 6 I • gets pointer to free strings • I
ldefine i_Il'U.GEDATA 6 I • gets pointer to free images •I
tdefine I_OBSPEC 7
tdefine i_TEPTEXT 8 I• sub ptrs in TEDINFO • I
ldefine I_TEPTMPLT 9
ldefine I_TEPVALID 10
tdefine i_IBPKASK 1 1 I • sub ptrs i n ICONBLK • I
tdefine i_IBPDATA 1 2
ldefine I_IBPTEXT 1 3
tdefine i_BIPDATA 1 4 I• sub ptrs in BITBLK • I
I define I_FISTR 1 6 I • gets addr o f ptr to free strings
tde1ine i_FRIMG 16 I• gets addr of ptr to free images

I• used in ISCIEATE . C • I
typedef struc t rshdr

• I
• I

Appendix E: Header Files

{
int rsh_vrsn ;
int rsh_obj e c t ;
int rsh_tedin:fo ;
int rsh_iconblk ; I* list o:f ICONBLKS * I
int rsh_bitblk ;
int rsh_:frstr ;
int rsh_string ;
int rsh_imdata ; I • i mage data •I
int rsh_:frimg ;
int rsh_trindex ;
int rsh_nobs ; I• counts o:f various struc ts
int rsh_ntree ;
int rsh_nted ;
int rsh_nib ;
int rsh_nbb ;
int rsh_nstring ;
int rsh_nimages ;
int rsh_rssize ; I• total bytes in resourc e •I

} RSHDR ;
#de:fine F_ATTR 0 I• :file attr :for dos_create

I* WINDOW Manager De:finitions . • I

#de:fine NAME Ox0001
#de:fine CLOSER Ox0002
#de:fine FULLER Ox0004
#de:fine MOVER Ox0008
#de:fine INFO Ox001 0
#de:fine SIZER. Ox002 0
#de :fine UPARROW Ox0040
#de:fine DNAB.B.OW Ox0080
#de:fine VSLIDE Ox01 00
#de:fine LFAB.B.OW Ox0200
#de:fine RTARROW Ox0400
#de:fine HSLIDE Ox0800

#de:fine WC_BORDER 0
#de:fine WC_WORK 1

#de:fine WF_KIND 1
#de:fine WF_NAME 2
#de:fine WF_INFO 3
#de:fine WF_WORKXYWH 4
#de:fine WF_CURB.XYWH 6
#de:fine WF_PREVXTWH 6
tde:fine WF_FULLXYWH 7
#de:fine WF_HSLIDE 8
#de:fine WF_VSLIDE 9

I• Window Attributes •I

I • wind_create :flags • I

I • wind_get :flags • I

#de:fine WF_TOP 1 0

609

• I

• I

610

#define 11F_FIRSTIY11H 1 1
#define liF _NEXTIYliH 12
#define liF_RESVD 1 3
#define 11F_NE11DESK 1 4
#define liF_HSLSIZE 16
#define liF_VSLSIZE 16
#define liF_SCREEN 1 7

I• update flags • I
#define END_UPDATE 0
#define BEG_UPDATE 1
#define END_NCTRL 2
#define BEG_MCTRL 3

I • GRAPHICS Manager Definitions
I• Mous e Forma •I

#define ARROW 0
#define TEXT_CRSR 1
#define HOURGLASS 2
#define POINT_HAND 3
#define FLAT_HAND 4
#define THIN_CROSS 6
#define THICK_CROS S 6
#define OUTLN_CROS S 7
#define USER_DEF 266
#define N_OFF 266
#define N_ON 267

I • MISCELLANEOUS Struc tures • I

• I

I• Memory Form Definition Block • I
typedef struc t fdbstr
{

long fd_addr ;
int fd_w ;
int fd_h ;
int fd_wdwidth :
int fd_stand ;
int fd_nplanes :
int fd_r1 ;
int fd_r2 ;
int fd_r3 ;

} NFDB ;
I • Mous e Form Definition Block • I

typedef struct m1str
{

int m1_xhot ;
int m1_yhot :
int m1_nplanes ;
int m1_f g :
int m1_bg ;
int m1_mask [16] ;

Appendix E: Header Files

Appendix E: Header Files

int m:Ldata [1 6] ;
} MFORM ;

#endit DL_GEMDEFS

------------------------ linea. h

#Undd Lna_IHIT

#ddine Lna_IHIT OxaOOO
#deUne Lna_PUTPIXEL Oxa001
#ddine Lna_GETPIXEL Oxa002
#ddine Lna_LINE Oxa003
#ddine Lna_HLINE Oxa004
#ddine Lna_FILLR.ECT Oxa006
#ddine Lna_FILLPO LY Oxa006
#ddine Lna_BITBLI T Oxa007
#ddine Lna_TEXTBLIT Oxa008
#ddine Lna_SHOWMOUSE Oxa009
#ddine Lna_HIDEMOUSE OxaOOa
#ddine Lna_HE\fMOUSE OxaOOb
#ddine Lna_UNSPR.ITE OxaOOc
#ddine Lna_DR.A\fSPR.ITE OxaOOd
#ddine Lna_COPYR.ASTER. OxaOOe
#deUne Lna_SEEDFI LL OxaOOt

Miscellaneous Data Struc ture
• I
typedet struc t {

int x , y ;
} point ;

typedet struct {
int top ;
int l d t ;
int bottom;
int right ;

} rec t ;

Font He ader Data S truc ture
• I
typedet struc t _!onttorm {

I•
I•
I•
I•
I•
I•
I•
I•
I•
I •
I•
I •
I•
I •
I •
I•

Initialize Line -A data struc tures • I
Put Pixel onto graphic s screen • I
G e t Pixel value on graphic s screen •I
Draw a Line • I
Draw a Horizontal Line •I
Draw a tilled box (rec tangl e) • I
Draw a line pol ygon and t i l l it • I
Bi t Block Transter •I
Text Block Transter •I
Show Mouse Cursor •I
Hide Mouse Cursor • I
Change Mouse t orm • I
Undraw sprite •I
Draw sprite •I
Copy laster Form •I
Do Seed till on polygon • I

int tontid ; I• Font I dentifier
int tontsize ; I • Font Size in points
char tontname [32] ; I• Font name

611

612 Appendix E: Header Files

int lowasc ii ; I• lowest displayable ASCII char • I
int highascii ; I• hi ghest displayable ASCII c har • I

I•
Charac ter drawing o1faets (see vst_alignment ())

• I
int top ; I•
int asc ent ; I •
int hal1 ; I•
int des c ent ; I •
int bottom; I•

int largechar ; I •
int largeboxchar ; I •

int kern ; I •
int righto11set ; I •

I •
Text E11ects masks

• I
int bol dmask ;
int underlinemask ;
int litemask ;
int ske wmask ;

struc t {
unsigned system
unsigned horiz
unsigned swapbytes
unsigned monospace

} 1lags ;

int *horztable ;
int * chartable ;
int *1onttable ;

int 1ormwidth ;
int 1ormheight ;

I *
I *
I •

o11set 1rom baseline to top • I
o11set 1rom baseline to asc ent • I
o11set 1rom baseline to h.l1 • I
o1faet 1rom basel ine to desc ent • I
o11set 1rom baseline to bottom • I

widest charac ter in 1ont • I
widest charac ter cell in 1ont • I

kerning o1faet • I
right o11set 1or italic s • I

1 ; I• is it a system 1ont? • I
1 ; I • horiz o11s e t table? •I
1 ; I• integers are revers ed? • I
1 ; I• is 1ont monospac e? • I

pointer to horizontal o11s et table •I
pointer to charac ter o11set table • I
pointer to 1ont bit-image data • I

s truc t _1ont1orm •next1ont ; I • pointer to next 1ont de1 • I
} 1ont1 orm ;

Text Data Struc ture
• I
typede1 struc t {

int xdda ; I • drawing work variabl e

Appendix E: Header Files

int
int
int
int
int
int
int
int
int
char
int
int
int
int
int
int
int
int
int
int
int

int
int

} textblo c k ;

ddainc ;
scaledir ;
mono ;
:fontx ;
:fonty ;
scrnx ;
scrny ;
charheight ;
charwidth ;

•:fontdat a ;
:fontwidth ;
:fontstyle ;
litemask ;
ske wmask ;
bol dmaak ;
:fauper ;
:fsub ;
a c ale:flag ;
textdir ;
:forecolor ;
texte:fx ;

s c alebu:f ;
bac kc olor

typede:f struc t {
I •

Drawing Environment
• I
int vpl ane s ;
int vwrap ;
int • cntrl ;
int •intin ;
int •ptsin ;
int • intout ;
int •ptsout ;
int plane O ;
int plane 1 ;
int plane2 ;
int plane3 ;
int minus one ;
int linemaa k ;
int wri temode ;
int x1 , y1 , x2 , y2 ;
int •patptr ;
int patmask ;
int plane:fill ;
int clip:flag ;

I• drawing work variable
I• drawing work variable
I• monoapac ed :font :flag
I• charac ter (x , y) in :font de:f

I• charc ter (x , y) on s c reen •I

I• width o:f charac ter •I
I• he ight o:f charac ter •I
I • pointer to :font bit-image data •I
I• wi dth of font form • I
I • :font style •I
I• mask :for dehilited text • I
I• mask :f o r italics text • I
I• mask :f o r bold text •I
I• o:f:faet :for superscript text •I
I • o:f:fset :for subscript text • I
I • 0 = n o scaling •I
I• text orientation :flag • I
I • :foreground text c olor •I
I• pointer to start o:f text spec ial •I
I• e:f:fe cts bu:f:fer •I
I• o:f:f aet :for scale bu:f:fer in texte:fx •I
I • bac kground text c olor •I

I• Number o:f video planes •I
I • Number o:f bytes per video scan •I
I • pointer to VDI contrl array •I
I • pointer to VDI intin array •I
I • pointer to VDI ptsin array •I
I• pointer to VDI intout array • I
I • pointer t o VDI pts out array • I
I • c olor b i t mask :f o r plane 0 • I
I • c olor bit mask :f o r plane 1 • I
I• c olor bit mask :f o r plane 2 • I
I• c olor b i t mask :f o r plane 3 • I
I • - 1 used in IOI mode • I
I • VDI line style • I
I • VDI write mode • I
I• drawing rectangle • I
I • pointer t o current VDI :fill patter • I
I • size o :f :fill pattern mask • I
I • number o :f plane s t o :fill (0 = 1 plane) • I
I • clipping :flag (0 = no c lipping) • I

613

614 Appendix E: Header Files

int xminclip , yminc lip ;
int xmaxclip , ymaxc lip ;

I• c lipping rec tangl e • I

Font Information
•I
textbl ock thetext ; I• Text Drawing Block

Miscellaneous Drawing Variable s

int c opymode ;
int (• s e e dabort) () ;

} lineaport ;

typedef struc t {
rec t sourc e ;
rec t de stin ;

} copyblock ;

typedef struc t {
int x ;
int y ;
int •base ;
int offse t ;
int width ;
int plane_offset ;

} bitbl o c k ;

typedef
int
int
int
int

struc t {
width ;
hei ght ;
planec ount ;
ForeColor ;

int BackColor ;
char table [4] ;

I • c opy mode for ras ter operations • I
I• pointer to s e e d f i l l abort routine • I

I• width of b i t block •I
I• height of bit block •I
I • number of planes •I

Bit blocks to Blit
• I
bitblock sourc e ;
bitblock destin ;

Pattern Information
•I
int •patbuf ;

Appendix E: Header Files

int pat_offset ;
int pat_width ;
int pat_plane_offs e t ;
int pat_mask ;

Temp Work spac e

int work [12] ;
} blitblo c k ;

typedef struc t {
int x ;
int y ;
int format ;
int fore color ;
int bac kcolor ;
int image [32] ;

} spri t e ;
typedef sprite mous e ;

I •
I •
I•
I•
I •
I•

x offset of hot spot
y offset of hot spot
0 = Copy , 1 = XOi
background color
foreground color
bi t- image of sprite

•I
•I
•I
•I
•I
• I

Save area for ar e a behind Sprite . Needs to be
4 * sizeof (Sprite) so that all four c olor
planes c an be saved .

typedef sprite spri teback [4] ;

extern lineaport • a_ini t () ;

Use d by Line -A routines
_lnaport = = pointer to line - a variables .
_fonthdrs == pointer to three pointers to system font headers

• I
extern lineaport •_lnaport ;
extern fontfora • • _fonthdrs ;

lendif

----------------------- rnath.h

lifndef DL_MATHSTUFF
ldefine DL_MATHSTUFF

extern double dc_e ; I• e • I
extern double dcpi ; I • pi • I
extern double dcph ; I • pil2 • I
extern double dcpq; I • pil4 • I

615

616 Appendix E: Header Files

extern double dc ln2 ; I* ln 2 * I
extern double de in ; I * infimum *I
extern double dc su ; I * supremum * I
extern double dchf ; I * 0 . 6 •I
extern double de l ; I * 1 . 0 • I
extern double dc lh ; I• 1 . 6 * I
extern double dc l O ; I * 1 0 . 0 • I

extern double sinO ;
extern double c o s O ;
extern double tan() ;
extern double asinO ;
extern double ac os () ;
extern double atan() ;
extern double expO ;
extern double exp_() ;
extern double exp2 0 ;
extern double exp_2 () ;
extern double logO ;
extern double log2 0 ;
extern double mulpo wer2 0 ;
extern double powerd() ;
extern double poweri () ;
extern double powerl O () ;
extern double sqr () ;
extern double sqrt O ;
extern double dabs () ;
extern double dint () ;
extern double drand () ;
extern double fac () ;
extern double lngamma () ;
extern double matinvO ;

#define INF de in
#define SUP dcsu

#endif

obdefs . h

#ifndef DL_DBDEFS
#define DL_OBDEFS

#define B.DOT 0

#define MAX_LEN 81 I * max string l ength • I

#define MAX_DEPTH 8 I • m ax depth of search o r draw * I

#define IP_HOLLDif 0 I * inside patterns • I

Appendix E: Header Files

#define IP_1 PATT 1
#define IP_2PATT 2
#define IP_3PATT 3
#define IP_4PATT 4
#define IP_6PATT 6
#define IP_6PATT 6
#define IP_SOLID 7

#define MD_REPLACE 1
#define MD_TRANS 2
#define MD_XOR 3
#define MD_ERASE 4

#define ALL_ WHITE 0
#define S_AND_D 1
#define S_AND_NOTD 2
#define S_ONLY 3
#define NOTS_AND_D 4
#define D_ONLY 6
#define S_XOR_D 6
#define S_Oi_D 7
#define NOT_SO RD 8
#define NOT_SXORD 9
#define D_INVERT 1 0
#define NOT_D 1 1
#define S_Oil_NOTD 1 2
#define NOTS_Oi_D 1 3
#define NOT_SANDD 1 4
#define ALL_BLACK 1 6

#define IBM 3
#define SMALL 6

#define G_BOX 2 0
#define G_TEXT 2 1
#define G_BOXTEXT 22
#define G_IMAGE 23
#define G_PROGDEF 2 4
#define G_IBOX 2 6
#define G_BUTTON 2 6
#define G_BOXCHAR 27
#define G_STRING 28
#define G_FTEXT 2 9
#define G_FBOXTEXT 30
#define G_ICON 31
#define G_TITLE 32

#define NONE OxO
#define SELECTABLE Ox1
#define DEFAULT Ox2

I• gsx modes • I

I * bit blt rul e s •I

I * font types • I

I • Graphic types of obs • I

I • Obj e c t flags • I

617

618

#define EXIT Ox4
#define EDITABLE Ox8
#define !BUTTON Ox1 0
#define LASTOB Ox20
#define TOUCHEXIT Ox40
#define HIDETREE Ox80
#define INDIRECT Ox1 00

#define NORMAL OxO I • Obj e c t states •I
#define SELECTED Ox1
#define CROSSED Ox2
#define CHECKED Ox4
#define DISABLED Ox8
#define OUTLINED Ox1 0
#define SHADOWED Ox20

#define WHITE 0
#define BLACK 1
#define RED 2
#define GREEN 3
#define BLUE 4
#define CYAN 6
#define YELLOW &
#define MAGENTA 7
#define LWHITE 8
#define LBLACK 9
#define LRED 1 0
#define LGREEN 1 1
#define LBLUE 1 2
#define LCYAN 1 3
#define LYELLOW 1 4
#define LMAGENTA 16

I • Obj ect colora •I

Appendix E: Header Files

tdefine EDSTART 0 I • editable text field definitions • I
tdefine ED I NIT 1
#define EDCHAB. 2
#define ED END 3

#define TE_LEFT 0 I • editable text j ustification • I
#define TE_RIGHT 1
tdefine TE_CNTB. 2

I • Struc ture Defini tions • I

typedef a truc t obj e c t {
int ob_next ; I • - > obj e c t ' s next sibling • I
int ob_head ; I• -> he ad of obj ec t ' s children • I
int ob_tail ; I • - > tail of obj ec t ' s children • I
unsigned int ob_type ; I • type of obj ect- BOX , CHAB. , . . . • I
unsigned int ob_flags ; I • flags • I

Appendix E: Header Files

unsigned int ob_state ; I• state- SELECTED , OPEN , . . . •I
char • ob_spec ; I • " out" - -> anything else •I
int ob_x ; I • upper left c orner of obj e c t •I
int ob_y ; I • upper left c orner of obj e c t •I
int ob_width ; I• width of obj •I
int ob_height ; I• he ight of obj •I

} OBJECT ;

typedef struc t ore c t {
struc t ore c t • o_link ;
int o_x ;
int o _y ;
int o_w ;
int o_h ;

} OB.ECT ;

typedef struc t gpoint {
int p_x ;
int p_y ;

} GPOINT ;

typedef struc t gree t {
int g_x ;
int g_y ;
int g_w ;
int g_h ;

} GB.ECT ;

typedef struc t text_edinfo {
char • te_ptext ; I • ptr to text (must be 1st) • I
char • te_ptmplt ; I • ptr to template • I
char • te_pval i d ; I • ptr to validation chrs . • I
int te_font ; I • font • I
int te_j unk1 ; I • j unk word • I
int te_j ust ; I • j ustification- l eft , right . . . • I
int te_c olor ; I • color information word • I
int te_j unk2 ; I • j unk word • I
int te_thickness ; I • border thickness • I
int te_txtlen ; I • length of text s tring •I
int te_tmplen ; I • l ength of template string • I

} TEDINFO ;

typedef struc t i c on_block {
int • ib_pmask ;
int • ib_pdat a ;

619

620

char • ib_ptext ;
int ib_char ;
int ib_xchar ;
int ib_ychar ;
int ib_xicon ;
int ib_yicon ;
int ib_wicon ;
int ib_hicon ;
int ib_xtext ;
int ib_ytext ;
int ib_wtext ;
int ib_htext ;

} ICOHBLK ;

typedef struc t bit_block {
int •bi _pdata; I• ptr to bit 1orms data • I
int bi_wb ; I• width o1 1orm in bytes • I
int bi_hl ; I• height in linea • I
int bi_x ; I•
int bi_y ; I•
int bi_color ; I•

} BITBLK ;

typede1 atruc t appl _blk {
int (•ub_c ode) () ;
long ub_parm;

} APPLBLK ;

typede1 struc t parm_blk {
OBJECT *pb_tree ;
int pb_obj ;
int pb_prevatate ;
int pb_currstate ;

source x
sourc e y
1g c olor

int pb_x , pb_y , pb_w , pb_h ;
int pb_xc , pb_yc , pb_wc , pb_hc ;
long pb_parm ;

} PARMBLK ;

tendi1 DL_OBDEFS

in bit 1orm
in bit 1orm
o1 blt • I

osbind . h

• I
• I

Appendix E: Header Files

1 • • · • • 1
I * OSBI HDS . H tde1ines 1or GEMDOS , BIOS i XBIOS binding • I
I * started 612186 . . lob Zdybel • I
I • Copyright 1986 Atari Corp . • I
1 *1
ti1nde1 DL_OSBIND
tde1ine DL_OSBIND

extern long bios () ;

Appendix E: Header Files

extern long
extern long

xbios () ;
gemdos () ;

These are the data struc tures that are used by s o me of the
BIOS func tions . rpt

•I
typedef struc t {

int (•midi ve c) () ; I • KIDI-input •I
int (• vkbderr) () ; I • keyboard error •I
int (•vmiderr) () ; I • KIDI error • I
int (• s tatve c) () ; I • ikbd status packet
int (• mouseve c) () ; I• mouse packet •I
int (• c lockve c) 0 ; I• c lock packet • I
int (• j oyve c) () ; I• j oystick pac ket •I
int (• midisys) 0 ; I • system NIDI vector
int (• i kbdsys) () ; I • system IKBD vector

} kbdve c s ;

Use d in func tion Iorec ()
•I
typedef struc t {

char • ibuf ; I•
int ibufsiz ;
int ibufhd ; I •
int ibuftl ; I •
int ibuflo w ;
int ibufhigh ;

} iorec ;

pointer to queue •I
I • size of queue in bytes • I

head index of queue • I
tail index of queue •I

I • low water mark • I
I • high water mark • I

Use d by func tion Dfre e () .
•I
typedef struc t {

long b_fre e ;
long b_total ;
long b_secsiz ;
long b_clsiz ;

} disk_info ;

I • no . of free c lusters on drive • I
I• total no . of c lus ters on drive •I
I • no . of bytes in a sec tor •I
I • no . of sec tors in a c luster • I

Used by func tion Getmpb () .
•I
typedef struc t md {

struc t md •m_link ;
long m_start ;

I • next memory block •I
I • s tart address of block •I

621

622 Appendix E: Header Files

long
long

} md ;

m_length ; I• No . of bytes in block • I
m_ovn ; I • Memory block ' s owner ID • I

typedef struc t {
md •mp_mfl ; I • memory free list • I
md •mp_mal ; I• memory allocated list • I
md •mp_rover ; I • roving pointer (woof !) • I

} mpb ;

I •
Used b y func tion Getbpb () .

•I
typedef struc t _bpb {

}

• I

int sec tor_size_bytes ;
int c l_sec tors ;
int cl_bytes ;
int dir_length_sec tors ;
int FAT_size_sec tors ;
int FAT_sec tor ;
int data_sec tor ;
int total_data_c lusters ;
int flags ;

bpb ;

I•
I •
I•
I •

s e c tor number of the sec ond FAT . • I
sec tor number of the first data c luster • I
number of data clusters on the disk • I
Miscellaneous Flags . •I

This struc ture is a bit field that represents the different components of
the date and time words . A union struc ture vas use d so that a l ong
c ould be use d for the assignment from the gettime () func tion and the
bit-field struc ture c ould be use d to easily de c o de the long word .

Note : This data structure vas designed to work with Megamax C . Not all
compil ers allo c ate bit-fields in the same manner . rpt

typedef union {
struc t {

unsigned day
unsigned month
unsigned year
unsigned sec onds
unsigned minutes
unsigned hours

} part :
long realtime :

} datetime ;

typedef union {
struc t {

6 ;
4 ;
7 ;
6 ;
6 ;
6 ;

Appendix E: Header Files

unsigned day 6 ;
unsigned month 4 ;
unsigned year 7 :

} part ;
unsigned realdate ;

} dateinfo ;

typedef union {
struc t {

unsigned sec onds 6 ;
unsigned minutes 6 ;
unsi gned hours 6 :

} part :
unsigned realtime ;

} timeinfo ;

I • BIOS (trap13) •I
ldefine Getmpb (a) bios (O , a)
ldefine Bc onstat (a) (int) bios (l , a)
ldefine Bconin(a) bios (2 , a)
ldefine Bconout (a , b) bios (3 , a , b)
ldefine lwabs (a , b , c , d , e) bios (4 , a , b , c , d , e)
ldefine Setexc (a , b) bios (& , a , b)
ldefine Tickc al () bios (6)
ldefine Getbpb (a) (bpb *) bios (7 , a)
ldefine Bc ostat (a) bios (S , a)
ldefine Mediach(a) bios (9 , a)
ldefine Drvmap () bi o s (lO)
ldefine Kbahift (a) bio a (l l , a)

I * XBIOS (trap14) *I
ldefine Initmous (a , b , c) xbioa (O , a , b , c)
ldefine Phyabaa e () xbi o s (2)
ldefine Logbaae () xbios (3)
ldefine Getre z () (int) xbioa (4)
ldefine Setscreen(a , b , c) xbios (6 , a , b , c)
ldefine Setpalette (a) xbioa (6 , a)
ldefine Setcolor (a , b) (int) xbios (7 , a , b)
ldefine Floprd(a , b , c , d , e , f , g) (int) xbioa (S , a , b , c , d , e , f , g)
ldefine Flopwr (a , b , c , d , e , f , g) (int) xbioa (9 , a , b , c , d , e , f , g)
ldefine Flopfmt (a , b , c , d , e , f , g , h , i) (int) xbioa (lO , a , b , c , d , e , f , g , h , i)
ldefine Midiwa (a , b) xbios (1 2 , a , b)
ldefine Mfpint (a , b) xbios (1 3 , a , b)
ldefine Iore c (a) (i orec •) xbioa (1 4 , a) .
ldefine lsc onf (a , b , c , d , e , f) xbioa (1 6 , a , b , c , d , e , f)
ldefine Keytbl (a , b , c) xbios (1 6 , a , b , c)
ldefine Random() xbioa (17)
#define Protobt (a , b , c , d) xbioa (1 8 , a , b , c , d)
#define Flopver (a , b , c , d , e , f , g) (int) xbios (1 9 , a , b , c , d , e , f , g)

623

624 Appendix E: Header Files

#lde:fine Scrdmp () xbioa (20) I* WARNING : This Bind Incomple t e •I
#lde:fine
#de:fine
#de:fine
#de :fine
#de :fine
#de:fine
#de:fine
#de:fine
#de :fine
#de:fine
#de:fine
#de:fine
#de:fine
lde:fine
#de:fine
#de:fine
#de:fine
#de:fine
#de:fine

Curacon:f (a , b) (int) xbioa (2 1 , a , b)
Settime (a) xbioa (22 , a)
Gettime () xbioa (23)
Bioakeya () xbioa (24)
Ikbdwa (a , b) xbioa (26 , a , b)
Jdiaint (a) xbioa (26 , a)
Jenabint (a) xbio a (27 , a)
Giac c eaa (a , b) (char) xbioa (28 , a , b)
D:f:fgibit (a) xbioa (29 , a)
Dngibi t (a) xbioa (30 , a)
Xbtimer (a , b , c , d) xbioa (31 , a , b , c , d)
Doaound(a) xbio a (32 , a)
Setprt (a) (int) xbioa (33 , a)
Kbdvbaae () (kbdveca •) xbio a (34)
Kbrate (a , b) (int) xbioa (36 , a , b)
Prtblk() xbioa (36)
Vaync () xbioa (37)
Supexec (a) xbioa (38 , a)
Puntaea () xbioa (39)

I • GEMDDS (trap1) •I
#de:fine PtermO () gemdo a (OxO)
#de:fine Cc onin() (int) gemdo a (Ox1)
#de:fine Cc onout (a) gemdo a (Ox2 , a)
#de:fine Cauxin() (int) gemdoa (Ox3)
#de:fine Cauxout (a) gemdo a (Ox4 , a)
#de:fine Cprnout (a) gemdoa (Ox6 , a)
#de:fine Crawio (a) (int) gemdo a (Ox6 , a)
lde:fine Crawc in() (int) gemdoa (Ox7)
#de:fine Cnecin () (int) gemdoa (Ox8)
#de:fine Cconwa (a) gemdo a (Ox9 , a)
#de:fine Cc onrs (a) gemdo a (OxOa , a)
lde:fine Cc onia () (int) gemdos (OxOb)
#de:fine Daetdrv (a) gemdo a (OxOe , a)
#de:fine Cc onoa () (int) gemdoa (Ox1 0)
#de:fine Cprnoa () (int) gemdoa (Ox1 1)
#de:fine Cauxia () (int) gemdos (Ox1 2)
#de:fine Cauxos () (int) gemdo a (Ox1 3)
#de:fine Dgetdrv () (int) gemdoa (Ox19)
#de:fine Faetdta(a) gemdo a (Oxl a , a)
#de:fine Super(a) gemdo a (Ox20 , a) I* NDTE : Thi s name may change •I
#de:fine Tgetdate () (int) gemdo a (Ox2a)
#de:fine Taetdate (a) gemdo a (Ox2b , a)
lde:fine Tgettime () (int) gemdos (Ox2c)
lde:fine Taettime (a) gemdo s (Ox2 d , a)
#de:fine Fgetdta() gemdos (Ox2:f)
#de:fine Sveraion () (int) gemdos (Ox30)
#de:fine Ptermrea (a , b) gemdo s (Ox31 , a , b)
#de:fine D:fre e (a , b) gemdos (Ox36 , a , b)

Appendix E: Header Files 625

#define Dcreate (a) (int) gemdo s (Ox39 , a)
#define Ddelete (a) (int) gemdos (Ox3a , a)
#define Dsetpath(a) (int) gemdo a (Ox3b , a)
#define Fcreate (a , b) (int) gemdo s (Ox3c , a , b)
#define Fopen(a , b) (int) gemdos (Ox3d , a , b)
#define Fc lose (a) gemdo s (Ox3e , a)
#define Fread(a , b , c) gemdo s (Ox3f , a , b , c)
#define Fwrite (a , b , c) gemdos (Ox40 , a , b , c)
#define Fdelete (a) (int) gemdoa (Ox41 , a)
#define Faeek(a , b , c) gemdos (Ox42 , a , b , c)
#define Fattrib (a , b , c) (int) gemdos (Ox43 , a , b , c)
#define Fdup (a) (int) gemdo s (Ox46 , a)
#define Fforc e (a , b) (int) gemdo s (Ox46 , a , b)
#define Dge tpath (a , b) (int) gemdos (Ox47 , a , b)
#define Malloc (a) gemdos (Ox48 , a)
#define Mfree (a) (int) gemdo s (Ox49 , a)
#define Mshrink (a , b) (int) gemdos (Ox4a , O , a , b) /• NOTE : Null parameter added • /
#define Pexec (a , b , c , d) gemdos (Ox4b , a , b , c , d)
#define Pterm(a) ge mdos (Ox4c , a)
#define Fsfirs t (a , b) (int) gemdos (Ox4e , a , b)
#define Fsnext () (i nt) gemdos (Ox4f)
#define Frename (a , b , c) (int) gemdos (Ox66 , a , b , c)
#define Fdatime (a , b , c) (int) gemdos (Ox67 , a , b , c)

#endif

--------------------- p ortab . h ---------------------

1 * 1
I • PORTAB . H Pointle s s redefinitions of C synt ax . • /
I • Copyright 1 986 Atari Corp . •I
I • •I
I • WARNING : Use of this file may make your c o de incompatible with • /
I • C c ompil ers throughout the civilized world . • /
! * !
#ifndef DL_PORTAB
#define DL_PORTAB / • rpt 8- 2 1 - 87 • /

#define mc 68k 0

#define UCHARA 1
I •

* Standard type definitions
• I

#define BYTE char
#define BOOLEAN int
#define WORD int
#define UWORD unsigned int

#define LONG long
#define ULO NG long

I• if char is unsigned

I • Signed byte • I
I • 2 valued (true/false) •I

I• Signed word (16 bits)
I• uns igned word

I * signed long (32 bits)
I • Unsigned long • I

* I
• I

• I

Oil

626

Dl

Appendix E: Header Files

lddine REG register I• register variable • I
I define LOCAL auto I • Loc al var on 68000 • I
lddine EXTERN extern I • External vari able • I
Ide fine NLOCAL static I• Loc al to module • I
Ide fine GLOBAL 1* *1 I • Global variable • I
I define VOID 1 * *1 I • Voi d 1unc tion return • I

li1nde1 DEFAULT I • This means that def ault i s de1ine d i n obdefa . h • I
Ide fine DEFAULT int I• Default s i ze • I
lendi1

IUdef UCHAU
lddine UBYTE char I • Unsigned byte • I
telae

lddine UBYTE unsigned char I• Unsigned byte • I
lendi1

li1nde1 FAILURE
1• • • · • • 1
I • Mis c ellaneous De1initiona : • I
1• • · 1
lde1ine FAILURE (- 1) I • Func tion 1 ailure re turn val • I
lde1ine SUCCESS (0) I • Func tion s uc c e s s return val •I
ldefine YES 1 I • 11 TRUE11 • I
ldefine N O 0 I • " FALS E" • I
lde1ine FO REVER 1or (: :) I• In1inite loop dec l aration • I
lde1ine NULL 0 I • Nul l pointer value • I
lde1ine NULLPTR (char •) 0 I• • I
lde1ine EOF (- 1) I• EOF Value • I
lde1ine TRUE (1) I • Func tion TRUE value • I
lde1ine FALSE (0) I • Func tion FALSE value • I
lendi1 .

lendi1 DL_PORTAB

----------- stdio . h
li1nde 1 DL_STDIO

lde1ine DL_STDIO

lde1ine _BUFSIZE 6 1 2
lde1ine BUFSIZ _BUFSIZE

lde1ine _NFILE 20

typede1 atruc t _iobu1 {
c har • _ptr :

int _cnt :

c har • _base :

int _n ag :

int _1d :

I • Unix c ompatable • I

Appendix E: Header Files

int _bufsize ; I• buffer size for this file •I
} FILE ;
extern FILE _iob [_NFILE] ;

#define s tdin (lr_iob [O])
#define stdout (lr_iob [1])
#define stderr (lr_iob [2])
#define STDIH 0
#define STDOUT 1
#define STDEB.B. STDOUT
ffdefine STDAUX 2
ffdefine STDPB.T 3

ffdefine _B.EI.D 01
ffdefine _'lfB.ITE 02
ffdefine _APPEND 04
#define _UNBUF 010
#define _BIGBUF 020
#define _EOF 040
#define _EB.B. 0100
#define _DIRTY 0200 I• buffer was changed •I
#define _LINBUF 0400
#define _I FLUSH 01 000 I • (ONLY STDIN) Flush stdout
#define _RDWB. 02000

when filling •I

#define NULL OL I• must be long s ince it can be passed as a parameter •I
#define EOF (- 1)

#define getc (p) (- - (p) - >_cnt >= 0 ? * (p) ->_ptr++ lr 0377 : _1 i llbuf (p))
#define getchar () getc (stdin)
#define putc (x , p) (- - (p) ->_cnt >• 0 ? (• (p) - > _ptr++ = (x)) lr 0377 : \

_flushbu1 ((x) , p))
#define putchar (x) putc (x , stdout)
#define feof (p) ((p) - >_flaglr_EOF)
#define 1error (p) ((p) - >_1laglr_ERR)
#define c l e arerr(p) ((p) - >_flag lr= - c _ERR I _EOF))
#define fileno (p) ((p) - >_fd)
#define rand () (int) (_seed = _se e d • 6907 + 1 30263)
#define srand(x) _s e e d = x ;

extern FILE •fopen() , *fdopen() , •freopen () ;
extern long 1tell () ;
extern char • gets () ;
extern char *f ge ts () ;
extern long _se e d ;

I•
• These are not normally part of stdio . h , but are inc luded here to help
* reduc e errors made by beginning programmers .
• I

627

628 Appendix E: Header Files

extern char • sprintf () , •malloc () , • lmalloc () , • c alloc () , • lcalloc () ;
extern char • alloc a () , •realloc () , •lreallo c () ;
extern long labs () , lseek() ;

extern int errno ; I • defined in exit . c • I

typedef l ong j mp_buf [10] ;

lendif I • DL_STDIO • I

----------- strings. h

I • string . h 4 . 1 83106126 • I
#ifndef DL_STIINGS

ldefine DL_STiiNGS

I •
• External func tion definitions
* for routines described in string(3) .
•I

extern char • index () ;
extern char •rindex() ;
extern c har • strcat () ;
extern char • strcpy () ;
extern char • strnc at () ;
extern char •strncpy () ;
extern char •xtrc at () ;
extern char •xtrcpy () ;
extern char •xtrncpy () ;
extern int strcmp () ;
extern int a trlen() ;
extern int atrncmp () ;

lendif I • DL_STiiNGS • I

Index

preprocessor, 14
68901 MFP, 493 , 506, 525

A

.A extension, 8
a_bitblit() , 540
abs() , 1 10
.ACC extension, 8
AC_CLOSE, 183
AC_OPEN, 164, 183
a_copyraster() , 541
acos() , 134
address registers, 24
a_drawsprite() , 542
AES , 163
aJillpoly() , 543
aJillrect() , 545
a_getpixel() , 546
a_hidemouse() , 547
a_hline() , 548
ajnit() , 549
aJine() , 550
alloca() , 132
angles, 309
APPLBLK, 245
appLexit() , 165 , 172
applJind() , 173
application ID , 165
appLinit() , 165 , 174
appLread() , 175
appLtplay() , 176

appLtrecord() , 177
appLwrite{) , 178
a_putpixel() , 551
argc, 106, 107
argv, 106, 107
a_showmouse{) , 552
asin() , 134
asm, 17
assembly language, 17
atan() , 134
a_textblit() , 553
atof() , 1 1 1
atoi() , 159
atol() , 159
a_transformmouse() , 554
a_undrawsprite() , 556
auto, 18
auto variables, 23
AUX: , 106, 422

B

base page variable, 419
batch, 45
hemp() , 1 12
Bconin() , 422
Bconout() , 422
Bconstat() , 422
bcopy() , 1 1 2
Bcostat() , 422
BEG .MCTRL, 282
binary mode, 105 , 124

629

-

630

1111

BIOS I/0 , 106
Bioskeys() , 489
Bit fields, 1 8
BITBLK, 244
BSS segment, 26, 577
buffered I/0, 106
BUFSIZ, 1 53
bzero() , 1 1 2

c
.C extension, 8
calloc() , 107, 132
carriage return, 105
cat utility, 99
Causout() , 420
Cauxin() , 420
Cauxis() , 420
Cauxos() , 420
CC environment variable, 30
CCOM environment variable, 30
Cconin{) , 425
Cconis() , 425
Cconos() , 425
Cconout() , 425
Cconrs() , 425
Cconws() , 425
.CFG extension, 8
change....aux() , 559
changeJtem() , 559
char, 18
char type, 13
character constants, 15
CHECKED, 250
choose, 5
CINCLUDE environment variable, 30
CINIT environment variable, 31
clearerr() , 1 22
clear _tree() , 559
CLIB environment variable, 31
click, 5

clipboard, 271
close() , 113
Cnecin() , 425
command line execution, 45
comments, 2 1
CON: , 106, 422
constant expression, 22
control-click, 5
control-drag , '5
cos() , 134
cp utility, 99
Cprnos() , 499
Cprnout() , 499
Crawcin() , 425
Crawio() , 425
creat() , 1 15 , 147
CROSSED, 250
ctype.h, 593
Cursconf() , 427
cursor, 5

D

dabs() , 134
data registers, 24
DATA segment, 26, 577
DC pseudo op, 22
Dcreate() , 428
Ddelete() , 429
.DEF extension, 8
DEFAULT, 248
#define, 14, 24
define value option, 55
define.h, 594
desk accessory, 61, 164
desktop window, 282
development cycle, 8
device I/0 , 106
Dfree() , 430
Dgetdrv() , 435
Dgetpath() , 436

INDEX

INDEX

dint () , 134
DISABLED, 250
disk cache, 32
Dosound() , 432
double type, 13
double-click, 5
drag, 5
Drvmap () , 434
Dsetdrv () , 435
Dsetpath() , 436
DTA, 460
DTA (Disk Transfer Address) , 446
dump utility, 99

E

EDITABLE, 249
effective address, 2 1
enum type, 13
enumeration types, 15
environ, 118
event_multi() , 164
evnt_button() , 186
evnt_dclick () , 188
evnt..keybd() , 189
evnt..mesag () , 190
evnt..mouse() , 191
evnt..multi() , 193
evnt_timer() , 196
execv() , 1 18
execve() , 1 18
exit() , 120 , 121
EXIT, 249
_exit() , 120
exp() , 134
exp10() , 134
exp2 () , 134
extern, 18 , 24
external reference, 57
external variables, 23

F

fac() , 134
Fattrib () , 437
fclose () , 121
Fclose() , 439
fcntl.h, 594
Fcreate () , 440
Fdatime() , 442
F delete() , 441
fdopen() , 123
Fdup() , 444
feof() , 122
ferror() , 122 , 143
ffiush() , 121
Fforce() , 445
fgetc () , 127
Fgetdta() , 446
fgets() , 129
filefmt.h, 594
fileno() , 122
float type, 13
Flopfmt () , 447
Floprd() , 447
Flopver() , 447
Flopwr() , 447
FMD..FINISH, 287
fopen() , 123
Fopen() , 452
form_alert () , 199, 200, 202
form_center() , 203
foriiLdial() , 198 , 204, 287
foriiLdo() , 198, 206
form_error() , 200, 207
forward pointer reference, 16
...fpregO, 20, 23
fprintf() , 140
...fprintf() , 140
fputc() , 143
fputs() , 144
fread() , 125
Fread() , 456

631

-

632

D

free() , 107, 132
Frename() , 457
freopen() , 123
fscanf() , 150
fseek() , 126
Fseek() , 458
fseUnput() , 2 11
Fsetdta() , 446
Fsfirst() , 460
Fsnext() , 460
ftell() , 126
function arguments, 23
fwrite() , 125
Fwrite() , 456

G

G...BOX, 247
G...BOXCHAR, 247
G...BOXTEXT, 241 , 247
G...BUTTON, 247
gembind.h, 597
gemdefs .h , 281 , 607
Getbpb() , 463
getc() , 127
getchar() , 127
getenv() , 128
Getmpb() , 464
Getrez() , 510
gets() , 129
Gettime() , 466
getw() , 127
G...FBOXTEXT, 241 , 248
G ...FTEXT, 241 , 248
Giaccess() , 469
GJBOX, 247
GJCON, 242 , 248
GJMAGE, 244, 247
global array, 261
G_FROGDEF, 245 , 247
graLdragbox() , 214

graLgrowbox() , 215
graf.JJ.andle() , 216
graf.mkstate() , 217
graf.mouse() , 218
graf.movebox() , 219
graLrubberbox() , 220
graf..shrinkbox() , 221
graf..slidebo'f() , 222
graLwatchbox() , 223
G..STRING, 247
G_TEXT, 241 , 247
G _TITLE, 248

H

.H extension, 8
handle, 307
heap, 418
HIDETREE, 249

I

ICONBLK, 242
identifiers, 14
IEEE, 18
lkbdws() , 475
#include, 14
include path option, 56
index() , 157
INDIRECT, 249
lnitmous() , 480
in-line assembler, 17
insertion point , 5
int type, 13
1/0 redirection, 106
Ioree() , 482
isalnum() , 1 16
isalpha() , 1 16
isascii() , 1 16
isatty() , 130
iscntrl() , 1 16
isdigit() , 1 1 6

INDEX

INDEX

islower() , 1 16
isprint() , 1 16
ispunct(} , 1 16
isspace() , 1 16
isupper() , 1 16
isxdigit() , 1 16

J
Jdisint() , 493
Jenabint() , 493
Jump table, 19

K

Kbdvbase() , 485
Kbrate, 484
Kbshift() , 488
Keyboard port , 422
Keytbl() , 489
K&R, 3

L

label, assembly, 22
labels, 21
labs() , 1 10
LASER.CFG , 27
LASTOB, 249
U.TEJX, i
lcalloc() , 132
LIBPATH environment variable, 31
line feed, 105
line separator, 105
line-A graphics routines, 531
linea.h, 611
LINKER environment variable, 30
lmalloc() , 132
.LNK extension, 8
log () , 134
log10() , 134
log2 () , 134
Logbase() , 510
long type, 13

longjmp() , 155
lrealloc() , 132
ls utility, 99
lsbrk() , 149
lseek() , 131

M

main() , 490
MAKE environment variable, 30
malloc() , 107 , 132
Malloc() , 490
math.h, 615
matinv() , 134
max() , 560
Mediach() , 492
menu_bar() , 225 , 226, 230
menujcheck() , 231
menujenable() , 232
menu_register() , 164, 183, 233
menu_text() , 234
menu_tnormal() , 235
message event , 179
MFDB, 308 , 375 , 378 , 380
MFP, 493
Mfpint() , 493
Mfree() , 490
MIDI port , 422 , 485
Midiws() , 495
min() , 560
mkdir utility, 99
MN_.REDRAW, 180
MN...SELECTED, 180
Mshrink() , 490
mulpower2() , 134
mv utility, 99

N

name scoping, 16
NDC coordinates, 307
NORMAL, 250

633

-

634

ID

0
.0 extension, 8
obdefs.h, 616
O..BINARY, 107, 1 15 , 138 , 147, 162
objc..add() , 251
objc_change() , 252
objc_delete() , 254
objc_draw() , 255
objc_edit() , 256
objcJind() , 258
objc_offset() , 259
objc_order() , 260
obj_draw() , 198
OBJECT, 237, 239
object format, 577
object trees, 81
O_CREAT, 138
Offgibit() , 469
onexit() , 137
Ongibit() , 469
Opcodes, 21
open() , 138 , 147
optimizations, 18
O.RDONLY, 138
O.RDWR, 138
osbind.h, 620
O _TRUNC, 138
OUTLINED, 250
O _WRONLY, 138

p
parameters, 20
PARMBLK, 245
PATH environment variable, 31
perror() , 139
Pexec() , 497

Physbase() , 510
portab.h, 625
powerd() , 134
poweri() , 134

Preprocessor, 13
press, 5
.PRG extension, 8
printf() , 140
Protobt() , 500
PRT: , 106, 422
pt...2rect() , 561
pt..add() ' 562
pt_equal(}, 563
Pterm() , 502
PtermO() , 502
Ptermres() , 502
ptjnrect() , 564
pt...set() , 565
pt...sub() , 566
Puntaes() , 503
putc() , 143
putchar() , 143
puts() , 144
putw() , 143

Q
qsort() , 145

R

RAM resident, 28
RAM resident list , 28
rand() , 146
Random() , 504
RBUTTON, 249
RC coordinates, 307
RCP, 198
rcp.prg, 81
read() , 106, 147
realloc() , 132
rect_empty() , 567
rect_equal() , 568
rectjnset() , 569
rectjntersect() , 570
rect_offset() , 571

INDEX

INDEX

rect....set() , 572
rect_union() , 5 73
register names, 2 1
register variables, 2 1 , 2 3 , 24
regular expressions, 95
rename() , 148
resource, 8 1
resource file, 8 1
rewind() , 126
rindex() , 157
rm utility, 99
rmdir utility, 99
RS232 port , 420
.RSC extension, 8
Rsconf() , 505
rsrc_free() , 263
rsrc..gaddr() , 167 , 198 , 264
rsrcJoad() , 165 , 167, 225 , 226, 261 ,
266
rsrc_obfix() , 267
rsrc....saddr() , 268
Rwabs() , 507

s
sbrk() , 149
scanf() , 150
Scrdmp() , 509
scroll bars, 6

scrp...read() , 272
scrp_write() , 273
select , 5
SELECTABLE, 248
SELECTED, 250
selection range, 90
selector box, 7
setbuf() , 106, 1 53
setbuffer() , 153
Setcolor() , 513
Setexc() , 514
setjmp() , 155

setlinebuf() , 153
Setpalette() , 5 15
Setprt() , 5 16
Setscreen() , 510
Settime() , 466
SHADOWED, 250
sheLenvrn() , 276
sheLfind() , 277
shel...read() , 278
sheLwrite() , 279
shift-click, 5
shift-drag , 5
short type , 13
sin() , 134
size utility, 99
sprintf() , 140
....sprintf() , 140
sqr() , 134
sqrt() , 134
srand() , 146
sscanf() , 150
stack dump, 49
stack space, 107
static, 18 , 24
static variables, 23
stderr, 106, 123
stdin, 106, 123
stdio.h, 626
stdout, 106, 123
....stksize, 107, 133
strcat() , 157
strcmp() , 157
strcpy() , 157
stream files, 106
stream 1/0, 106
strings.h, 628
strlen() , 157
strncat() , 157
strncmp() , 157
strncpy() , 157

635

636

1111

strtol() , 159
structs, 18
structure assignment, 15
structure member names, 16
stuffbits() , 574
stuffhex() , 575
Super() , 5 17
Supexec() , 5 19
Sversion() , 520
sys_errlist , 139
sysJlerr, 139

T

tan() , 134
TEDINFO , 240
text marks, 42
TEXT segment, 26, 577
Tgetdate() , 522
Tgettime() , 522
Tickcal() , 521
timer event , 183
toascii() , 1 14
tolower() , 1 14
_tolower() , 1 14
tools (Laser Shell) , 28
. TOS extension, 8
TOUCHEXIT, 249
toupper() , 1 14
_toupper() , 1 14
TPA, 490
TPA (Transient Program Area) , 418
Tsetdate() , 522
Tsettime() , 522
. TTP extension, 8
type, 5

u
unbuffered 1/0 , 106
underscore, 14

ungetc() , 1 60

union assignment, 15
unions, 18
UNIX, 149
unlink() , 161
unsigned, 18
unsigned char type, 13
unsigned long type, 13
unsigned type, 13
untranslated, ' 105
untranslated mode, 124
update policy, 2

v
v...arc() , 312
variable names, 14
v_bar() , 3 14
v _circle() , 3 15
v_clrwk() , 316
v_clsvwk() , 317
v_clswk() , 318
v_contourfill() , 319
v _curd own() , 320
v _cur home() , 320
v _curleft() , 320
v _curright() , 320
v _curtext() , 321
v_curup() , 320
VDI, 307
v _eeol() , 322
v _eeos() , 323
v _ellarc() , 324
v _ellipse() , 325
v _ell pie() , 326
v _enter_cur() , 327
vex_butv() , 328
vex_curv() , 330
v_exit_cur() , 332
vexJnotv() , 333
vex_timv() , 335
vJillarea() , 337

INDEX

INDEX

v ...get_pixel() , 338
v ...gtext() , 339
v ..hide_c() , 340
virtual workstation, 307 , 342
v _justified() , 341
void type, 13
v_opnvwk() , 342
v_opnwk() , 345
v _pieslice () , 350
v_pline() , 351
v_pmarker() , 352
vq_chcells() , 354
vq_color() , 355
vq_curaddress() , 357
vq_extnd() , 358
vqLattributes() , 360
vq_key...s() , 361
vqLattributes() , 363
vqm_attributes() , 364
vq_mouse() , 365
vqt_attributes{) , 366
vqt_extent{) , 367
vqt_fontinfo() , 368
vqt..name() , 370
vqt_width() , 371
v_rbox() , 373
v _rfbox() , 37 4
vro_cpyfm() , 375
vr_recfl() , 377
vrt_cpyfm{) , 378
vr_trnfm() , 380
v_rvoff() , 381
v_rvon() , 381
vsc_form() , 382
vs_clip() , 287, 384
vs_color() , 385
vs_curaddress() , 386
vsf_color() , 387
vsUnterior() , 388
vsf_perimeter() , 389

vsf...style() , 390
vsf_udpat() , 392
v...show_c() , 394
vsLcolor() , 395
vsLends() , 396
vsLtype() , 397
vsLudsty() , 398
vsLwidth() , 399
vsm_color() , 400
vsm..height() , 401
vsm_type() , 402
vsm_valuator() , 403
vst_alignment() , 404
vst_color() , 406
vst_effects() , 407
vst_font() , 409
vst..height() , 410
vstJoad_fonts() , 41 1
vst_point() , 412
vst_rotation() , 413
vst_unload_fonts() , 414
vswr_mode() , 415
Vsync() , 524
v _updwk() , 416

w
WF ..NEWDESK, 282
WF _ WORKXYWH, 282
wind_calc() , 283 , 292
wind_close() , 294
wind_create() , 295
wind_delete() , 297
windJind() , 298
wind...get() , 282, 299
wind_open() , 302
wind...set() , 282, 303
wind_update() , 163 , 282, 305
WM.ARROWED, 181
WM_CLOSED, 181
WM...FULLED, 181

637

IIIII

638

WMJISLID, 182
WM..MOVED, 182
WM..NEWTOP, 183
WM..REDRAW, 283, 287
WM...SIZED, 182
WM_TOPPED, 181
WM_VSLID, 182
workstation, 307 , 345
write() , 106, 162
write through, 30

X

Xbtimer() , 525
xstrcat () , 157
xstrcpy () , 157
xstrncpy () , 157

INDEX

	Manual_Page_001
	Manual_Page_002_1L
	Manual_Page_002_2R
	Manual_Page_003_1L
	Manual_Page_003_2R
	Manual_Page_004_1L
	Manual_Page_004_2R
	Manual_Page_005_1L
	Manual_Page_005_2R
	Manual_Page_006_1L
	Manual_Page_006_2R
	Manual_Page_007_1L
	Manual_Page_007_2R
	Manual_Page_008_1L
	Manual_Page_008_2R
	Manual_Page_009_1L
	Manual_Page_009_2R
	Manual_Page_010_1L
	Manual_Page_010_2R
	Manual_Page_011_1L
	Manual_Page_011_2R
	Manual_Page_012_1L
	Manual_Page_012_2R
	Manual_Page_013_1L
	Manual_Page_013_2R
	Manual_Page_014_1L
	Manual_Page_014_2R
	Manual_Page_015_1L
	Manual_Page_015_2R
	Manual_Page_016_1L
	Manual_Page_016_2R
	Manual_Page_017_1L
	Manual_Page_017_2R
	Manual_Page_018_1L
	Manual_Page_018_2R
	Manual_Page_019_1L
	Manual_Page_019_2R
	Manual_Page_020_1L
	Manual_Page_020_2R
	Manual_Page_021_1L
	Manual_Page_021_2R
	Manual_Page_022_1L
	Manual_Page_022_2R
	Manual_Page_023_1L
	Manual_Page_023_2R
	Manual_Page_024_1L
	Manual_Page_024_2R
	Manual_Page_025_1L
	Manual_Page_025_2R
	Manual_Page_026_1L
	Manual_Page_026_2R
	Manual_Page_027_1L
	Manual_Page_027_2R
	Manual_Page_028_1L
	Manual_Page_028_2R
	Manual_Page_029_1L
	Manual_Page_029_2R
	Manual_Page_030_1L
	Manual_Page_030_2R
	Manual_Page_031_1L
	Manual_Page_031_2R
	Manual_Page_032_1L
	Manual_Page_032_2R
	Manual_Page_033_1L
	Manual_Page_033_2R
	Manual_Page_034_1L
	Manual_Page_034_2R
	Manual_Page_035_1L
	Manual_Page_035_2R
	Manual_Page_036_1L
	Manual_Page_036_2R
	Manual_Page_037_1L
	Manual_Page_037_2R
	Manual_Page_038_1L
	Manual_Page_038_2R
	Manual_Page_039_1L
	Manual_Page_039_2R
	Manual_Page_040_1L
	Manual_Page_040_2R
	Manual_Page_041_1L
	Manual_Page_041_2R
	Manual_Page_042_1L
	Manual_Page_042_2R
	Manual_Page_043_1L
	Manual_Page_043_2R
	Manual_Page_044_1L
	Manual_Page_044_2R
	Manual_Page_045_1L
	Manual_Page_045_2R
	Manual_Page_046_1L
	Manual_Page_046_2R
	Manual_Page_047_1L
	Manual_Page_047_2R
	Manual_Page_048_1L
	Manual_Page_048_2R
	Manual_Page_049_1L
	Manual_Page_049_2R
	Manual_Page_050_1L
	Manual_Page_050_2R
	Manual_Page_051_1L
	Manual_Page_051_2R
	Manual_Page_052_1L
	Manual_Page_052_2R
	Manual_Page_053_1L
	Manual_Page_053_2R
	Manual_Page_054_1L
	Manual_Page_054_2R
	Manual_Page_055_1L
	Manual_Page_055_2R
	Manual_Page_056_1L
	Manual_Page_056_2R
	Manual_Page_057_1L
	Manual_Page_057_2R
	Manual_Page_058_1L
	Manual_Page_058_2R
	Manual_Page_059_1L
	Manual_Page_059_2R
	Manual_Page_060_1L
	Manual_Page_060_2R
	Manual_Page_061_1L
	Manual_Page_061_2R
	Manual_Page_062_1L
	Manual_Page_062_2R
	Manual_Page_063_1L
	Manual_Page_063_2R
	Manual_Page_064_1L
	Manual_Page_064_2R
	Manual_Page_065_1L
	Manual_Page_065_2R
	Manual_Page_066_1L
	Manual_Page_066_2R
	Manual_Page_067_1L
	Manual_Page_067_2R
	Manual_Page_068_1L
	Manual_Page_068_2R
	Manual_Page_069_1L
	Manual_Page_069_2R
	Manual_Page_070_1L
	Manual_Page_070_2R
	Manual_Page_071_1L
	Manual_Page_071_2R
	Manual_Page_072_1L
	Manual_Page_072_2R
	Manual_Page_073_1L
	Manual_Page_073_2R
	Manual_Page_074_1L
	Manual_Page_074_2R
	Manual_Page_075_1L
	Manual_Page_075_2R
	Manual_Page_076_1L
	Manual_Page_076_2R
	Manual_Page_077_1L
	Manual_Page_077_2R
	Manual_Page_078_1L
	Manual_Page_078_2R
	Manual_Page_079_1L
	Manual_Page_079_2R
	Manual_Page_080_1L
	Manual_Page_080_2R
	Manual_Page_081_1L
	Manual_Page_081_2R
	Manual_Page_082_1L
	Manual_Page_082_2R
	Manual_Page_083_1L
	Manual_Page_083_2R
	Manual_Page_084_1L
	Manual_Page_084_2R
	Manual_Page_085_1L
	Manual_Page_085_2R
	Manual_Page_086_1L
	Manual_Page_086_2R
	Manual_Page_087_1L
	Manual_Page_087_2R
	Manual_Page_088_1L
	Manual_Page_088_2R
	Manual_Page_089_1L
	Manual_Page_089_2R
	Manual_Page_090_1L
	Manual_Page_090_2R
	Manual_Page_091_1L
	Manual_Page_091_2R
	Manual_Page_092_1L
	Manual_Page_092_2R
	Manual_Page_093_1L
	Manual_Page_093_2R
	Manual_Page_094_1L
	Manual_Page_094_2R
	Manual_Page_095_1L
	Manual_Page_095_2R
	Manual_Page_096_1L
	Manual_Page_096_2R
	Manual_Page_097_1L
	Manual_Page_097_2R
	Manual_Page_098_1L
	Manual_Page_098_2R
	Manual_Page_099_1L
	Manual_Page_099_2R
	Manual_Page_100_1L
	Manual_Page_100_2R
	Manual_Page_101_1L
	Manual_Page_101_2R
	Manual_Page_102_1L
	Manual_Page_102_2R
	Manual_Page_103_1L
	Manual_Page_103_2R
	Manual_Page_104_1L
	Manual_Page_104_2R
	Manual_Page_105_1L
	Manual_Page_105_2R
	Manual_Page_106_1L
	Manual_Page_106_2R
	Manual_Page_107_1L
	Manual_Page_107_2R
	Manual_Page_108_1L
	Manual_Page_108_2R
	Manual_Page_109_1L
	Manual_Page_109_2R
	Manual_Page_110_1L
	Manual_Page_110_2R
	Manual_Page_111_1L
	Manual_Page_111_2R
	Manual_Page_112_1L
	Manual_Page_112_2R
	Manual_Page_113_1L
	Manual_Page_113_2R
	Manual_Page_114_1L
	Manual_Page_114_2R
	Manual_Page_115_1L
	Manual_Page_115_2R
	Manual_Page_116_1L
	Manual_Page_116_2R
	Manual_Page_117_1L
	Manual_Page_117_2R
	Manual_Page_118_1L
	Manual_Page_118_2R
	Manual_Page_119_1L
	Manual_Page_119_2R
	Manual_Page_120_1L
	Manual_Page_120_2R
	Manual_Page_121_1L
	Manual_Page_121_2R
	Manual_Page_122_1L
	Manual_Page_122_2R
	Manual_Page_123_1L
	Manual_Page_123_2R
	Manual_Page_124_1L
	Manual_Page_124_2R
	Manual_Page_125_1L
	Manual_Page_125_2R
	Manual_Page_126_1L
	Manual_Page_126_2R
	Manual_Page_127_1L
	Manual_Page_127_2R
	Manual_Page_128_1L
	Manual_Page_128_2R
	Manual_Page_129_1L
	Manual_Page_129_2R
	Manual_Page_130_1L
	Manual_Page_130_2R
	Manual_Page_131_1L
	Manual_Page_131_2R
	Manual_Page_132_1L
	Manual_Page_132_2R
	Manual_Page_133_1L
	Manual_Page_133_2R
	Manual_Page_134_1L
	Manual_Page_134_2R
	Manual_Page_135_1L
	Manual_Page_135_2R
	Manual_Page_136_1L
	Manual_Page_136_2R
	Manual_Page_137_1L
	Manual_Page_137_2R
	Manual_Page_138_1L
	Manual_Page_138_2R
	Manual_Page_139_1L
	Manual_Page_139_2R
	Manual_Page_140_1L
	Manual_Page_140_2R
	Manual_Page_141_1L
	Manual_Page_141_2R
	Manual_Page_142_1L
	Manual_Page_142_2R
	Manual_Page_143_1L
	Manual_Page_143_2R
	Manual_Page_144_1L
	Manual_Page_144_2R
	Manual_Page_145_1L
	Manual_Page_145_2R
	Manual_Page_146_1L
	Manual_Page_146_2R
	Manual_Page_147_1L
	Manual_Page_147_2R
	Manual_Page_148_1L
	Manual_Page_148_2R
	Manual_Page_149_1L
	Manual_Page_149_2R
	Manual_Page_150_1L
	Manual_Page_150_2R
	Manual_Page_151_1L
	Manual_Page_151_2R
	Manual_Page_152_1L
	Manual_Page_152_2R
	Manual_Page_153_1L
	Manual_Page_153_2R
	Manual_Page_154_1L
	Manual_Page_154_2R
	Manual_Page_155_1L
	Manual_Page_155_2R
	Manual_Page_156_1L
	Manual_Page_156_2R
	Manual_Page_157_1L
	Manual_Page_157_2R
	Manual_Page_158_1L
	Manual_Page_158_2R
	Manual_Page_159_1L
	Manual_Page_159_2R
	Manual_Page_160_1L
	Manual_Page_160_2R
	Manual_Page_161_1L
	Manual_Page_161_2R
	Manual_Page_162_1L
	Manual_Page_162_2R
	Manual_Page_163_1L
	Manual_Page_163_2R
	Manual_Page_164_1L
	Manual_Page_164_2R
	Manual_Page_165_1L
	Manual_Page_165_2R
	Manual_Page_166_1L
	Manual_Page_166_2R
	Manual_Page_167_1L
	Manual_Page_167_2R
	Manual_Page_168_1L
	Manual_Page_168_2R
	Manual_Page_169_1L
	Manual_Page_169_2R
	Manual_Page_170_1L
	Manual_Page_170_2R
	Manual_Page_171_1L
	Manual_Page_171_2R
	Manual_Page_172_1L
	Manual_Page_172_2R
	Manual_Page_173_1L
	Manual_Page_173_2R
	Manual_Page_174_1L
	Manual_Page_174_2R
	Manual_Page_175_1L
	Manual_Page_175_2R
	Manual_Page_176_1L
	Manual_Page_176_2R
	Manual_Page_177_1L
	Manual_Page_177_2R
	Manual_Page_178_1L
	Manual_Page_178_2R
	Manual_Page_179_1L
	Manual_Page_179_2R
	Manual_Page_180_1L
	Manual_Page_180_2R
	Manual_Page_181_1L
	Manual_Page_181_2R
	Manual_Page_182_1L
	Manual_Page_182_2R
	Manual_Page_183_1L
	Manual_Page_183_2R
	Manual_Page_184_1L
	Manual_Page_184_2R
	Manual_Page_185_1L
	Manual_Page_185_2R
	Manual_Page_186_1L
	Manual_Page_186_2R
	Manual_Page_187_1L
	Manual_Page_187_2R
	Manual_Page_188_1L
	Manual_Page_188_2R
	Manual_Page_189_1L
	Manual_Page_189_2R
	Manual_Page_190_1L
	Manual_Page_190_2R
	Manual_Page_191_1L
	Manual_Page_191_2R
	Manual_Page_192_1L
	Manual_Page_192_2R
	Manual_Page_193_1L
	Manual_Page_193_2R
	Manual_Page_194_1L
	Manual_Page_194_2R
	Manual_Page_195_1L
	Manual_Page_195_2R
	Manual_Page_196_1L
	Manual_Page_196_2R
	Manual_Page_197_1L
	Manual_Page_197_2R
	Manual_Page_198_1L
	Manual_Page_198_2R
	Manual_Page_199_1L
	Manual_Page_199_2R
	Manual_Page_200_1L
	Manual_Page_200_2R
	Manual_Page_201_1L
	Manual_Page_201_2R
	Manual_Page_202_1L
	Manual_Page_202_2R
	Manual_Page_203_1L
	Manual_Page_203_2R
	Manual_Page_204_1L
	Manual_Page_204_2R
	Manual_Page_205_1L
	Manual_Page_205_2R
	Manual_Page_206_1L
	Manual_Page_206_2R
	Manual_Page_207_1L
	Manual_Page_207_2R
	Manual_Page_208_1L
	Manual_Page_208_2R
	Manual_Page_209_1L
	Manual_Page_209_2R
	Manual_Page_210_1L
	Manual_Page_210_2R
	Manual_Page_211_1L
	Manual_Page_211_2R
	Manual_Page_212_1L
	Manual_Page_212_2R
	Manual_Page_213_1L
	Manual_Page_213_2R
	Manual_Page_214_1L
	Manual_Page_214_2R
	Manual_Page_215_1L
	Manual_Page_215_2R
	Manual_Page_216_1L
	Manual_Page_216_2R
	Manual_Page_217_1L
	Manual_Page_217_2R
	Manual_Page_218_1L
	Manual_Page_218_2R
	Manual_Page_219_1L
	Manual_Page_219_2R
	Manual_Page_220_1L
	Manual_Page_220_2R
	Manual_Page_221_1L
	Manual_Page_221_2R
	Manual_Page_222_1L
	Manual_Page_222_2R
	Manual_Page_223_1L
	Manual_Page_223_2R
	Manual_Page_224_1L
	Manual_Page_224_2R
	Manual_Page_225_1L
	Manual_Page_225_2R
	Manual_Page_226_1L
	Manual_Page_226_2R
	Manual_Page_227_1L
	Manual_Page_227_2R
	Manual_Page_228_1L
	Manual_Page_228_2R
	Manual_Page_229_1L
	Manual_Page_229_2R
	Manual_Page_230_1L
	Manual_Page_230_2R
	Manual_Page_231_1L
	Manual_Page_231_2R
	Manual_Page_232_1L
	Manual_Page_232_2R
	Manual_Page_233_1L
	Manual_Page_233_2R
	Manual_Page_234_1L
	Manual_Page_234_2R
	Manual_Page_235_1L
	Manual_Page_235_2R
	Manual_Page_236_1L
	Manual_Page_236_2R
	Manual_Page_237_1L
	Manual_Page_237_2R
	Manual_Page_238_1L
	Manual_Page_238_2R
	Manual_Page_239_1L
	Manual_Page_239_2R
	Manual_Page_240_1L
	Manual_Page_240_2R
	Manual_Page_241_1L
	Manual_Page_241_2R
	Manual_Page_242_1L
	Manual_Page_242_2R
	Manual_Page_243_1L
	Manual_Page_243_2R
	Manual_Page_244_1L
	Manual_Page_244_2R
	Manual_Page_245_1L
	Manual_Page_245_2R
	Manual_Page_246_1L
	Manual_Page_246_2R
	Manual_Page_247_1L
	Manual_Page_247_2R
	Manual_Page_248_1L
	Manual_Page_248_2R
	Manual_Page_249_1L
	Manual_Page_249_2R
	Manual_Page_250_1L
	Manual_Page_250_2R
	Manual_Page_251_1L
	Manual_Page_251_2R
	Manual_Page_252_1L
	Manual_Page_252_2R
	Manual_Page_253_1L
	Manual_Page_253_2R
	Manual_Page_254_1L
	Manual_Page_254_2R
	Manual_Page_255_1L
	Manual_Page_255_2R
	Manual_Page_256_1L
	Manual_Page_256_2R
	Manual_Page_257_1L
	Manual_Page_257_2R
	Manual_Page_258_1L
	Manual_Page_258_2R
	Manual_Page_259_1L
	Manual_Page_259_2R
	Manual_Page_260_1L
	Manual_Page_260_2R
	Manual_Page_261_1L
	Manual_Page_261_2R
	Manual_Page_262_1L
	Manual_Page_262_2R
	Manual_Page_263_1L
	Manual_Page_263_2R
	Manual_Page_264_1L
	Manual_Page_264_2R
	Manual_Page_265_1L
	Manual_Page_265_2R
	Manual_Page_266_1L
	Manual_Page_266_2R
	Manual_Page_267_1L
	Manual_Page_267_2R
	Manual_Page_268_1L
	Manual_Page_268_2R
	Manual_Page_269_1L
	Manual_Page_269_2R
	Manual_Page_270_1L
	Manual_Page_270_2R
	Manual_Page_271_1L
	Manual_Page_271_2R
	Manual_Page_272_1L
	Manual_Page_272_2R
	Manual_Page_273_1L
	Manual_Page_273_2R
	Manual_Page_274_1L
	Manual_Page_274_2R
	Manual_Page_275_1L
	Manual_Page_275_2R
	Manual_Page_276_1L
	Manual_Page_276_2R
	Manual_Page_277_1L
	Manual_Page_277_2R
	Manual_Page_278_1L
	Manual_Page_278_2R
	Manual_Page_279_1L
	Manual_Page_279_2R
	Manual_Page_280_1L
	Manual_Page_280_2R
	Manual_Page_281_1L
	Manual_Page_281_2R
	Manual_Page_282_1L
	Manual_Page_282_2R
	Manual_Page_283_1L
	Manual_Page_283_2R
	Manual_Page_284_1L
	Manual_Page_284_2R
	Manual_Page_285_1L
	Manual_Page_285_2R
	Manual_Page_286_1L
	Manual_Page_286_2R
	Manual_Page_287_1L
	Manual_Page_287_2R
	Manual_Page_288_1L
	Manual_Page_288_2R
	Manual_Page_289_1L
	Manual_Page_289_2R
	Manual_Page_290_1L
	Manual_Page_290_2R
	Manual_Page_291_1L
	Manual_Page_291_2R
	Manual_Page_292_1L
	Manual_Page_292_2R
	Manual_Page_293_1L
	Manual_Page_293_2R
	Manual_Page_294_1L
	Manual_Page_294_2R
	Manual_Page_295_1L
	Manual_Page_295_2R
	Manual_Page_296_1L
	Manual_Page_296_2R
	Manual_Page_297_1L
	Manual_Page_297_2R
	Manual_Page_298_1L
	Manual_Page_298_2R
	Manual_Page_299_1L
	Manual_Page_299_2R
	Manual_Page_300_1L
	Manual_Page_300_2R
	Manual_Page_301_1L
	Manual_Page_301_2R
	Manual_Page_302_1L
	Manual_Page_302_2R
	Manual_Page_303_1L
	Manual_Page_303_2R
	Manual_Page_304_1L
	Manual_Page_304_2R
	Manual_Page_305_1L
	Manual_Page_305_2R
	Manual_Page_306_1L
	Manual_Page_306_2R
	Manual_Page_307_1L
	Manual_Page_307_2R
	Manual_Page_308_1L
	Manual_Page_308_2R
	Manual_Page_309_1L
	Manual_Page_309_2R
	Manual_Page_310_1L
	Manual_Page_310_2R
	Manual_Page_311_1L
	Manual_Page_311_2R
	Manual_Page_312_1L
	Manual_Page_312_2R
	Manual_Page_313_1L
	Manual_Page_313_2R
	Manual_Page_314_1L
	Manual_Page_314_2R
	Manual_Page_315_1L
	Manual_Page_315_2R
	Manual_Page_316_1L
	Manual_Page_316_2R
	Manual_Page_317_1L
	Manual_Page_317_2R
	Manual_Page_318_1L
	Manual_Page_318_2R
	Manual_Page_319_1L
	Manual_Page_319_2R
	Manual_Page_320_1L
	Manual_Page_320_2R
	Manual_Page_321_1L
	Manual_Page_321_2R
	Manual_Page_322_1L
	Manual_Page_322_2R
	Manual_Page_323_1L
	Manual_Page_323_2R
	Manual_Page_324_1L
	Manual_Page_324_2R
	Manual_Page_325_1L
	Manual_Page_325_2R
	Manual_Page_326_1L
	Manual_Page_326_2R
	Manual_Page_327

